Evaluation of Mechanical Properties of Sabai Grass (Eulaliopsis binata) Fibers and Epoxy Resin Composite Laminates Using Fly Ash as Filler Material
Abstract
:1. Introduction
- Develop composite laminates using four-layered sabai fiber and epoxy matrix, integrating fly ash fillers at concentrations of 1.5 wt.%, 3 wt.%, and 5 wt.%.
- Analyze the impact of varying fly ash filler concentrations on the density and porosity of the composite laminates fabricated in stacking sequences of [0°/0°/0°/0°] and [0°/90°/90°/0°].
- Assess the tensile and flexural properties of the composite laminates (both [0°/0°/0°/0°] and [0°/90°/90°/0°]) as influenced by different concentrations of fly ash fillers.
2. Materials and Methods
2.1. Reinforcement Material
2.2. Fly Ash Filler
2.3. Surface Modification and Characterization of Fiber
2.4. Matrix Material
2.5. Composite Fabrication
3. Composite Characterization
Density and Porosity of Composite Laminates
4. Mechanical Characterization
4.1. Tensile and Flexural Test
4.2. Field Emission Scanning Electron Microscopy (FESEM)
4.3. Fourier-Transform Infrared Spectroscopy (FTIR)
5. Results and Discussion
5.1. FTIR Analysis
5.2. X-Ray Diffraction Analysis
5.3. Effect of Fly Ash Filler on Mechanical Properties
5.3.1. Tensile Properties of Composites
5.3.2. Flexural Properties of Composites
5.3.3. Effect of Filler on Surface Hardness
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betelie, A.A.; Sinclair, A.N.; Kortschot, M.; Li, Y.; Redda, D.T. Mechanical properties of sisal-epoxy composites as functions of fiber-to-epoxy ratio. AIMS Mater. Sci. 2019, 6, 985–996. [Google Scholar] [CrossRef]
- Stimoniaris, A.; Skoura, E.; Gournis, D.; Karakassides, M.A.; Delides, C. Structure and Properties of Epoxy/Fly Ash System: Influence of Filler Content and Surface Modification. J. Mater. Eng. Perform. 2019, 28, 4620–4629. [Google Scholar] [CrossRef]
- Gül, A.; Kamali, A.R. Effect of Mechanically Exfoliated Graphite Flakes on Morphological, Mechanical, and Thermal Properties of Epoxy. J. Compos. Sci. 2024, 8, 466. [Google Scholar] [CrossRef]
- Awad, A.; El-Gamasy, R.; El-Wahab, A.A.A.; Abdellatif, M.H. Mechanical behavior of PP reinforced with marble dust. Constr. Build. Mater. 2019, 228, 116766. [Google Scholar] [CrossRef]
- Sahu, P.; Parida, S.K. Effect of cenosphere filler on the hardness and impact strength of wild cane fibre mat reinforced laminated composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 653, 012044. [Google Scholar] [CrossRef]
- Pappu, A.; Chaturvedi, R.; Tyagi, P. Sustainable approach towards utilizing Makrana marble waste for making water resistant green composite materials. SN Appl. Sci. 2020, 2, 347. [Google Scholar] [CrossRef]
- Saitta, L.; Prasad, V.; Tosto, C.; Murphy, N.; Ivankovic, A.; Cicala, G.; Scarselli, G. Characterization of biobased epoxy resins to manufacture eco-composites showing recycling properties. Polym. Compos. 2022, 43, 9179–9192. [Google Scholar] [CrossRef]
- Mohit, H.; Rangappa, S.M.; Gapsari, F.; Siengchin, S.; Marwani, H.M.; Khan, A.; Asiri, A.M. Effect of bio-fibers and inorganic fillers reinforcement on mechanical and thermal characteristics on carbon-kevlar-basalt-innegra fiber bio/ synthetic epoxy hybrid composites. J. Mater. Res. Technol. 2023, 23, 5440–5458. [Google Scholar] [CrossRef]
- Chauhan, S.; Thakur, S. Effect of Micro Size Cenosphere Particles Reinforcement on Tribological Characteristics of Vinylester Composites under Dry Sliding Conditions. J. Miner. Mater. Charact. Eng. 2012, 11, 938–946. [Google Scholar] [CrossRef]
- Stern, T.; Marom, G. Fracture Mechanisms and Toughness in Polymer Nanocomposites: A Brief Review. J. Compos. Sci. 2024, 8, 395. [Google Scholar] [CrossRef]
