Deep Learning-Powered Optical Microscopy for Steel Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microscope Equipment
2.3. Data Collecting
2.4. Creating Datasets from Raw Images
2.5. Method Alias ML Models
2.5.1. Generator
2.5.2. Discriminator
2.5.3. GAN Objective
2.6. Experiments
- Choose a random image pair from the training dataset.
- Perform a random crop of the paired images, resulting in an image size of 512 × 512 pixels.
- With a probability of , apply a horizontal flip.
- With a probability of , apply a vertical flip.
3. Results and Discussion
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSE | Backscattered electron |
CBS | Circular backscatter segmented |
ETD | Everhart–Thornley detector |
GAN | Generative adversarial network |
CLSM | Confocal laser scanning microscope/microscopy |
LOM | Light optical microscope/microscopy |
SEM | Scanning electron microscope/microscopy |
TEM | Transmission electron microscope/microscopy |
ML | Machine learning |
MAE | Mean absolute error |
MSE | Mean squared error |
RMSE | Root MSE |
SSIM | Structure similarity index measure |
UQI | Universal quality index |
Appendix A. Several Metrics Calculated on the Example Figures
S355J | CBS | GAN-CBS | GAN-SSIM-CBS | LOM | U-Net-CBS |
---|---|---|---|---|---|
MSE | 0.0000 | 1413.4103 | 1530.2152 | 5181.6819 | 1225.4711 |
RMSE | 0.0000 | 37.5953 | 39.1180 | 71.9839 | 35.0067 |
UQI | 1.0000 | 0.9279 | 0.9240 | 0.8334 | 0.9347 |
ERGAS | 0.0000 | 6.1486 | 6.6714 | 9.1791 | 5.8335 |
SCC | 1.0000 | 0.0182 | 0.0154 | 0.0017 | 0.0180 |
RASE | 0.0000 | 1482.4335 | 1609.8404 | 2323.2832 | 1387.1829 |
SAM | 0.0000 | 0.2418 | 0.2643 | 0.2551 | 0.2325 |
VIFP | 1.0000 | 0.0611 | 0.0371 | 0.0705 | 0.0971 |
PSNR(-B) | ∞ | 16.6281 | 16.2833 | 10.9861 | 17.2478 |
MAE | 0.0000 | 93.8957 | 110.5815 | 83.4367 | 102.5156 |
SSIM | 1.0000 | 0.2500 | 0.2306 | 0.2142 | 0.2493 |
NMI | 2.0000 | 1.0272 | 1.0203 | 1.0307 | 1.0320 |
USIBOR | CBS | GAN-CBS | GAN-SSIM-CBS | LOM | U-Net-CBS |
MSE | 0.0000 | 1202.9259 | 1649.5680 | 5379.0297 | 1100.1092 |
RMSE | 0.0000 | 34.6832 | 40.6149 | 73.3419 | 33.1679 |
UQI | 1.0000 | 0.9600 | 0.9441 | 0.8542 | 0.9645 |
ERGAS | 0.0000 | 5.8666 | 7.0141 | 8.6471 | 5.7163 |
SCC | 1.0000 | 0.0028 | 0.0072 | 0.0009 | 0.0061 |
RASE | 0.0000 | 1450.9247 | 1785.5065 | 2126.7761 | 1395.8939 |
SAM | 0.0000 | 0.2303 | 0.2705 | 0.2287 | 0.2194 |
VIFP | 1.0000 | 0.0483 | 0.0246 | 0.0634 | 0.0874 |
PSNR(-B) | ∞ | 17.3284 | 15.9571 | 10.8238 | 17.7164 |
MAE | 0.0000 | 130.0179 | 128.5432 | 72.2570 | 139.1927 |
SSIM | 1.0000 | 0.1526 | 0.1344 | 0.1314 | 0.1519 |
NMI | 2.0000 | 1.0093 | 1.0072 | 1.0105 | 1.0134 |
TRIP1 | CBS | GAN-CBS | GAN-SSIM-CBS | LOM | U-Net-CBS |
MSE | 0.0000 | 1714.1705 | 2082.5065 | 6480.1903 | 1425.8503 |
RMSE | 0.0000 | 41.4025 | 45.6345 | 80.4996 | 37.7604 |
UQI | 1.0000 | 0.9249 | 0.9119 | 0.7907 | 0.9355 |
ERGAS | 0.0000 | 7.4016 | 8.4751 | 10.3441 | 7.1666 |
SCC | 1.0000 | 0.0362 | 0.0362 | 0.0028 | 0.0401 |
