Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants
Abstract
:1. Introduction
2. Mechanistic Approach
3. Polymer Systems Improved by Inorganic Protectors
3.1. Inorganic Complexes
3.2. Inorganic Clays
3.3. Polymer/Carbon Composites
3.4. Organic/Inorganic Stabilization Couples
4. Suggestions and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Billingham, N.C.; Cahn, R.W.; Haasen, P.; Kramer, E.J. Degradation and Stabilization of Polymers. In A Comprehensive Treatment: Corrosion and Environmental Degradation; Wiley: Berlin, Germany, 2000; pp. 469–507. [Google Scholar]
- Özdemir, T.; Güngör, A.; Akbay, I.; Uzun, H.; Babucçuoglu, Y. Nano Lead Oxide and EPDM Composite for Development of Polymer Based Radiation Shielding Material: Gamma Irradiation and Attenuation Tests. Radiat. Phys. Chem. 2018, 144, 248–255. [Google Scholar] [CrossRef]
- Bernstein, R.; Thornberg, S.M.; Assink, R.A.; Mowery, D.M.; Alam, M.K.; Irwin, A.N.; Hochrein, J.M.; Derzon, D.K.; Klamo, S.B.; Clough, R.L. Insights into Oxidation Mechanisms in Gamma-Irradiated Polypropylene, Utilizing Selective Isotopic Labeling with Analysis by GC/MS, NMR and FTIR. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 265, 8–17. [Google Scholar] [CrossRef]
- Chaudhari, C.V.; Dubey, K.A.; Bhardwaj, Y.K. Radiation-Induced Degradation of Polymers: An Aspect Less Exploited. In Applications of High Energy Radiations; Chow-dhury, S.R., Ed.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2023; pp. 373–407. [Google Scholar]
- Ferry, M.; Ngono, Y. Energy Transfer in Polymers Submitted to Ionizing Radiation: A Review. Radiat. Phys. Chem. 2020, 180, 109320. [Google Scholar] [CrossRef]
- Clifford, D.; Castano, C.; Rojas, J. Supported Transition Metal Nanomaterials: Nanocomposites Synthesized by Ionizing Radiation. Radiat. Phys. Chem. 2017, 132, 52–64. [Google Scholar] [CrossRef]
- Zaharescu, T.; Giurginca, M.; Jipa, S. Radiochemical Oxidation of Ethylene–Propylene Elastomers in the Presence of some Phenolic Antioxidants. Polym. Degrad. Stab. 1999, 63, 245–251. [Google Scholar] [CrossRef]
- Celina, M.C. Review of Polymer Oxidation and its Relationship with Materials Performance and Lifetime Prediction. Polym. Degrad. Stab. 2013, 98, 2419–2429. [Google Scholar] [CrossRef]
- Girard-Perier, N.; Dorey, S.; Marque, S.R.; Dupuy, N. Mapping the Scientific Research on the Gamma Irradiated Polymers Degradation (1975-2018). Radiat. Phys. Chem. 2020, 168, 108577. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, N.; Sachdeva, A. Factors Affecting the Ageing of Polymer Composite: A State of Art. Polym. Degrad. Stab. 2024, 221, 110670. [Google Scholar] [CrossRef]
- Zhao, W.; Dong, Z.; Zhao, L. Radiation Synthesis of Polyhedral Oligomeric Silsesquioxanes (POSS) Gel Polymers. Radiat. Phys. Chem. 2022, 198, 110251. [Google Scholar] [CrossRef]
- Ojeda, T. Polymers and the Environment. In Polymer Science; Yılmaz, F., Ed.; Intech: Lublijana, Croatia, 2013; pp. 1–34. [Google Scholar]
- Planes, E.; Chazeau, L.; Vigier, G.; Fournier, J. Evolution of EPDM Networks Aged by Gamma Irradiation – Consequences on the Mechanical Properties. Polymer 2009, 50, 4028–4038. [Google Scholar] [CrossRef]
