Uncertainty in XAI: Human Perception and Modeling Approaches
Abstract
:1. Introduction
2. What Is XAI?
2.1. Why XAI?
2.2. Requirements of Explanations
2.3. Categorization of XAI Methods
2.4. Predictive Performance vs. Explainability
2.5. Human Perception and XAI
2.6. Evaluation of Explanations
3. What Is Uncertainty?
3.1. Uncertainty in ML
- Aleatoric: Irreducible, due to the non-deterministic nature of the input/output dependency and random noise in the available data. As an example, imagine a self-driving car that relies on various sensors (cameras, LiDAR) to perceive its surroundings and make navigation decisions. Sensor data can be inherently noisy due to factors such as bad weather conditions, sensor limitations, or temporary occlusions. This noise in the input data translates to uncertainty in the car’s perception of the environment and ultimately in its predictions about safe navigation paths.
- Epistemic: Reducible through additional information about the perfect predictor . It comprises two parts:
- (a)
- model uncertainty: How close is the hypothesis space with its best model choice to the perfect predictor ? It is very difficult to describe, often ignored by assuming is included in the hypothesis space:
- (b)
- approximation error: How close is the learned predictor to the best ? The error vanishes as the size of training data increases indefinitely.
3.2. Uncertainty in XAI
4. Modeling Uncertainty in XAI
4.1. Approach 1: Perturbed Input (Variation in x)
Pixel Flipping
4.2. Approach 2: Probabilistic Predictor (Variation in f)
- Deep Ensembles [88], with code repository (https://github.com/Kyushik/Predictive-Uncertainty-Estimation-using-Deep-Ensemble (accessed on 19 May 2024)) and [89];
- Bayes by Backprop [90];
- Discriminative Jackknife (via influence functions) [91];
- Laplace Approximation (https://bookdown.org/rdpeng/advstatcomp/laplace-approximation.html (accessed on 19 May 2024));
- Probabilistic Backpropagation [94], with code repository (https://ymd_h.gitlab.io/b4tf/algorithms/pbp (accessed on 19 May 2024));
- Stochastic Expectation Propagation [95];
- Calibrated Explanations [85], with code repository (https://github.com/Moffran/calibrated_explanations (accessed on 19 May 2024)) and exemplified below.
4.2.1. BNN: Monte Carlo Dropout
4.2.2. Conformal Predictor: Calibrated Explanations
4.3. Approach 3: Stochastic Explainers (Variation in e)
4.3.1. CXPlain
4.3.2. BayesLIME
4.3.3. TCAV
4.3.4. CoProNN
5. Human Perception and Uncertainty in XAI
5.1. Neural and Cognitive Aspects of Uncertainty
5.2. Uncertainty via Explanation Fragility
5.3. Effects of Communicating Uncertainty
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Automated Concept-based Explanations |
BNN | Bayesian Neural Network |
CNN | Convolutional Neural Network |
CoProNN | Concept-based Prototypical Nearest Neighbors |
CXPlain | Causal Explanations for Model Interpretation under Uncertainty |
DNN | Deep Neural Network |
HIL | Human-in-the-Loop |
ICE | Individual Conditional Expectation |
LIME | Local Interpretable Model-agnostic Explanations |
ML | Machine Learning |
PDP | Partial Dependence Plots |
SHAP | Shapley Additive Explanations |
TCAV | Testing with Concept Activation Vectors |
XAI | Explainable Artifical Intelligence |
References
- Angelopoulos, A.N.; Bates, S. A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification. arXiv 2022, arXiv:2107.07511. [Google Scholar]
- Goan, E.; Fookes, C. Bayesian Neural Networks: An Introduction and Survey. In Lecture Notes in Mathematics; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 45–87. [Google Scholar] [CrossRef]
- Liu, B. In AI We Trust? Effects of Agency Locus and Transparency on Uncertainty Reduction in Human–AI Interaction. J. Comput. Mediat. Commun. 2021, 26, 384–402. [Google Scholar] [CrossRef]
- Phillips, R.L.; Chang, K.H.; Friedler, S.A. Interpretable active learning. arXiv 2017, arXiv:1708.00049. [Google Scholar]
- Antorán, J.; Bhatt, U.; Adel, T.; Weller, A.; Hernández-Lobato, J.M. Getting a CLUE: A Method for Explaining Uncertainty Estimates. arXiv 2021, arXiv:2006.06848. [Google Scholar]