RASE | 0.0000 | 1792.8091 | 2125.0509 | 2539.0422 | 1760.6165 |
SAM | 0.0000 | 0.2936 | 0.3307 | 0.3088 | 0.2834 |
VIFP | 1.0000 | 0.0738 | 0.0551 | 0.0593 | 0.0898 |
PSNR(-B) | ∞ | 15.7903 | 14.9449 | 10.0149 | 16.5901 |
MAE | 0.0000 | 104.7441 | 111.8847 | 84.9302 | 120.1928 |
SSIM | 1.0000 | 0.2304 | 0.2371 | 0.1375 | 0.2366 |
NMI | 2.0000 | 1.0179 | 1.0158 | 1.0164 | 1.0203 |
TRIP2 | CBS | GAN-CBS | GAN-SSIM-CBS | LOM | U-Net-CBS |
MSE | 0.0000 | 1395.1641 | 1908.1480 | 3221.6828 | 1420.6772 |
RMSE | 0.0000 | 37.3519 | 43.6824 | 56.7599 | 37.6919 |
UQI | 1.0000 | 0.9660 | 0.9503 | 0.9268 | 0.9637 |
ERGAS | 0.0000 | 5.6028 | 6.9035 | 6.6220 | 5.9237 |
SCC | 1.0000 | 0.0396 | 0.0425 | 0.0024 | 0.0396 |
RASE | 0.0000 | 1334.9829 | 1676.3173 | 1591.7851 | 1432.8856 |
SAM | 0.0000 | 0.2080 | 0.2379 | 0.2188 | 0.1941 |
VIFP | 1.0000 | 0.0648 | 0.0489 | 0.0470 | 0.0916 |
PSNR(-B) | ∞ | 16.6846 | 15.3247 | 13.0500 | 16.6058 |
MAE | 0.0000 | 148.6040 | 159.7932 | 83.1193 | 158.8045 |
SSIM | 1.0000 | 0.2464 | 0.2343 | 0.1728 | 0.2406 |
NMI | 2.0000 | 1.0189 | 1.0166 | 1.0155 | 1.0163 |
S355J | ETD | GAN-ETD | LOM |
---|---|---|---|
MSE | 0.0000 | 1364.2305 | 13,368.6097 |
RMSE | 0.0000 | 36.9355 | 115.6227 |
UQI | 1.0000 | 0.9197 | 0.5922 |
ERGAS | 0.0000 | 8.7869 | 14.7437 |
SCC | 1.0000 | −0.0031 | 0.0004 |
RASE | 0.0000 | 2004.9993 | 3562.5937 |
SAM | 0.0000 | 0.3503 | 0.4120 |
VIFP | 1.0000 | 0.0240 | 0.0203 |
PSNR(-B) | ∞ | 16.7819 | 6.8699 |
MAE | 0.0000 | 89.9326 | 122.6471 |
SSIM | 1.0000 | 0.2030 | 0.1431 |
NMI | 2.0000 | 1.0116 | 1.0205 |
USIBOR | ETD | GAN-ETD | LOM |
MSE | 0.0000 | 2762.5560 | 17,876.9607 |
RMSE | 0.0000 | 52.5600 | 133.7048 |
UQI | 1.0000 | 0.8211 | 0.4843 |
ERGAS | 0.0000 | 12.4827 | 15.7640 |
SCC | 1.0000 | 0.0038 | −0.0002 |
RASE | 0.0000 | 2951.8036 | 3896.2233 |
SAM | 0.0000 | 0.5053 | 0.5131 |
VIFP | 1.0000 | 0.0231 | 0.0328 |
PSNR(-B) | ∞ | 13.7177 | 5.6079 |
MAE | 0.0000 | 96.8956 | 131.4236 |
SSIM | 1.0000 | 0.0830 | 0.0515 |
NMI | 2.0000 | 1.0046 | 1.0110 |
TRIP1 | ETD | GAN-ETD | LOM |
MSE | 0.0000 | 2339.0107 | 9082.4975 |
RMSE | 0.0000 | 48.3633 | 95.3021 |
UQI | 1.0000 | 0.8978 | 0.7217 |
ERGAS | 0.0000 | 11.4541 | 12.2462 |
SCC | 1.0000 | 0.0006 | −0.0038 |
RASE | 0.0000 | 2503.5621 | 2925.4410 |
SAM | 0.0000 | 0.3824 | 0.4173 |
VIFP | 1.0000 | 0.0438 | 0.0190 |
PSNR(-B) | ∞ | 14.4405 | 8.5488 |
MAE | 0.0000 | 154.9834 | 107.7843 |
SSIM | 1.0000 | 0.2197 | 0.1152 |
PSNR | ∞ | 14.4405 | 8.5488 |
NMI | 2.0000 | 1.0161 | 1.0251 |
TRIP2 | ETD | GAN-ETD | LOM |
MSE | 0.0000 | 744.8763 | 16,487.5409 |
RMSE | 0.0000 | 27.2924 | 128.4038 |
UQI | 1.0000 | 0.9519 | 0.5109 |
ERGAS | 0.0000 | 6.6815 | 14.9804 |
SCC | 1.0000 | 0.0096 | 0.0065 |
RASE | 0.0000 | 1200.4835 | 3703.5935 |
SAM | 0.0000 | 0.2338 | 0.1805 |
VIFP | 1.0000 | 0.0347 | 0.0132 |
PSNR(-B) | ∞ | 19.4100 | 5.9592 |
MAE | 0.0000 | 74.7704 | 125.0576 |
SSIM | 1.0000 | 0.5126 | 0.3538 |
PSNR | ∞ | 19.4100 | 5.9592 |
NMI | 2.0000 | 1.0144 | 1.0220 |
References