- De Almeida, A.; Chazeau, L.; Vigier, G.; Marque, G.; Goutille, Y. Influence of PE/PP Ratio and ENB Content on the Degradation Kinetics of γ-Irradiated EPDM. Polym. Degrad. Stab. 2014, 110, 175–183. [Google Scholar] [CrossRef]
- Żenkiewicz, M.; Czupryńska, J.; Polański, J.; Karasiewicz, T.; Engelgard, W. Effects of Electron-Beam Irradiation on some Structural Properties of Granulated Polymer Blends. Radiat. Phys. Chem. 2008, 77, 146–153. [Google Scholar] [CrossRef]
- Sirin, M.; Zeybek, M.S.; Sirin, K.; Abali, Y. Effect of Gamma Irradiation on the Thermal and Mechanical Behaviour of Polypropylene and Polyethylene Blends. Radiat. Phys. Chem. 2022, 194, 110034. [Google Scholar] [CrossRef]
- Dintcheva, N.T. Overview of Polymers and Biopolymers Degradation and Stabilization Towards Sustainability and Materials Circularity. Polymer 2024, 306, 127136. [Google Scholar] [CrossRef]
- Basfar, A.; Lotfy, S. Radiation-Crosslinking of Shape Memory Polymers Based on Poly(Vinyl Alcohol) in the Presence of Carbon Nanotubes. Radiat. Phys. Chem. 2015, 106, 376–384. [Google Scholar] [CrossRef]
- Chazot, C.A.C.; Hart, A.J. Understanding and Control of Interactions Between Carbon Nanotubes and Polymers for Manufacturing of High-Performance Composite Materials. Compos. Sci. Technol. 2019, 183, 107795. [Google Scholar] [CrossRef]
- Darwesh, R.; Sayyed, M.; Al-Hadeethi, Y.; Alasali, H.J.; Alotaibi, J.S. Enhanced Radiation Shielding Performance of Epoxy Resin Composites with Sb2O3 and Al2O3 Additives. Radiat. Phys. Chem. 2023, 213, 111247. [Google Scholar] [CrossRef]
- Rychlý, J.; Matisová-Rychlá, L. The role of Oxidation in Degradation of Polymers: The Relation of Oxidation to the Light Emission from Oxidized Polymers. Compr. Anal. Chem.. 2008, 53, 451–498. [Google Scholar]
- (Luchian), A.-M.L.; Zaharescu, T.; Râpă, M.; Mariș, M.; Iovu, H. Availability of PLA/SIS Blends for Packaging and Medical Applications.Part II: Contribution of Stabilizer Agents. Radiat. Phys. Chem. 2022, 201, 110446. [Google Scholar] [CrossRef]
- Bansal, N.; Arora, S. Exploring the Impact of Gamma Rays and Electron Beam Irradiation on Physico-Mechanical Properties of Polymers & Polymer Composites: A Comprehensive Review. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2024, 549, 165297. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Entezam, M.; Müller, M.T.; Tavakol, M.; Khonakdar, H.A. Molecular and Thermo-Mechanical Assessment of Long-Chain Branched Polypropylene: Effect of Irradiation Dose, Multifunctional Monomer Content and Molecular Weight. Radiat. Phys. Chem. 2023, 212, 111186. [Google Scholar] [CrossRef]
- Seguchi, T.; Tamura, K.; Shimada, A.; Sugimoto, M.; Kudoh, H. Mechanism of Antioxidant Interaction on Polymer Oxidation by Thermal and Radiation Ageing. Radiat. Phys. Chem. 2012, 81, 1747–1751. [Google Scholar] [CrossRef]
- Zaharescu, T. Algal Extracts – The Appropriate Stabilizers for Radiation Processed UHMWPE. Radiat. Phys. Chem. 2023, 212, 111087. [Google Scholar] [CrossRef]