- Lyubushkin, R.A.; Cherkashina, N.I.; Pushkarskaya, D.V.; Forova, E.V.; Ruchiy, A.Y.; Domarev, S.N. Polylactide-Based Polymer Composites with Rice Husk Filler. J. Compos. Sci. 2024, 8, 427. [Google Scholar] [CrossRef]
- Bilal, H.; Gao, X.; Cavaleri, L.; Khan, A.; Ren, M. Mechanical, Durability, and Microstructure Characterization of Pervious Concrete Incorporating Polypropylene Fibers and Fly Ash/Silica Fume. J. Compos. Sci. 2024, 8, 456. [Google Scholar] [CrossRef]
- Drury, B.; Padfield, C.; Rajabifard, M.; Mofidi, A. Experimental Investigation of Low-Cost Bamboo Composite (LCBC) Slender Structural Columns in Compression. J. Compos. Sci. 2024, 8, 435. [Google Scholar] [CrossRef]
- Sahu, S.; Behera, L. Sabai Grass Fibre: An Insight into Thermal Stability, Chemical Constitution and Morphology. Int. J. Adv. Chem. Sci. Appl. 2016, 4, 1–5. [Google Scholar]
- Kumar, S.; Das, R.; Parida, S.K. Water absorption and mechanical properties of sabai yarn in FRP composite. Mater. Today Proc. 2020, 26, 1610–1615. [Google Scholar] [CrossRef]
- Guna, V.; Ilangovan, M.; K., A.; C.V., A.K.; Srinivas, C.V.; Yogesh, S.; Nagananda, G.S.; Venkatesh, K.; Reddy, N. Biofibers and biocomposites from sabai grass: A unique renewable resource. Carbohydr. Polym. 2019, 218, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, D. Effects of Alkali-Treatment and Feeding Route of Henequen Fiber on the Heat Deflection Temperature, Mechanical, and Impact Properties of Novel Henequen Fiber/Polyamide 6 Composites. J. Compos. Sci. 2022, 6, 89. [Google Scholar] [CrossRef]
- Oliveira, M.; Pickering, K.L.; Gauss, C. Hybrid Polyethylene Composites with Recycled Carbon Fibres and Hemp Fibres Pro-duced by Rotational Moulding. J. Compos. Sci. 2022, 6, 352. [Google Scholar] [CrossRef]
- Bekele, A.E.; Lemu, H.G.; Jiru, M.G. Study of the Effects of Alkali Treatment and Fiber Orientation on Mechanical Properties of Enset/Sisal Polymer Hybrid Composite. J. Compos. Sci. 2023, 7, 37. [Google Scholar] [CrossRef]
- Kumar, S.; Das, R.; Parida, S.K. Strength evaluation of alkali treated Sabai Grass (Eulaliopsis binata) fibers and its reinforced composites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 238, 5739–5751. [Google Scholar] [CrossRef]
- Arpitha, G.; Sanjay, M.; Senthamaraikannan, P.; Barile, C.; Yogesha, B. Hybridization Effect of Sisal/Glass/Epoxy/Filler Based Woven Fabric Reinforced Composites. Exp. Tech. 2017, 41, 577–584. [Google Scholar] [CrossRef]
- Das, D.; Rout, P.K. Synthesis, Characterization and Properties of Fly Ash Based Geopolymer Materials. J. Mater. Eng. Perform. 2021, 30, 3213–3231. [Google Scholar] [CrossRef]
- Phadnis, V.A.; Makhdum, F.; Roy, A.; Silberschmidt, V.V. Drilling in carbon/epoxy composites: Experimental investigations and finite element implementation. Compos. Part A Appl. Sci. Manuf. 2012, 47, 41–51. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Nicoletti, F.; Vitale, G.; Prestipino, M.; Valenza, A. A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos. Part B Eng. 2015, 85, 150–160. [Google Scholar] [CrossRef]
- Hitesh; Wattal, R.; Lata, S. Development and Characterization of Coal Fly Ash through Low-Energy Ball Milling. Mater. Today Proc. 2021, 47, 2970–2975. [Google Scholar] [CrossRef]
- Rajawat, A.S.; Singh, S.; Gangil, B.; Ranakoti, L.; Sharma, S.; Asyraf, M.R.M.; Razman, M.R. Effect of Marble Dust on the Mechanical, Morphological, and Wear Performance of Basalt Fibre-Reinforced Epoxy Composites for Structural Applications. Polymers 2022, 14, 1325. [Google Scholar] [CrossRef]
- Mulana, F.; Aulia, M.P.; Aprilia, S. Fly Ash/Coconut fiber reinforced polymer Composites: Effect on physical properties (Density, water Absorption, and thickness Swelling). Mater. Today Proc. 2023, 87, 180–186. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Plant fibre based bio-composites: Sustainable and renewable green materials. Renew. Sustain. Energy Rev. 2017, 79, 558–584. [Google Scholar] [CrossRef]