- Mougan, C.; Nielsen, D.S. Monitoring Model Deterioration with Explainable Uncertainty Estimation via Non-parametric Bootstrap. arXiv 2022, arXiv:2201.11676. [Google Scholar] [CrossRef]
- Brown, K.E.; Talbert, D.A. Using Explainable AI to Measure Feature Contribution to Uncertainty. Int. FLAIRS Conf. Proc. 2022. [Google Scholar] [CrossRef]
- Goodman, B.; Flaxman, S. European Union Regulations on Algorithmic Decision Making and a “Right to Explanation”. AI Mag. 2017, 38, 50–57. [Google Scholar] [CrossRef]
- Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Pedreschi, D.; Giannotti, F. A Survey Of Methods For Explaining Black Box Models. arXiv 2018, arXiv:1802.01933. [Google Scholar] [CrossRef]
- Tomsett, R.; Braines, D.; Harborne, D.; Preece, A.; Chakraborty, S. Interpretable to Whom? A Role-based Model for Analyzing Interpretable Machine Learning Systems. arXiv 2018, arXiv:1806.07552. [Google Scholar]
- Schwalbe, G.; Finzel, B. A comprehensive taxonomy for explainable artificial intelligence: A systematic survey of surveys on methods and concepts. Data Min. Knowl. Disc. 2023. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Véliz, C.; Prunkl, C.; Phillips-Brown, M.; Lechterman, T.M. We might be afraid of black-box algorithms. J. Med. Ethics 2021, 47, 339–340. [Google Scholar] [CrossRef]
- Hedström, A.; Weber, L.; Krakowczyk, D.; Bareeva, D.; Motzkus, F.; Samek, W.; Lapuschkin, S.; Höhne, M.M.M. Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond. J. Mach. Learn. Res. 2023, 24, 1–11. [Google Scholar]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Ser, J.D.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI. arXiv 2019, arXiv:1910.10045. [Google Scholar]
- Doshi-Velez, F.; Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. arXiv 2017, arXiv:1702.08608. [Google Scholar]
- Das, A.; Rad, P. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. arXiv 2020, arXiv:2006.11371. [Google Scholar]
- Chromik, M.; Schuessler, M. A Taxonomy for Human Subject Evaluation of Black-Box Explanations in XAI. In Proceedings of the ExSS-ATEC@IUI, Cagliari, Italy, 17–20 March 2020. [Google Scholar]
- Hoffman, R.R.; Mueller, S.T.; Klein, G.; Litman, J. Metrics for Explainable AI: Challenges and Prospects. arXiv 2019, arXiv:1812.04608. [Google Scholar]
- Schmidt, P.; Biessmann, F. Quantifying interpretability and trust in machine learning systems. In Proceedings of the AAAI-19 Workshop on Network Interpretability for Deep Learning, Honolulu, HI, USA, 27 January–2 February 2019. [Google Scholar]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Q.; Ashraf, A.; Lim, B. Designing Theory-Driven User-Centric Explainable AI. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019. [Google Scholar] [CrossRef]
- Biessmann, F.; Refiano, D. Quality metrics for transparent machine learning with and without humans in the loop are not correlated. In Proceedings of the ICML Workshop on Theoretical Foundations, Criticism, and Application Trends of Explainable AI Held in Conjunction with the 38th International Conference on Machine Learning (ICML), Vienna, Austria, 18 July 2020. [Google Scholar]
- Hamm, C.A.; Baumgärtner, G.L.; Biessmann, F.; Beetz, N.L.; Hartenstein, A.; Savic, L.J.; Froböse, K.; Dräger, F.; Schallenberg, S.; Rudolph, M.; et al. Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI. Radiology 2023, 307, e222276. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.; Biessmann, F. Calibrating human-AI collaboration: Impact of risk, ambiguity and transparency on algorithmic bias. In Proceedings of the 2020 Cross Domain Conference for Machine Learning and Knowledge Extraction, Dublin, Ireland, 25–28 August 2020. [Google Scholar]
- Nauta, M.; Trienes, J.; Pathak, S.; Nguyen, E.; Peters, M.; Schmitt, Y.; Schlötterer, J.; van Keulen, M.; Seifert, C. From Anecdotal Evidence to Quantitative Evaluation Methods: A Systematic Review on Evaluating Explainable AI. ACM Comput. Surv. 2023, 55, 1–42. [Google Scholar] [CrossRef]
- Patrício, C.; Neves, J.C.; Teixeira, L.F. Explainable Deep Learning Methods in Medical Image Classification: A Survey. arXiv 2023, arXiv:2205.04766. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning. 2022. Available online: https://christophm.github.io/interpretable-ml-book (accessed on 19 May 2024).