- Zaharescu, T.; Borbath, T.; Borbath, I. The Contribution of BaTiO3 to the Stability Improvement of Ethylene-Propylene-Diene Rubber. Part III. – Comparative Essay: EPDM vs EPR. Radiat. Phys. Chem. 2024, 218. [Google Scholar] [CrossRef]
- Pongsathit, S.; Pattamaprom, C. Irradiation Grafting of Natural Rubber Latex with Maleic Anhydride and its Compatibilization of Poly(Lactic Acid)/Natural Rubber Blends. Radiat. Phys. Chem. 2018, 144, 13–20. [Google Scholar] [CrossRef]
- Pospíšil, J.; Nešpůrek, S. Chain-Breaking Stabilizers in Polymers: The Current Status. Polym. Degrad. Stab. 1995, 49, 99–110. [Google Scholar] [CrossRef]
- Pilař, J.; Michálková, D.; Šeděnková, I.; Pfleger, J.; Pospíšil, J. NOR and Nitroxide-Based HAS in Accelerated Photooxidation of Carbon-Chain Polymers; Comparison with Secondary HAS: An ESRI and ATR FTIR Study. Polym. Degrad. Stab. 2011, 96, 847–862. [Google Scholar] [CrossRef]
- Seguchi, T.; Tamura, K.; Ohshima, T.; Shimada, A.; Kudoh, H. Degradation Mechanisms of Cable Insulation Materials During Radiation–Thermal Ageing in Radiation Environment. Radiat. Phys. Chem. 2010, 80, 268–273. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Liu, B.; Xia, Y.; Lin, Q. Migration of Polymer Additives and Radiolysis Products from Irradiated PET/PE Films into a Food Simulant. Food Control. 2021, 124, 107886. [Google Scholar] [CrossRef]
- Klemchuk, P.P. Protecting Polymers Against Damage from Gamma Radiation. Radiat. Phys. Chem. 1993, 41, 165–172. [Google Scholar] [CrossRef]
- Tamba, M.; Torreggiani, A. Radiation-Induced Effects in the Electron-Beam Irradiation of Dietary Flavonoids. Radiat. Phys. Chem. 2004, 71, 23–27. [Google Scholar] [CrossRef]
- Doudin, K.; Al-Malaika, S.; Sheena, H.H.; Tverezovskiy, V.; Fowler, P. New Genre of Antioxidants from Renewable Natural Resources: Synthesis and Characterization of Rosemary Plant-Derived Antioxidants and their Performance in Polyolefins. Polym. Degrad. Stab. 2016, 130, 126–134. [Google Scholar] [CrossRef]
- Pospíšil, J.; Pilař, J.; Billingham, N.C.; Marek, A.; Horák, Z.; Nešpůrek, S. Factors Affecting Accelerated Testing of Polymer Photostability. Polym. Degrad. Stab.. 2006, 91, 417–422. [Google Scholar] [CrossRef]
- Uma, S.; Shobana, M. Band Structure and Mechanism of Semiconductor Metal Oxide Heterojunction Gas Sensor. Inorg. Chem. Commun. 2023, 160, 111941. [Google Scholar] [CrossRef]
- Zaharescu, T.; Blanco, I.; Bottino, F. Antioxidant Activity Assisted by Modified Particle Surface in POSS/EPDM Hybrids. Appl. Surf. Sci. 2019, 509, 144702. [Google Scholar] [CrossRef]
- Zaharescu, T.; Ilies, D.-C.; Roşu, T. Thermal and Spectroscopic Analysis of Stabilization Effect of Copper Complexes in EPDM. J. Therm. Anal. Calorim. 2015, 123, 231–239. [Google Scholar] [CrossRef]
- Zaharescu, T. Stabilization Effects of Doped Inorganic Filler on EPDM for Space and Terrestrial Applications. Mater. Chem. Phys. 2019, 234, 102–109. [Google Scholar] [CrossRef]
- Burnea, L.; Zaharescu, T.; Dumitru, A.; Plesa, I.; Ciuprina, F. Radiation Stability of Polypropylene/Lead Zirconate Composites. Radiat. Phys. Chem. 2014, 94, 156–160. [Google Scholar] [CrossRef]