- Pan, G.; Wang, F.; Shang, C.; Wu, H.; Wu, G.; Gao, J.; Wang, S.; Gao, Z.; Zhou, X.; Mao, X. Advances in machine learning- and artificial intelligence-assisted material design of steels. Int. J. Miner. Metall. Mater. 2023, 30, 1003–1024. [Google Scholar] [CrossRef]
- Ozdem, S.; Orak, I.M. A novel method based on deep learning algorithms for material deformation rate detection. J. Intell. Manuf. 2024. [Google Scholar] [CrossRef]
- Pantilimon, M.C.; Berbecaru, A.C.; Coman, G.; Sohaciu, M.G.; Dumitrescu, R.E.; Ciuca, S.; Gherghescu, I.A.; Predescu, C. Preliminary structures assessment of some TRIP steels. Arch. Metall. Mater. 2023, 68, 491–498. [Google Scholar] [CrossRef]
- Soliman, M.; Weidenfeller, B.; Palkowski, H. Metallurgical Phenomena during Processing of Cold Rolled TRIP Steel. Steel Res. Int. 2009, 80, 57–65. [Google Scholar] [CrossRef]
- Wendler, M.; Weiß, A.; Krüger, L.; Mola, J.; Franke, A.; Kovalev, A.; Wolf, S. Effect of Manganese on Microstructure and Mechanical Properties of Cast High Alloyed CrMnNi-N Steels. Adv. Eng. Mater. 2013, 15, 558–565. [Google Scholar] [CrossRef]
- Yamanaka, M.; Smith, N.I.; Fujita, K. Introduction to super-resolution microscopy. Microscopy 2014, 63, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, B.I.; Müller, M.; Britz, D.; Durmaz, A.R.; Ackermann, M.; Shchyglo, O.; Staudt, T.; Mücklich, F. Efficient reconstruction of prior austenite grains in steel from etched light optical micrographs using deep learning and annotations from correlative microscopy. Front. Mater. 2022, 9, 1033505. [Google Scholar] [CrossRef]
- Radwanski, K. Structural characterization of low-carbon multiphase steels merging advanced research methods with light optical microscopy. Arch. Civ. Mech. Eng. 2016, 16, 282–293. [Google Scholar] [CrossRef]
- Rosenauer, A.; Krammer, K.; Stadler, M.; Turk, C.; Schnitzer, R. Influence of Ausforming on the Micro- and Nanostructure of PH 13-8 Mo Maraging Steels. Steel Res. Int. 2024. [Google Scholar] [CrossRef]
- Elramady, A.; Sullivan, E.; Sham, K.; O’Brien, L.; Liu, S. Characterization of steel weld metal in multi-pass submerged arc welds after post-weld heat treatment using electron backscatter diffraction. Weld. World 2022, 66, 195–211. [Google Scholar] [CrossRef]
- Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Muecklich, F. Advanced Steel Microstructural Classification by Deep Learning Methods. Sci. Rep. 2018, 8, 2128. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ramazani, A.; Prahl, U.; Bleck, W. Quantification of complex-phase steel microstructure by using combined EBSD and EPMA measurements. Mater. Charact. 2018, 142, 179–186. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Automotive, A. Steels for Hot Stamping—Usibor and Ductibor. Available online: https://automotive.arcelormittal.com/products/flat/PHS/usibor_ductibor (accessed on 29 February 2024).
- EN 10025-2:2004; Hot Rolled Products of Structural Steels, Part 2. Technical Report 10025-2; European Committee for Standardization: Brussels, Belgium, 2004.