- Sharma, J.; Chand, N.; Bapat, M. Effect of cenosphere on dielectric properties of low density polyethylene. Results Phys. 2012, 2, 26–33. [Google Scholar] [CrossRef]
- Tadesse, M.; Sinha, D.K.; Jiru, M.G.; Jameel, M.; Hossain, N.; Jha, P.; Gupta, G.; Zainuddin, S.; Ahmed, G.M.S. Optimization of Tailor-Made Natural- and Synthetic-Fiber-Reinforced Epoxy-Based Composites for Lightweight Structural Applications. J. Compos. Sci. 2023, 7, 443. [Google Scholar] [CrossRef]
Elements | O | Mg | Si | Ca | Fe | Al |
---|---|---|---|---|---|---|
Marble powder (%) | 58.62 | 11.21 | 10.41 | 19.76 | - | - |
Fly ash (%) | 50.94 | - | 23.96 | - | 2.55 | 22.54 |
Group | Designation | Reinforcement Orientation in 4 Layers of Sabai Fibers | Fiber Treatment | Filler | wt.% of Filler |
---|---|---|---|---|---|
CWF | 0°/0°/0°/0° | 5% NaOH | Fly ash | 0 | |
Group 1 | D | 1.5 | |||
E | 3 | ||||
F | 5 | ||||
CWF | 0°/90°/90°/0° | 0 | |||
Group 2 | J | 5% NaOH | Fly ash | 1.5 | |
K | 3 | ||||
L | 5 |
Composite Laminate | Reinforcement (wt.%) | Density of Matrix (ρm.) | Density of Fibers (ρf) | Density of Fillers (ρfillers) | Expt. Density (ρexp.) | Theo. Density (ρth.) | Porosity (%) |
---|---|---|---|---|---|---|---|
CWF | 20.72 | 1.17 | 1.67 | - | 1.17 | 1.2 | 2.564 |
D | 21.21 | 1.17 | 1.67 | 2.690 | 1.184 | 1.254 | 5.551 |
E | 23.84 | 1.17 | 1.67 | 2.690 | 1.182 | 1.257 | 5.909 |
F | 25.81 | 1.17 | 1.67 | 2.690 | 1.185 | 1.267 | 6.413 |
CWF | 20.11 | 117 | 1.67 | 2.690 | 1.15 | 1.19 | 3.361 |
J | 21.39 | 1.17 | 1.67 | 2.690 | 1.188 | 1.274 | 6.831 |
K | 23.50 | 1.17 | 1.67 | 2.690 | 1.184 | 1.275 | 7.123 |
L | 25.26 | 1.17 | 1.67 | 2.690 | 1.178 | 1.276 | 7.697 |
Composite | Tensile Strength (MPa) | Modulus (GPa) | Break Strain (%) | Flexural Strength (MPa) | Modulus (GPa) | Break Strain (%) |
---|---|---|---|---|---|---|
CWF | 43.15 ± 2.5 | 1.63 ± 0.32 | 1.6 ± 0.2 | 61.9 ± 0.3 | 6.10 ± 0.33 | 1.98 ± 0.43 |
D | 45.15 ± 7.09 | 2.90 ± 0.60 | 1.215 ± 0.29 | 62.6 ± 3.5 | 5.5 ± 0.26 | 1.58 ± 0.03 |
E | 48.25 ± 6.1 | 4.06 ± 0.71 | 1.211 ± 0.21 | 95.2 ± 4.2 | 6.8 ± 0.27 | 1.40 ± 0.71 |
F | 63.35 ± 7.35 | 4.91 ± 0.43 | 1.120 ± 0.21 | 118.5 ± 2.62 | 8.2 ± 0.40 | 1.28 ± 0.20 |
CWF | 30.15 ± 1.5 | 1.43 ± 0.22 | 1.5 ± 0.3 | 55.6 ± 0.3 | 4.1 ± 0.32 | 1.27 ± 0.41 |
J | 29.25 ± 2.33 | 1.87 ± 0.44 | 1.35 ± 0.13 | 58.1 ± 1.6 | 4.8 ± 0.3 | 1.405 ± 0.04 |
K | 40.3 ± 1.13 | 2.93 ± 0.29 | 1.24 ± 0.2 | 80.45 ± 7.99 | 5.6 ± 0.21 | 1.32 ± 0.03 |
L | 42.45 ± 2.16 | 3.39 ± 0.35 | 1.51 ± 0.1 | 100.3 ± 2.14 | 7.53 ± 0.94 | 1.23 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Das, R.; Parida, S.K. Evaluation of Mechanical Properties of Sabai Grass (Eulaliopsis binata) Fibers and Epoxy Resin Composite Laminates Using Fly Ash as Filler Material. J. Compos. Sci. 2025, 9, 38. https://doi.org/10.3390/jcs9010038
Kumar S, Das R, Parida SK. Evaluation of Mechanical Properties of Sabai Grass (Eulaliopsis binata) Fibers and Epoxy Resin Composite Laminates Using Fly Ash as Filler Material. Journal of Composites Science. 2025; 9(1):38. https://doi.org/10.3390/jcs9010038
Chicago/Turabian StyleKumar, Shambhu, Ratnakar Das, and Sambit Kumar Parida. 2025. "Evaluation of Mechanical Properties of Sabai Grass (Eulaliopsis binata) Fibers and Epoxy Resin Composite Laminates Using Fly Ash as Filler Material" Journal of Composites Science 9, no. 1: 38. https://doi.org/10.3390/jcs9010038
APA StyleKumar, S., Das, R., & Parida, S. K. (2025). Evaluation of Mechanical Properties of Sabai Grass (Eulaliopsis binata) Fibers and Epoxy Resin Composite Laminates Using Fly Ash as Filler Material. Journal of Composites Science, 9(1), 38. https://doi.org/10.3390/jcs9010038