- Collin, S.; Bussière, P.-O.; Therias, S.; Lacoste, J. The Role of Hydroperoxides in the Chemiluminescence of Oxidized Polymers Reconsidered. Eur. Polym. J. 2016, 76, 122–134. [Google Scholar] [CrossRef]
- Jozef, R.; Lyda, R.; Igor, N.; Vladimír, V.; Jozef, P.; Ivica, J.; Ivan, C. Thermooxidative Stability of Hot Melt Adhesives based on Metallocene Polyolefins Grafted with Polar Acrylic Acid Moieties. Polym. Test. 2020, 85, 106422. [Google Scholar] [CrossRef]
- Zaharescu, T.; Borbath, T.; Borbath, I.; Simion, E.; Mirea, R. Thermal Stability of Styrene Block Copolymers for Nuclear Applications. Radiat. Phys. Chem. 2024, 223, 111828. [Google Scholar] [CrossRef]
- Nuñez-Briones, A.; Benavides, R.; Bolaina-Lorenzo, E.; Martínez-Pardo, M.; Kotzian-Pereira-Benavides, C.; Puente-Urbina, B.; García-Cerda, L. Effect of Bi2O3 Nanostructures on X-ray Shielding, Thermal, Mechanical and Biological Properties of PVC Polymer Nanocomposites. Radiat. Phys. Chem. 2023, 216, 111455. [Google Scholar] [CrossRef]
- Tanaka, T. Dielectric Nanocomposites with Insulating Properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Dintcheva, N.; Alessi, S.; Arrigo, R.; Przybytniak, G.; Spadaro, G. Influence of the E-Beam Irradiation and Photo-Oxidation Aging on the Structure and Properties of LDPE-OMMT Nanocomposite Films. Radiat. Phys. Chem. 2012, 81, 432–436. [Google Scholar] [CrossRef]
- Raslan, H.A.; Elnaggar, M.Y.; Fathy, E. Flame-retardancy and Physico-Thermomechanical Properties of Irradiated Ethylene Propylene Diene Monomer Inorganic Composites. J. Vinyl Addit. Technol. 2017, 25, 59–67. [Google Scholar] [CrossRef]
- Abou-Laila, M.T.; El-Zayat, M.M.; Madbouly, A.M.; Abdel-Hakim, A. Gamma Irradiation Effects on Styrene Butadiene Rubber/Pb3O4: Mechanical, Thermal, Electrical Investigations and Shielding Parameter Measurements. Radiat. Phys. Chem. 2022. 192, 109897. [CrossRef]
- Blanco, I.; Zaharescu, T. The Effect of Polyhedral Oligomeric Sislesquioxanes (POSSs) Incorporation in Ethylene-Propylene-Diene-Terpolymer (EPDM): A Thermal Study. J. Therm. Anal. Calorim. 2022, 147, 5313–5321. [Google Scholar] [CrossRef]
- Metzger, R.M. (Ed.) Inorganic Chemistry and Nanomaterials. In The Physical Chemist’s Toolbox; Wiley: New York, NY, USA, 2023; pp. 749–921. [Google Scholar]
- Ilies, D.-C.; Pahontu, E.; Shova, S.; Georgescu, R.; Stanica, N.; Olar, R.; Gulea, A.; Rosu, T. Synthesis, Characterization, Crystal Structure and Antimicrobial Activity of Copper(II) Complexes with a Thiosemicarbazone Derived from 3-formyl-6-methylchromone. Polyhedron 2014, 81, 123–131. [Google Scholar] [CrossRef]
- Zaharescu, T.; Râpă, M.; Lungulescu, E.-M.; Butoi, N. Filler Effect on the Degradation of γ-processed PLA/Vinyl POSS Hybrid. Radiat. Phys. Chem. 2018, 153, 188–197. [Google Scholar] [CrossRef]
- Setnescu, R.; Bărcuţan, C.; Jipa, S.; Setnescu, T.; Negoiu, M.; Mihalcea, I.; Dumitru, M.; Zaharescu, T. The Effect of Some Thio-semicarbazide Compounds on Thermal Oxidation of Polypropylene. Polym. Degrad. Stabil. 2004, 85, 997–1001. [Google Scholar] [CrossRef]