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic Attribution for Deep Networks. arXiv 2017, arXiv:1703.01365. [Google Scholar]
- Kim, B.; Wattenberg, M.; Gilmer, J.; Cai, C.; Wexler, J.; Viegas, F.; Sayres, R. Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). arXiv 2018, arXiv:1711.11279. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You”? Explaining the Predictions of Any Classifier. arXiv 2016, arXiv:1602.04938. [Google Scholar]
- Koh, P.W.; Nguyen, T.; Tang, Y.S.; Mussmann, S.; Pierson, E.; Kim, B.; Liang, P. Concept Bottleneck Models. arXiv 2020, arXiv:2007.04612. [Google Scholar]
- Bau, D.; Zhou, B.; Khosla, A.; Oliva, A.; Torralba, A. Network Dissection: Quantifying Interpretability of Deep Visual Representations. arXiv 2017, arXiv:1704.05796. [Google Scholar]
- Yeh, C.K.; Kim, J.S.; Yen, I.E.H.; Ravikumar, P. Representer Point Selection for Explaining Deep Neural Networks. arXiv 2018, arXiv:1811.09720. [Google Scholar]
- Sammani, F.; Mukherjee, T.; Deligiannis, N. NLX-GPT: A Model for Natural Language Explanations in Vision and Vision-Language Tasks. arXiv 2022, arXiv:2203.05081. [Google Scholar]
- Herm, L.V.; Heinrich, K.; Wanner, J.; Janiesch, C. Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability. Int. J. Inf. Manag. 2023, 69, 102538. [Google Scholar] [CrossRef]
- Rong, Y.; Leemann, T.; Nguyen, T.T.; Fiedler, L.; Qian, P.; Unhelkar, V.; Seidel, T.; Kasneci, G.; Kasneci, E. Towards Human-Centered Explainable AI: A Survey of User Studies for Model Explanations. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 2104–2122. [Google Scholar] [CrossRef]
- Hamm, P.; Klesel, M.; Coberger, P.; Wittmann, H.F. Explanation matters: An experimental study on explainable AI. Electron. Mark. 2023, 33, 17. [Google Scholar] [CrossRef]
- Leichtmann, B.; Humer, C.; Hinterreiter, A.; Streit, M.; Mara, M. Effects of Explainable Artificial Intelligence on trust and human behavior in a high-risk decision task. Comput. Hum. Behav. 2023, 139, 107539. [Google Scholar] [CrossRef]
- Meske, C.; Bunde, E. Design Principles for User Interfaces in AI-Based Decision Support Systems: The Case of Explainable Hate Speech Detection. Inf. Syst. Front. 2022, 25, 743–773. [Google Scholar] [CrossRef]
- Shafti, A.; Derks, V.; Kay, H.; Faisal, A.A. The Response Shift Paradigm to Quantify Human Trust in AI Recommendations. arXiv 2022, arXiv:2202.08979. [Google Scholar]
- Druce, J.; Harradon, M.; Tittle, J. Explainable Artificial Intelligence (XAI) for Increasing User Trust in Deep Reinforcement Learning Driven Autonomous Systems. arXiv 2021, arXiv:2106.03775. [Google Scholar]
- van der Waa, J.; Nieuwburg, E.; Cremers, A.; Neerincx, M. Evaluating XAI: A comparison of rule-based and example-based explanations. Artif. Intell. 2021, 291, 103404. [Google Scholar] [CrossRef]
- Weitz, K.; Schiller, D.; Schlagowski, R.; Huber, T.; Andre, E. “Let me explain!”: Exploring the potential of virtual agents in explainable AI interaction design. J. Multimodal User Interfaces 2020, 15, 87–98. [Google Scholar] [CrossRef]
- Schmidt, P.; Biessmann, F.; Teubner, T. Transparency and trust in artificial intelligence systems. J. Decis. Syst. 2020, 29, 260–278. [Google Scholar] [CrossRef]
