Representing Human Ethical Requirements in Hybrid Machine Learning Models: Technical Opportunities and Fundamental Challenges
Abstract
:1. Introduction
2. Representing Human Ethical Requirements in AML-Enabled Traffic Predictions
2.1. Ethical Requirements
2.2. Representing Ethical Requirements in AML
2.3. Opposing Interpretations of Ethical Requirement Representations
3. Representing Human Ethical Requirements in AML-Enabled Diagnoses
3.1. Ethical Requirements
3.2. Representing Ethical Requirements in AML
3.3. Opposing Interpretations of Ethical Requirement Representations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Button, A.; Merk, D.; Hiss, J.A.; Schneider, G. Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nat. Mach. Intell. 2019, 1, 307–315. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhao, D.; Chen, Y. Lane change decision-making through deep reinforcement learning with rule-based constraints. In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 14–19 July 2019; p. N-2051. [Google Scholar]
- Martin-Maroto, F.; de Polavieja, G.G. Semantic Embeddings in Semilattices. arXiv 2022, arXiv:2205.12618. [Google Scholar]
- Martin-Maroto, F.; de Polavieja, G.G. Algebraic Machine Learning. arXiv 2018, arXiv:1803.05252. [Google Scholar]
- Fischer, L.; Ehrlinger, L.; Geist, V.; Ramler, R.; Sobiezky, F.; Zellinger, W.; Brunner, D.; Kumar, M.; Moser, B. AI System Engineering—Key Challenges and Lessons Learned. Mach. Learn. Knowl. Extr. 2021, 3, 56–83. [Google Scholar] [CrossRef]
- Angerschmid, A.; Zhou, J.; Theuermann, K.; Chen, F.; Holzinger, A. Fairness and Explanation in AI-Informed Decision Making. Mach. Learn. Knowl. Extr. 2022, 4, 556–579. [Google Scholar] [CrossRef]
- Anderson, M.; Anderson, S.L.; Armen, C. Towards machine ethics. In AAAI-04 Workshop on Agent Organizations: Theory and Practice; American Association for Artificial Intelligence: San Jose, CA, USA, 2004; pp. 2–7. [Google Scholar]
- Tolmeijer, S.; Kneer, M.; Sarasua, C.; Christen, M.; Bernstein, A. Implementations in machine ethics: A survey. ACM Comput. Surv. (CSUR) 2020, 53, 132. [Google Scholar] [CrossRef]
- Bersoff, D.M. Why good people sometimes do bad things: Motivated reasoning and unethical behavior. Pers. Soc. Psychol. Bull. 1999, 25, 28–39. [Google Scholar] [CrossRef]
- De Cremer, D.; Van Dick, R.; Tenbrunsel, A.; Pillutla, M.; Murnighan, J.K. Understanding ethical behavior and decision making in management: A behavioural business ethics approach. Br. J. Manag. 2011, 22, S1–S4. [Google Scholar] [CrossRef]
- De Cremer, D.; Vandekerckhove, W. Managing unethical behavior in organizations: The need for a behavioral business ethics approach. J. Manag. Org. 2017, 23, 437–455. [Google Scholar] [CrossRef]
- Lee, E.-J.; Yun, J.H. Moral incompetency under time constraint. J. Bus. Res. 2019, 99, 438–445. [Google Scholar] [CrossRef]
- Fox, S. Behavioral ethics ecologies of human-artificial intelligence systems. Behav. Sci. 2022, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Fox, S. Human-artificial intelligence systems: How human survival first principles influence machine learning world models. Systems 2022, 10, 260. [Google Scholar] [CrossRef]
- Baranzke, H. “Sanctity-of-Life“—A Bioethical Principle for a Right to Life? Ethic Theory Moral Pract. 2012, 15, 295–308. [Google Scholar] [CrossRef]