- Mezey, R.Ș.; Zaharescu, T.; Lungulescu, M.E.; Marinescu, V.; Shova, S.; Roșu, T. Structural characteristics and thermal behavior of some azomethine compounds from pyridal and 4-aminoantipyrine. J. Therm. Anal. Calorim. 2016, 126, 1763–1776. [Google Scholar] [CrossRef]
- Eren, T.; Kose, M.; Kurtoglu, N.; Ceyhan, G.; McKee, V.; Kurtoglu, M. An Azo-Azomethyne Ligand and its Copper(II) Complex: Synthesis, X-ray Crystal Structure, Spectral, Thermal, Electrochemical and Photoluminescence Properties. Inorg. Chim. Acta. 2015, 430, 268–279. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Huang, T.-K.; Wang, Y.-C.; Alamani, B.G.; Lin, J.-J. Intercalation Strategies in Clay/Polymer Hybrids. Prog. Polym. Sci. 2014, 39, 443–485. [Google Scholar] [CrossRef]
- Huang, H.-D.; Ren, P.-G.; Zhong, G.-J.; Olah, A.; Li, Z.-M.; Baer, E.; Zhu, L. Promising Strategies and New Opportunities for High Barrier Polymer Packaging Films. Prog. Polym. Sci. 2023, 144, 101722. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Xie, Q.; Liu, G.; Ma, C.; Zhang, G. Functional Polymer–Ceramic Hybrid Coatings: Status, Progress, and Trend. Prog. Polym. Sci. 2024, 154, 101840. [Google Scholar] [CrossRef]
- Zhou, H.; Chua, M.H.; Xu, J. Manufacturing of POSS-Polymer Nanocomposites. In Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites. From Synthesis to Applications; Thomas, S., Somasekharan, L., Eds.; Elsevier: New York, NY, USA, 2021; pp. 27–51. [Google Scholar]
- Musto, P.; Abbate, M.; Pannico, M.; Scarinzi, G.; Ragosta, G. Improving the Photo-Oxidative Stability of Epoxy Resins by use of Functional POSS Additives: A Spectroscopic, Mechanical and Morphological Study. Polymer 2012, 53, 5016–5036. [Google Scholar] [CrossRef]
- Peng, D.; Qin, W.; Wu, X. A Study on Resistance to Ultraviolet Radiation of POSS–TiO2/Epoxy Nanocomposites. Acta Astronaut. 2015, 111, 84–88. [Google Scholar] [CrossRef]
- Zaharescu, T.; Marinescu, V.; Hebda, E.; Pielichowski, K. Thermal stability of gamma-irradiated polyurethane/POSS hybrid materials. J. Therm. Anal. Calorim. 2017, 133, 49–54. [Google Scholar] [CrossRef]
- Zaharescu, T.; Chou, Y.; Hebda, E.; Raftopoulos, K.N.; Pielichowski, K. Complementary Assessment of γ-irradiated Polyurethane-POSS Hybrids by Chemiluminescence and Differential Scanning Calorimetry. Polym. Test. 2021, 96, 107117. [Google Scholar] [CrossRef]
- Hasan, I.U.; Zohora, F.T.; Abedin, J.; Rahman, Z. Hybrid Functional Materials and their Applications. In Comprehensive Materials Processing, 2nd ed.; Hashmi, S., Ed.; Elsevier: New York, NY, USA, 2024; Volume 13, pp. 479–504. [Google Scholar]
- Zaharescu, T.; Pielichowski, K. Stabilization Effects of POSS Nanoparticles on Gamma-irradiated Polyurethane. J. Therm. Anal. Calorim. 2015, 124, 767–774. [Google Scholar] [CrossRef]
- Kholodkova, E.; Vcherashnyaya, A.; Bludenko, A.; Chulkov, V.; Ponomarev, A. Radiation-Thermal Approaches to the Processing of Complex Polymer Waste. Radiat. Phys. Chem. 2019, 170, 108664. [Google Scholar] [CrossRef]
- Zaharescu, T.; Dumitru, A.; Lungulescu, M.; Velciu, G. EPDM Composite Membranes Modified with Cerium Doped Lead Zirconate Titanate. Radiat. Phys. Chem. 2016, 118, 133–137. [Google Scholar] [CrossRef]