- Alufaisan, Y.; Marusich, L.R.; Bakdash, J.Z.; Zhou, Y.; Kantarcioglu, M. Does Explainable Artificial Intelligence Improve Human Decision-Making? arXiv 2020, arXiv:2006.11194. [Google Scholar] [CrossRef]
- David, D.B.; Resheff, Y.S.; Tron, T. Explainable AI and Adoption of Financial Algorithmic Advisors: An Experimental Study. arXiv 2021, arXiv:2101.02555. [Google Scholar]
- Poursabzi-Sangdeh, F.; Goldstein, D.G.; Hofman, J.M.; Vaughan, J.W.; Wallach, H. Manipulating and Measuring Model Interpretability. arXiv 2021, arXiv:1802.07810. [Google Scholar]
- Dietvorst, B.J.; Simmons, J.P.; Massey, C. Algorithm aversion: People erroneously avoid algorithms after seeing them err. J. Exp. Psychol. Gen. 2015, 144, 114–126. [Google Scholar] [CrossRef]
- Chen, V.; Liao, Q.V.; Vaughan, J.W.; Bansal, G. Understanding the Role of Human Intuition on Reliance in Human-AI Decision-Making with Explanations. arXiv 2023, arXiv:2301.07255. [Google Scholar] [CrossRef]
- Ma, J.; Lai, V.; Zhang, Y.; Chen, C.; Hamilton, P.; Ljubenkov, D.; Lakkaraju, H.; Tan, C. OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning. arXiv 2024, arXiv:2403.05565. [Google Scholar]
- Alangari, N.; El Bachir Menai, M.; Mathkour, H.; Almosallam, I. Exploring Evaluation Methods for Interpretable Machine Learning: A Survey. Information 2023, 14, 469. [Google Scholar] [CrossRef]
- Schuff, H.; Adel, H.; Qi, P.; Vu, N.T. Challenges in Explanation Quality Evaluation. arXiv 2022, arXiv:2210.07126. [Google Scholar]
- Mohseni, S.; Zarei, N.; Ragan, E.D. A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems. arXiv 2020, arXiv:1811.11839. [Google Scholar] [CrossRef]
- Cugny, R.; Aligon, J.; Chevalier, M.; Roman Jimenez, G.; Teste, O. AutoXAI: A Framework to Automatically Select the Most Adapted XAI Solution. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, New York, NY, USA, 17–21 October 2022; CIKM ’22; pp. 315–324. [Google Scholar] [CrossRef]
- Herman, B. The Promise and Peril of Human Evaluation for Model Interpretability. arXiv 2019, arXiv:1711.07414v2. [Google Scholar]
- Kim, S.S.Y.; Meister, N.; Ramaswamy, V.V.; Fong, R.; Russakovsky, O. HIVE: Evaluating the Human Interpretability of Visual Explanations. In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 23–27 October 2022. [Google Scholar]
- Colin, J.; Fel, T.; Cadène, R.; Serre, T. What I Cannot Predict, I Do Not Understand: A Human-Centered Evaluation Framework for Explainability Methods. Adv. Neural Inf. Process. Syst. 2022, 35, 2832–2845. [Google Scholar] [PubMed]
- Kindermans, P.J.; Hooker, S.; Adebayo, J.; Alber, M.; Schütt, K.T.; Dähne, S.; Erhan, D.; Kim, B. The (Un)reliability of saliency methods. arXiv 2017, arXiv:1711.00867. [Google Scholar]
- Adebayo, J.; Gilmer, J.; Muelly, M.; Goodfellow, I.; Hardt, M.; Kim, B. Sanity Checks for Saliency Maps. arXiv 2020, arXiv:1810.03292. [Google Scholar]
- Mei, A.; Saxon, M.; Chang, S.; Lipton, Z.C.; Wang, W.Y. Users are the North Star for AI Transparency. arXiv 2023, arXiv:2303.05500. [Google Scholar]
- Leavitt, M.L.; Morcos, A. Towards falsifiable interpretability research. arXiv 2020, arXiv:2010.12016. [Google Scholar]
- Jacovi, A.; Goldberg, Y. Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness? In Proceedings of the Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020.