- Kawai, C.; Zhang, Y.; Lukács, G.; Chu, W.; Zheng, C.; Gao, C.; Gozli, D.; Wang, Y.; Ansorge, U. The good, the bad, and the red: Implicit color-valence associations across cultures. Psychol. Res. 2023, 87, 704–724. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Li, B.; Zhang, W.; Hu, G. Red-light running rates at five intersections by road user in Changsha, China: An observational study. Accid. Anal. Prev. 2016, 95, 381–386. [Google Scholar] [CrossRef]
- Ochoa, A.; Oliva, D. Smart traffic management to support people with color blindness in a Smart City. In Proceedings of the IEEE Latin American Conference on Computational Intelligence (LA-CCI), Gudalajara, Mexico, 7–9 November 2018; pp. 1–8. [Google Scholar]
- Wang, Y.; Wang, G.; Chen, Q.; Li, L. Depletion, moral identity, and unethical behavior: Why people behave unethically after self-control exertion. Conscious. Cogn. 2017, 56, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.R.; Boggero, I.A.; Segerstrom, S.C. The nature of self-regulatory fatigue and “ego depletion” lessons from physical fatigue. Pers. Soc. Psychol. Rev. 2016, 20, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Umphress, E.E.; Bingham, J.B.; Mitchell, M.S. Unethical behavior in the name of the company: The moderating effect of organizational identification and positive reciprocity beliefs on unethical pro-organizational behavior. J. Appl. Psychol. 2010, 95, 769–780. [Google Scholar] [CrossRef]
- Moosavi, S. Accident risk prediction based on heterogeneous sparse data: New dataset and insights. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 5–8 November 2019; pp. 33–42. [Google Scholar]
- Coleman, J.; Ferejohn, J. Democracy and social choice. Ethics 1986, 97, 6–25. [Google Scholar] [CrossRef]
- Plott, C.R. Ethics, social choice theory and the theory of economic policy. J. Math. Sociol. 1972, 2, 181–208. [Google Scholar] [CrossRef]
- Savage, L. The Foundations of Statistics; Wiley: New York, NY, USA, 1954. [Google Scholar]
- Binmore, K. On the foundations of decision theory. Homo Oecon. 2017, 34, 259–273. [Google Scholar] [CrossRef]
- Mulder, L.B.; Rink, F.; Jordan, J. Constraining temptation: How specific and general rules mitigate the effect of personal gain on unethical behavior. J. Econ. Psychol. 2020, 76, 102242. [Google Scholar] [CrossRef]
- Cassini, M. Traffic lights: Weapons of mass distraction, danger and delay. Econ. Aff. 2010, 30, 79–80. [Google Scholar] [CrossRef]
- Baker, L. Removing roads and traffic lights speeds urban travel. Scientific American, 1 February 2009. Available online: https://www.scientificamerican.com/article/removing-roads-and-traffic-lights(accessed on 1 March 2024).
- Morris, S. Wales Is Bringing in a 20mph Speed Limit. The Guardian, 15 September 2023. Available online: https://www.theguardian.com/politics/2023/sep/15/wales-is-bringing-in-a-20mph-speed-limit-why-and-what-will-happen(accessed on 7 February 2024).
- Christie, N.; Ward, H. The health and safety risks for people who drive for work in the gig economy. J. Transp. Health 2019, 13, 115–127. [Google Scholar] [CrossRef]
- Russon, M.-A. Uber Drivers Are Workers Not Self-Employed, Supreme Court Rules. BBC News, 19 February 2021. Available online: https://www.bbc.com/news/business-56123668(accessed on 7 February 2024).