- Ateeq, M. A State of Art Review on Recycling and Remanufacturing of the Carbon Fiber from Carbon Fiber Polymer Composite. Compos. Part C Open Access 2023, 12, 100412. [Google Scholar] [CrossRef]
- Prashanth, G.; Gadewar, M.; Lalithamba, H.; Rao, S.; Rashmi, K.; Yatish, K.; Swamy, M.M.; Bhagya, N.; Ghosh, M.K. Synthesis, and Applications of Carbon-Integrated Polymer Composites and Foams: A Concise Review. Inorg. Chem. Commun. 2024, 166, 112614. [Google Scholar] [CrossRef]
- Huali, Y.; Hao, T.; Jianhui, P.; Xinfang, C. The Stabilization Effect of Radiation Crosslinking on Positive Temperature Coefficient Performances of Carbon Black-Polymer Composites. Radiat. Phys. Chem. 1993, 42, 135–137. [Google Scholar] [CrossRef]
- Oshima, A.; Udagawa, A.; Morita, Y. Radiation Processing for Carbon Fiber-Reinforced Polytetrafluoroethylene Composite Materials. Radiat. Phys. Chem. 2001, 60, 95–100. [Google Scholar] [CrossRef]
- Martin, A.; Pietras-Ozga, D.; Ponsaud, P.; Kowandy, C.; Barczak, M.; Defoort, B.; Coqueret, X. Radiation-Curing of Acrylate Composites Including Carbon Fibres: A Customized Surface Modification for Improving Mechanical Performances. Radiat. Phys. Chem. 2014, 105, 63–68. [Google Scholar] [CrossRef]
- Azzian, M.I.M.; Mohamad, S.F.; Salleh, W.N.W.; Ismail, N.H.; Ahmad, S.Z.N.; Sazali, M.A.; Guven, O. Surface Modification of PVDF Membrane by Radiation-Induced Admicellar Polymerization of Acrylamide in the Presence of Cationic Surfactant. Radiat. Phys. Chem. 2023, 214, 111309. [Google Scholar] [CrossRef]
- Dubey, K.A.; Mondal, R.K.; Bhardwaj, Y.K. Graphene Assisted Enhancement in the Cyclic Electromechanical Properties of Polyolefin-based Multiphasic Conducting Nano Carbon Black Nanocomposites. Radiat. Phys. Chem. 2024, 214, 111308. [Google Scholar] [CrossRef]
- Zaharescu, T.; Banciu, C. Stabilization Efficiency of Graphene in γ-irradiated Styrene-Isoprene-Styrene Copolymer. Radiat. Phys. Chem. 2023, 214, 111256. [Google Scholar] [CrossRef]
- Karsli, N.G.; Aytac, A.; Akbulut, M.; Deniz, V.; Güven, O. Effects of Irradiated Polypropylene Compatibilizer on the Properties of Short Carbon Fiber Reinforced Polypropylene Composites. Radiat. Phys. Chem. 2012, 84, 74–78. [Google Scholar] [CrossRef]
- Shahnaz, T.; Hayder, G.; Shah, M.A.; Ramli, M.Z.; Ismail, N.; Hua, C.K.; Zahari, N.M.; Mardi, N.H.; Selamat, F.E.; Kabilmiharbi, N.; et al. Graphene-based Nanoarchitecture as a Potent Cushioning/Filler in Polymer Composites and their Applications. J. Mater. Res. Technol. 2023, 28, 2671–2698. [Google Scholar] [CrossRef]
- Patil, U.S.; Kemppainen, J.; Wavrunek, T.; Odegard, G.M. The Effect of Gamma-Ray Irradiation on Polymer-Graphene Nanocomposite Interfaces. Compos. Part B-Eng. 2024, 284, 111715. [Google Scholar] [CrossRef]
- Amiryaghoubi, N.; Fathi, M.; Barar, J.; Omidian, H.; Omidi, Y. Recent Advances in Graphene-based Polymer Composite Scaffolds for Bone/Cartilage Tissue Engineering. J. Drug Deliv. Sci. Technol. 2022, 72, 103360. [Google Scholar] [CrossRef]