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining Explanations: An Overview of Interpretability of Machine Learning. arXiv 2019, arXiv:1806.00069. [Google Scholar]
- Bhatt, U.; Antorán, J.; Zhang, Y.; Liao, Q.V.; Sattigeri, P.; Fogliato, R.; Melançon, G.G.; Krishnan, R.; Stanley, J.; Tickoo, O.; et al. Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty. arXiv 2021, arXiv:2011.07586. [Google Scholar]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.R.; et al. A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
- Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Mach. Learn. 2021, 110, 457–506. [Google Scholar] [CrossRef]
- Löfström, H. On the Definition of Appropriate Trust and the Tools that Come with it. arXiv 2023, arXiv:2309.11937. [Google Scholar]
- Hase, P.; Bansal, M. When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data. arXiv 2021, arXiv:2102.02201. [Google Scholar]
- Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.J.; Shamma, D.A.; et al. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations. arXiv 2016, arXiv:1602.07332. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Blücher, S.; Vielhaben, J.; Strodthoff, N. Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI Benchmarks. arXiv 2024, arXiv:2401.06654. [Google Scholar]
- Xu, H.; Ma, Y.; Liu, H.; Deb, D.; Liu, H.; Tang, J.; Jain, A.K. Adversarial Attacks and Defenses in Images, Graphs and Text: A Review. arXiv 2019, arXiv:1909.08072. [Google Scholar] [CrossRef]
- Bach, S.; Binder, A.; Montavon, G.; Klauschen, F.; Müller, K.R.; Samek, W. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation. PLoS ONE 2015, 10, 0130140. [Google Scholar] [CrossRef]
- Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv 2014, arXiv:1312.6034. [Google Scholar]
- Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features Through Propagating Activation Differences. arXiv 2019, arXiv:1704.02685. [Google Scholar]
- Chiaburu, T.; Biessmann, F.; Hausser, F. Towards ML Methods for Biodiversity: A Novel Wild Bee Dataset and Evaluations of XAI Methods for ML-Assisted Rare Species Annotations. arXiv 2022, arXiv:2206.07497. [Google Scholar]
- Griffiths, R.R.; A Aldrick, A.; Garcia-Ortegon, M.; Lalchand, V.; Lee, A.A. Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation. Mach. Learn. Sci. Technol. 2021, 3, 015004. [Google Scholar] [CrossRef]
- Koenker, R.; Hallock, K.F. Quantile Regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Romano, Y.; Patterson, E.; Candès, E.J. Conformalized Quantile Regression. arXiv 2019, arXiv:1905.03222. [Google Scholar]
- Wang, Z.; Ku, A.; Baldridge, J.; Griffiths, T.L.; Kim, B. Gaussian Process Probes (GPP) for Uncertainty-Aware Probing. arXiv 2023, arXiv:2305.18213. [Google Scholar]
- Lofstrom, H.; Lofstrom, T.; Johansson, U.; Sonstrod, C. Calibrated Explanations: With Uncertainty Information and Counterfactuals. arXiv 2023, arXiv:2305.02305. [Google Scholar] [CrossRef]
- Bykov, K.; Höhne, M.M.C.; Müller, K.R.; Nakajima, S.; Kloft, M. How Much Can I Trust You?—Quantifying Uncertainties in Explaining Neural Networks. arXiv 2020, arXiv:2006.09000. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; Balcan, M.F., Weinberger, K.Q., Eds.; Volume 48, Proceedings of Machine Learning Research. pp. 1050–1059. [Google Scholar]
- Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. arXiv 2017, arXiv:1612.01474. [Google Scholar]
- Yang, C.I.; Li, Y.P. Explainable uncertainty quantifications for deep learning-based molecular property prediction. J. Cheminform. 2023, 15, 13. [Google Scholar] [CrossRef]
- Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight Uncertainty in Neural Networks. arXiv 2015, arXiv:1505.05424. [Google Scholar]
- Alaa, A.M.; van der Schaar, M. Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions. arXiv 2020, arXiv:2007.13481. [Google Scholar]
- Graves, A. Practical Variational Inference for Neural Networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Nice, France, 2011; Volome 24. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hernández-Lobato, J.M.; Adams, R.P. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. arXiv 2015, arXiv:1502.05336. [Google Scholar]
- Li, Y.; Hernandez-Lobato, J.M.; Turner, R.E. Stochastic Expectation Propagation. arXiv 2015, arXiv:1506.04132. [Google Scholar]
- Vovk, V.; Petej, I. Venn-Abers predictors. arXiv 2014, arXiv:1211.0025. [Google Scholar]