- Webb, E.; Offe, J.; van Ginneken, E. Universal Health Coverage in the EU: What do we know (and not know) about gaps in access? Eurohealth 2022, 28, 13–18. [Google Scholar]
- Espay, A.J.; Aybek, S.; Carson, A.; Edwards, M.J.; Goldstein, L.H.; Hallett, M.; LaFaver, K.; LaFrance, W.C.; Lang, A.E.; Nicholson, T.; et al. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol. 2018, 75, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.; Buszewicz, M.; Edwards, M.J.; Stevenson, F. A qualitative study of the experiences and perceptions of patients with functional motor disorder. Disabil. Rehabil. 2020, 42, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Tinazzi, M.; Gandolfi, M.; Landi, S.; Leardini, C. Economic costs of delayed diagnosis of functional motor disorders: Preliminary results from a cohort of patients of a specialized clinic. Front. Neurol. 2021, 12, 786126. [Google Scholar] [CrossRef]
- Lidstone, S.C.; MacGillivray, L.; Lang, A.E. Integrated therapy for functional movement disorders: Time for a change. Mov. Disord. Clin. Pract. 2020, 7, 169. [Google Scholar] [CrossRef]
- Stone, J.; Carson, A.; Hallett, M. Explanation as treatment for functional neurologic disorders. Handb. Clin. Neurol. 2016, 139, 543–553. [Google Scholar]
- Hausdorff, J.M.; Peng, C.K.; Goldberger, A.L.; Stoll, A.L. Gait unsteadiness and fall risk in two affective disorders: A preliminary study. BMC Psychiatry 2004, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Zhang, Z.; Wang, Y.; Wang, J.; Li, B.; Zhu, T.; Xiang, Y. See your mental state from your walk: Recognizing anxiety and depression through Kinect-recorded gait data. PLoS ONE 2019, 14, e0216591. [Google Scholar] [CrossRef] [PubMed]
- Roether, C.L.; Omlor, L.; Christensen, A.; Giese, M.A. Critical features for the perception of emotion from gait. J. Vision. 2009, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Coulson, M. Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence. J. Nonverbal Behav. 2004, 28, 117–139. [Google Scholar] [CrossRef]
- Gross, M.M.; Crane, E.A.; Fredrickson, B.L. Methodology for assessing bodily expression of emotion. J. Nonverbal Behav. 2010, 34, 223–248. [Google Scholar] [CrossRef]
- Hazlett, R.L.; McLeod, D.R.; Hoehn-Saric, R. Muscle tension in generalized anxiety disorder: Elevated muscle tonus or agitated movement? Psychophysiology 1994, 31, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Michalak, J.; Troje, N.F.; Fischer, J.; Vollmar, P.; Heidenreich, T.; Schulte, D. Embodiment of sadness and depression—Gait patterns associated with dysphoric mood. Psychosom. Med. 2009, 71, 580–587. [Google Scholar] [CrossRef]
- Brandler, T.C.; Wang, C.; Oh-Park, M.; Holtzer, R.; Verghese, J. Depressive symptoms and gait dysfunction in the elderly. Am. J. Geriatr. Psychiatry 2012, 20, 425–432. [Google Scholar] [CrossRef]
- Natale, M.; Bolan, R. The effect of Velten’s mood-induction procedure for depression on hand movement and head-down posture. Motiv. Emot. 1980, 4, 323–333. [Google Scholar] [CrossRef]
- Lemke, M.R.; Wendorff, T.; Mieth, B.; Buhl, K.; Linnemann, M. Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls. J. Psychiatr. Res. 2000, 34, 277–283. [Google Scholar] [CrossRef]
- Friston, K.; Moran, R.J.; Nagai, Y.; Taniguchi, T.; Gomi, H.; Tenenbaum, J. World model learning and inference. Neural Netw. 2021, 144, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Winfield, A. Ethical standards in robotics and AI. Nat. Electron. 2019, 2, 46–48. [Google Scholar] [CrossRef]
- Fox, S. Psychomotor predictive processing. Entropy 2021, 23, 806. [Google Scholar] [CrossRef] [PubMed]
- Fox, S. Practical implications from distinguishing between Pearl blankets and Friston blankets. Behav. Brain Sci. 2022, 45, E194. [Google Scholar] [CrossRef] [PubMed]
- Price, J.R.; Okai, D. Functional disorders and ‘medically unexplained physical symptoms. Medicine 2016, 44, 706–710. [Google Scholar] [CrossRef]
- Perloff, R.M. A three-decade retrospective on the hostile media effect. Mass Commun. Soc. 2015, 18, 701–729. [Google Scholar] [CrossRef]
- Clark, C.J.; Winegard, B.M. Tribalism in war and peace: The nature and evolution of ideological epistemology and its significance for modern social science. Psychol. Inq. 2020, 31, 1–22. [Google Scholar] [CrossRef]
- Ayobi, A.; Stawarz, K.; Katz, D.; Marshall, P.; Yamagata, T.; Santos Rodriguez, R.; Flach, P.A. Machine learning explanations as boundary objects: How ai researchers explain and non-experts perceive machine learning. In Proceedings of the Joint Proceedings of the ACM IUI 2021 Workshops (Vol. 2903), CEUR Workshop Proceedings; College Station, TX, USA, 13–17 April 2021.