- Majumder, S.; Meher, A.; Moharana, S.; Kim, K.H. Graphene Nanoribbon Synthesis and Properties in Polymer Composites: A Review. Carbon 2023, 216, 118558. [Google Scholar] [CrossRef]
- Fu, X.; Lin, J.; Liang, Z.; Yao, R.; Wu, W.; Fang, Z.; Zou, W.; Wu, Z.; Ning, H.; Peng, J. Graphene Oxide as a Promising Nanofiller for Polymer Composite. Surfaces Interfaces 2023, 37, 102747. [Google Scholar] [CrossRef]
- Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, S.; Wang, X.; Zhang, P.; Mao, Z.; Zhang, X. Progression from Graphene and Graphene Oxide to High-Performance Epoxy Resin-based Composite. Polym. Degrad. Stab. 2024, 223, 110731. [Google Scholar] [CrossRef]
- Chu, J.Y.; Lee, K.H.; Kim, A.R.; Yoo, D.J. Improved Electrochemical Performance of Composite Anion Exchange Membranes for Fuel Cells Through Cross-Linking of the Polymer Chain with Functionalized Graphene Oxide. J. Membr. Sci. 2020, 611, 118385. [Google Scholar] [CrossRef]
- Zaharescu, T.; Banciu, C. Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene. Polymers 2023, 15, 353. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.A.; Lan, R.; Dai, R.; Jiang, K.; Shen, H.; Hong, R.; Xu, J.; Li, L.; Li, Z. Improved Oxidation Stability and Crosslink Density of Chemically Crosslinked Ultrahigh Molecular Weight Polyethylene Using the Antioxidant Synergy for Artificial Joints. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2022, 111, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, H.; Bai, J.; Liu, X.; Ding, Y.; Yang, M. A Novel Polyhedral Oligomeric Silsesquioxane Antioxidant-based on Amide-Linked Hindered Phenols and its Antioxidative Behavior in Polyamide 6,6. Polym. Degrad. Stab. 2024, 229, 110939. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, Q.; Bai, J.; Yang, M. Synthesis of a Novel Organic-Inorganic Hindered Phenol Antioxidant Derived from Polyhedral Oligomeric Silsesquioxane and its Antioxidative Behavior in Polypropylene. Polym. Degrad. Stab. 2023, 218, 110550. [Google Scholar] [CrossRef]
- Zaharescu, T.; Mateescu, C. Stability Efficiencies of POSS and Microalgae Extracts on the Durability Ofethylene-Propylene-Diene Monomer Based Hybrids. Polymers 2022, 14, 187. [Google Scholar] [CrossRef] [PubMed]
- Zaharescu, T.; Mateescu, C. Investigation on Some Algal Extracts as Appropriate Stabilizers for Radiation-Processed Polymers. Polymers 2022, 14, 4971. [Google Scholar] [CrossRef] [PubMed]
- Celina, M.; Linde, E.; Brunson, D.; Quintana, A.; Giron, N. Overview of Accelerated Aging and Polymer Degradation Kinetics for Combined Radiation-Thermal Environments. Poly. Degrad. Stab. 2019, 166, 353–378. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, M.K.; Rangappa, S.M.; Siengchin, S.; Dhakal, H.N.; Zafar, S. Recent Progress in Additive Inorganic Flame Retardants Polymer Composites: Degradation Mechanisms, Modeling and Applications. Heliyon 2024, 10, 39662. [Google Scholar] [CrossRef]
- Sahare, P.H.; Dhole, L.P.; Burande, S. A Review Paper on Investigation of Mechanical and Wear Properties of Polymer Composites Subjected to Environmental Degradation. Mater. Today Proc. 2024, 5, 107. [Google Scholar] [CrossRef]
- Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M. Improvement of Mechanical and Thermal Properties of High Energy Electron Beam Irradiated HDPE/Hydroxyapatite Nanocomposite. Radiat. Phys. Vhem. 2017, 130, 229–235. [Google Scholar] [CrossRef]
- Spadaro, G.; Alessi, S.; Dispenza, C.; Sun, Y.; Chmielewski, A. Molecular Modifications in Irradiated Polumymers. In Applications of Ionizing Radiation in Polymer Processing; Institute of Nuclear Chemistry and Technologies: Warsaw, Poland, 2017; pp. 168–183. [Google Scholar]
- Çağlayan, T.; Güven, O. Preparation and Characterization of Poly(Ethylene-Vinyl Acetate) Based Nanocomposites Using Radiation-Modified Montmorillonite. Radiat. Phys. Chem. 2020, 169, 107844. [Google Scholar] [CrossRef]
- Nho, Y.-C.; Sohn, J.-Y.; Shin, J.; Park, J.-S.; Lim, Y.-M.; Kang, P.-H. Preparation of Nanocomposite γ-Al2O3/Polyethylene Separator Crosslinked by Electron Beam Irradiation for Lithium Secondary Battery. Radiat. Phys. Chem. 2017, 132, 65–70. [Google Scholar] [CrossRef]
- Mustafa, M.; Salem Al-Ahmadi, A.N.; Mwafy, E.A.; Elsharkawy, W.B.; Nafee, S.S. Nickel Oxide Nanoparticles Embedded in Polymer-Matrix Nanocomposite Prepared by Nanosecond Laser Ablation Method for Optoelectronic Applications. Radiat. Phys. Chem. 2025, 226, 112262. [Google Scholar] [CrossRef]
- Zaharescu, T.; Bumbac, M.; Nicolescu, C.M. Stability Effects of Added Biomass on Microalgae Styrene–Butadiene–Styrene Composites. J. Therm. Anal. Calorim. 2024. [CrossRef]
- Takács, K.; Németh, M.; Renkecz, T.; Tátraaljai, D.; Pukánszky, B. Stabilization of PE with the Natural Antioxidant T-Resveratrol: Interaction of the Primary and the Secondary Antioxidant. Polym. Degrad. Stab. 2024, 230, 111046. [Google Scholar] [CrossRef]
- Zaharescu, T. The Stabilization by Synergistic Effect of Silica Nanoparticles Assisted by Rosemary Powder in the Thermal Degradation of Styrene-Isoprene-Styrene Triblock Copolymer. Radiat. Phys. Chem. 2023, 206, 110765. [Google Scholar] [CrossRef]
- Luo, T.; Hu, Y.; Zhang, M.; Jia, P.; Zhou, Y. Recent Advances of Sustainable and Recyclable Polymer Materials from Renewable Resources. Resour. Chem. Mater. 2024, 10, 4. [Google Scholar] [CrossRef]
- Vazirov, R.; Shkuro, A.; Buryndin, V.; Zakharov, P.; Shishlov, O.; Vazirova, E. The Effect of High-Energy Electron Beam Irradiation on the Physicochemical Properties of PET Material. Radiat. Phys. Chem. 2024, 227, 112392. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaharescu, T.; Lugāo, A.B. Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants. J. Compos. Sci. 2025, 9, 47. https://doi.org/10.3390/jcs9010047
Zaharescu T, Lugāo AB. Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants. Journal of Composites Science. 2025; 9(1):47. https://doi.org/10.3390/jcs9010047
Chicago/Turabian StyleZaharescu, Traian, and Ademar B. Lugāo. 2025. "Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants" Journal of Composites Science 9, no. 1: 47. https://doi.org/10.3390/jcs9010047
APA StyleZaharescu, T., & Lugāo, A. B. (2025). Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants. Journal of Composites Science, 9(1), 47. https://doi.org/10.3390/jcs9010047