- Chen, C.; Li, O.; Tao, C.; Barnett, A.J.; Su, J.; Rudin, C. This Looks Like That: Deep Learning for Interpretable Image Recognition. arXiv 2019, arXiv:1806.10574. [Google Scholar]
- Schwab, P.; Karlen, W. CXPlain: Causal Explanations for Model Interpretation under Uncertainty. arXiv 2019, arXiv:1910.12336. [Google Scholar]
- Slack, D.; Hilgard, S.; Singh, S.; Lakkaraju, H. Reliable Post hoc Explanations: Modeling Uncertainty in Explainability. arXiv 2021, arXiv:2008.05030. [Google Scholar]
- Zhao, X.; Huang, W.; Huang, X.; Robu, V.; Flynn, D. BayLIME: Bayesian Local Interpretable Model-Agnostic Explanations. arXiv 2021, arXiv:2012.03058. [Google Scholar]
- Ghorbani, A.; Wexler, J.; Zou, J.; Kim, B. Towards Automatic Concept-based Explanations. arXiv 2019, arXiv:1902.03129. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982. [Google Scholar] [CrossRef]
- Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012, 29, 141–142. [Google Scholar] [CrossRef]
- Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; University of Toronto: Toronto, ON, Canada, 2012. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-Resolution Image Synthesis with Latent Diffusion Models. arXiv 2021, arXiv:2112.10752v2. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the CVPR09, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Jacovi, A.; Marasović, A.; Miller, T.; Goldberg, Y. Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual, 3–10 March 2021. [Google Scholar] [CrossRef]
- Lee, J.D.; See, K.A. Trust in Automation: Designing for Appropriate Reliance. Hum. Factors 2004, 46, 50–80. [Google Scholar] [CrossRef] [PubMed]
- Kepecs, A.; Mainen, Z.F. A computational framework for the study of confidence in humans and animals. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1322–1337. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.Y.; Pohl, S.; Denison, R.N.; Barack, D.L.; Lee, J.; Block, N.; Ma, W.J.; Meyniel, F. Studying the neural representations of uncertainty. Nat. Neurosci. 2023, 26, 1857–1867. [Google Scholar] [CrossRef]
- Pouget, A.; Drugowitsch, J.; Kepecs, A. Confidence and certainty: Distinct probabilistic quantities for different goals. Nat. Neurosci. 2016, 19, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, K.; Sun, Y.; Tan, S.; Udell, M. "Why Should You Trust My Explanation”? Understanding Uncertainty in LIME Explanations. arXiv 2019, arXiv:1904.12991. [Google Scholar]
- Ghorbani, A.; Abid, A.; Zou, J. Interpretation of Neural Networks is Fragile. arXiv 2018, arXiv:1710.10547. [Google Scholar] [CrossRef]
- Yin, M.; Vaughan, J.W.; Wallach, H. Understanding the effect of accuracy on trust in machine learning models. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar] [CrossRef]
Name | Local/Global | Specific/Agnostic | Modality | Input Type | Task |
---|---|---|---|---|---|
CXPlain (https://github.com/d909b/cxplain (accessed on 5 May 2024)) [98] | local | agnostic | feature attribution | image, tabular, text | classification, regression |
BayesLIME (https://github.com/dylan-slack/Modeling-Uncertainty-Local-Explainability (accessed on 5 May 2024)) [99] BayLIME (https://github.com/x-y-zhao/BayLime (accessed on 5 May 2024)) [100] | local | agnostic | feature attribution | image, tabular | classification |
TCAV (https://github.com/tensorflow/tcav (accessed on 5 May 2024)) [33] & ACE [101] | local & global | specific | concepts | image | classification |
CoProNN (https://github.com/TeodorChiaburu/beexplainable (accessed on 5 May 2024)) | local & global | specific | concepts, examples | image | classification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiaburu, T.; Haußer, F.; Bießmann, F. Uncertainty in XAI: Human Perception and Modeling Approaches. Mach. Learn. Knowl. Extr. 2024, 6, 1170-1192. https://doi.org/10.3390/make6020055
Chiaburu T, Haußer F, Bießmann F. Uncertainty in XAI: Human Perception and Modeling Approaches. Machine Learning and Knowledge Extraction. 2024; 6(2):1170-1192. https://doi.org/10.3390/make6020055
Chicago/Turabian StyleChiaburu, Teodor, Frank Haußer, and Felix Bießmann. 2024. "Uncertainty in XAI: Human Perception and Modeling Approaches" Machine Learning and Knowledge Extraction 6, no. 2: 1170-1192. https://doi.org/10.3390/make6020055
APA StyleChiaburu, T., Haußer, F., & Bießmann, F. (2024). Uncertainty in XAI: Human Perception and Modeling Approaches. Machine Learning and Knowledge Extraction, 6(2), 1170-1192. https://doi.org/10.3390/make6020055