- Star, S.L.; Griesemer, J.R. Institutional ecology, translations’ and boundary objects: Amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–1939. Soc. Stud. Sci. 1989, 19, 387–420. [Google Scholar] [CrossRef]
- Arthur, W.B. Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 1989, 99, 116–131. [Google Scholar] [CrossRef]
- Schreyögg, G.; Sydow, J.; Holtmann, P. How history matters in organisations: The case of path dependence. Manag. Organ. Hist. 2011, 6, 81–100. [Google Scholar] [CrossRef]
- Nurse, M.S.; Grant, W.J. I’ll see it when I believe it: Motivated numeracy in perceptions of climate change risk. Environ. Comm. 2020, 14, 184–201. [Google Scholar] [CrossRef]
- Dunning, D.; Balcetis, E. Wishful seeing: How preferences shape visual perception. Curr. Dir. Psychol. Sci. 2013, 22, 33–37. [Google Scholar] [CrossRef]
- Tetlock, P.E. Theory-driven reasoning about plausible pasts and probable futures in world politics: Are we prisoners of our preconceptions? Am. J. Pol. Sci. 1999, 43, 335–366. [Google Scholar] [CrossRef]
- Pohl, R. Cognitive Illusions: A Handbook on Fallacies and Biases in Thinking, Judgement and Memory; Psychology Press: London, UK, 2004. [Google Scholar]
- Zogas, A. “We have no magic bullet”: Diagnostic ideals in veterans’ mild traumatic brain injury evaluations. Patient Educ. Couns. 2022, 105, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Atlas, L.Y.; Wager, T.D. How expectations shape pain. Neurosci. Lett. 2012, 520, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.; Mayrhofer, M.T.; Van Veen, E.B.; Holzinger, A. The ten commandments of ethical medical AI. Computer 2021, 54, 119–123. [Google Scholar] [CrossRef]
- Kalanadhabhatta, M.; Min, C.; Montanari, A.; Kawsar, F. FatigueSet: A multi-modal dataset for modeling mental fatigue and fatigability. In Pervasive Computing Technologies for Healthcare; Lewy, H., Barkan, R., Eds.; PH 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2022; Volume 431, pp. 204–217. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox, S.; Rey, V.F. Representing Human Ethical Requirements in Hybrid Machine Learning Models: Technical Opportunities and Fundamental Challenges. Mach. Learn. Knowl. Extr. 2024, 6, 580-592. https://doi.org/10.3390/make6010027
Fox S, Rey VF. Representing Human Ethical Requirements in Hybrid Machine Learning Models: Technical Opportunities and Fundamental Challenges. Machine Learning and Knowledge Extraction. 2024; 6(1):580-592. https://doi.org/10.3390/make6010027
Chicago/Turabian StyleFox, Stephen, and Vitor Fortes Rey. 2024. "Representing Human Ethical Requirements in Hybrid Machine Learning Models: Technical Opportunities and Fundamental Challenges" Machine Learning and Knowledge Extraction 6, no. 1: 580-592. https://doi.org/10.3390/make6010027
APA StyleFox, S., & Rey, V. F. (2024). Representing Human Ethical Requirements in Hybrid Machine Learning Models: Technical Opportunities and Fundamental Challenges. Machine Learning and Knowledge Extraction, 6(1), 580-592. https://doi.org/10.3390/make6010027