- ZEISS. Axio Observer 7 Materials. Available online: https://www.zeiss.com/microscopy/en/products/light-microscopes/widefield-microscopes/axio-observer-for-materials.html (accessed on 30 March 2023).
- Corporation, K. VK-X1000 3D Laser Scanning Confocal Microscope. Available online: https://www.keyence.com/products/microscope/laser-microscope/vk-x100_x200/models/vk-x1000/ (accessed on 30 March 2023).
- Čermák, J.; Ambrož, O.; Zouhar, M.; Jozefovič, P.; Mikmeková, V. Methodology for Collecting and Aligning Correlative SEM, CLSM and LOM Images of Bulk Material Microstructure to Create a Large Machine Learning Training Dataset. Microsc. Microanal. 2023, 29, 2016–2018. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. arXiv 2016, arXiv:1611.07004. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. arXiv 2016, arXiv:1605.06211. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Odena, A.; Dumoulin, V.; Olah, C. Deconvolution and Checkerboard Artifacts. Distill 2016. [Google Scholar] [CrossRef]
- Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context Encoders: Feature learning by inpainting. arXiv 2016, arXiv:1604.07379. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Good, I.J. Rational Decisions. J. R. Stat. Soc. Ser. 1952, 14, 107–114. [Google Scholar] [CrossRef]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T.; The Scikit-Image Contributors. Scikit-Image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Khalel, A. sewar (a Python Library). 2023. Available online: https://pypi.org/project/sewar/ (accessed on 1 March 2024).
Element | TRIP2 | TRIP1 | USIBOR 1500 | S355J2 |
---|---|---|---|---|
C | 0.20 | 0.23 | ≤0.25 | ≤0.20 |
Si | 1.49 | 1.46 | ≤0.40 | ≤0.55 |
Mn | 2.09 | 2.02 | ≤1.40 | ≤1.60 |
P | 0.010 | 0.010 | ≤0.030 | ≤0.025 |
S | 0.0005 | 0.0006 | ≤0.010 | ≤0.025 |
Modality | No. of Channels | Size | Field of View | Linear Pixel Density | Bit Depth |
---|---|---|---|---|---|
[1] | [px × px] | [m × m] | [1/] | [1] | |
LOM | 3 | 2464 × 2056 | 164.3 × 137 | 15 | 8 |
SEM-ETD | 1 | 6144 × 4096 | 124 × 82.67 | 49.5 | 16 |
SEM-CBS | 1 | 6144 × 4096 | 124 × 82.67 | 49.5 | 16 |
CLSM | 3 | 2048 × 1536 | 97.18 × 72.88 | 21 | 8 |
Counts | S355J2 | TRIP1 | TRIP2 | USIBOR | Total |
---|---|---|---|---|---|
CBS, absolute | 229 | 339 | 178 | 101 | 847 |
CBS, relative [%] | 27 | 40 | 21 | 12 | 100 |
ETD | 0 | 206 | 0 | 0 | 206 |
ETD, relative [%] | 0 | 100 | 0 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikmeková, Š.; Zouhar, M.; Čermák, J.; Ambrož, O.; Jozefovič, P.; Konvalina, I.; Materna Mikmeková, E.; Materna, J. Deep Learning-Powered Optical Microscopy for Steel Research. Mach. Learn. Knowl. Extr. 2024, 6, 1579-1596. https://doi.org/10.3390/make6030076
Mikmeková Š, Zouhar M, Čermák J, Ambrož O, Jozefovič P, Konvalina I, Materna Mikmeková E, Materna J. Deep Learning-Powered Optical Microscopy for Steel Research. Machine Learning and Knowledge Extraction. 2024; 6(3):1579-1596. https://doi.org/10.3390/make6030076
Chicago/Turabian StyleMikmeková, Šárka, Martin Zouhar, Jan Čermák, Ondřej Ambrož, Patrik Jozefovič, Ivo Konvalina, Eliška Materna Mikmeková, and Jiří Materna. 2024. "Deep Learning-Powered Optical Microscopy for Steel Research" Machine Learning and Knowledge Extraction 6, no. 3: 1579-1596. https://doi.org/10.3390/make6030076
APA StyleMikmeková, Š., Zouhar, M., Čermák, J., Ambrož, O., Jozefovič, P., Konvalina, I., Materna Mikmeková, E., & Materna, J. (2024). Deep Learning-Powered Optical Microscopy for Steel Research. Machine Learning and Knowledge Extraction, 6(3), 1579-1596. https://doi.org/10.3390/make6030076