Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Metallic Nanoparticles
2.3. Nanocomposite Ink Formation and Conductive Coatings’ Fabrication
2.4. Characterization
3. Results and Discussion
3.1. Preparation of Ni-Ag and Ag NPs as a Component of Hybrid Dispersion
3.2. Fabrication of Ink Formulation and Conductive Coatings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salmerón, J.F.; Molina-Lopez, D.; Briand, J.J.; Ruan, A.; Rivadeneyra, M.A.; Carvaja, L.F.; Capitán-Vallrey, N.F.; Derooij, A.J. Palma Properties and printability of inkjet and screen-printed silver patterns for RFID antennas. J. Electron. Mater. 2014, 43, 604–617. [Google Scholar]
- Layani, M.; Darmawan, P.; Foo, W.L.; Liu, L.; Kamyshny, A.; Mandler, D.; Magdassi, S.; Lee, P.S. Nanostructures electrochromic films by inkjet printing on large area and flexible transparent silver electrodes. Nanoscale 2014, 6, 4572–4576. [Google Scholar] [CrossRef]
- Shanyong, C.; Guan, Y.; Li, X.; Yan, H.; Ni, L.; Li, A. Water-based silver nanowire ink for large-scale flexible transparent conductive films and touch screens. J. Mater. Chem. C 2017, 5, 2404–2414. [Google Scholar]
- Kamyshny, A.; Magdassi, S. Inkjet ink formulations. In Inkjet-Based Micromanufactoring; Korvink, J.P., Smith, P.J., Shin, D.-Y., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp. 173–189. [Google Scholar]
- Kamyshny, A.; Magdassi, S. Magdassi Inkjet printing. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley-VCH: Weinheim, Germany, 2013; pp. 1–21. [Google Scholar]
- Sergeeva, A.S.; Tameev, A.R.; Zolotarevskii, V.I.; Vannikov, A.V. Electrically conductive inks Based on polymer composition for inkjet printing. Inorg. Mater. Appl. Res. 2018, 9, 147–150. [Google Scholar] [CrossRef]
- Liu, F.; Qiu, X.; Xu, J.; Huang, J.; Chen, D.; Chen, G. High conductivity and transparency of graphene-based conductive ink: Prepared from a multi-component synergistic stabilization method. Prog. Org. Coat. 2019, 133, 125–130. [Google Scholar] [CrossRef]
- Choi, Y.; Seong, K. Piao Metal−Organic Decomposition Ink for Printed Electronics. Adv. Mater. Interfaces 2019, 6, 1901002. [Google Scholar] [CrossRef] [Green Version]
- Naghdi, S.; Rhee, K.Y.; Hui, D.; Park, S.J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings 2018, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Peng, P.; Liu, L.; Gerlich, A.P.; Hu, A.; Zhou, N.Y. Self-oriented nanojoining of silver nanowires via surface selective activation. Part. Part. Syst. Charact. 2013, 30, 420–426. [Google Scholar] [CrossRef]
- Jing, J.J.; Xie, J.; Chen, G.Y.; Li, W.H.; Zhang, M.M. Preparation of nickel silver core–shell nanoparticles by liquid-phase reduction for use in conductive paste. J. Exp. Nanosci. 2015, 10, 1347–1356. [Google Scholar] [CrossRef] [Green Version]
- Pajor-Świerzy, A.; Gaweł, D.; Drzymała, E.; Socha, R.; Parlińska-Wojtan, M.; Szczepanowicz, K.; Warszyński, P. The optimization of methods of synthesis of nickel-silver core-shell nanoparticles for conductive materials. Nanotechnology 2018, 30, 1–8. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. (Eds.) Metallic nanoinks for inkjet printing of conductive 2D and 3D structures. In Nanomaterials for 2D and 3D Printing; Wiley-VCH: Weinheim, Germany, 2017; Chapter 7; pp. 119–160. [Google Scholar]
- Tang, Y.; He, W.; Wang, S.; Tao, Z.; Cheng, L. New insight into the size-controlled synthesis of silver nanoparticles and its superiority in room temperature sintering. CrystEngComm 2014, 16, 4431. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Moon, S.-J. The characteristic variations of inkjet-printed silver nanoparticle ink during furnace sintering. J. Nanosci. Nanotechnol. 2013, 13, 6145–6149. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, D.; Jeong, S.; Moon, J.; Kim, J.S. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 2007, 515, 7706–7711. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, X.; Huang, Q.; Xu, Q.; Song, W. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 2014, 6, 1622. [Google Scholar] [CrossRef]
- Hermerschmidt, D.F.; Burmeister, G.; Ligorio, S.M.; Pozov, R.; Ward, S.A.; Choulis, E.J.W. List-Kratochvil Truly low temperature sintering of printed copper ink using formic acid. Adv. Mater. Technol. 2018, 3, 1800146. [Google Scholar] [CrossRef]
- Pajor-Świerzy, R.A.; Socha, R.; Pawłowski, P.; Warszynski, K. Szczepanowicz Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films. Nanotechnology 2019, 30, 225301. [Google Scholar] [CrossRef]
- Pajor-Świerzy, R.A.; Pawłowski; Warszyński, P.; Szczepanowicz, K. The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. J. Mater. Sci. Mater. Electron. 2020, 31, 12991–12999. [Google Scholar]
- Pajor-Świerzy, A.; Staśko, D.; Pawłowski, R.; Mordarski, G.; Kamyshny, A.; Szczepanowicz, K. Polydispersity vs monodispersity. How the properties of Ni-Ag core-shell nanoparticles affect the conductivity of ink coatings. Prog. Org. Coat. 2021. submitted. [Google Scholar]
- K Hand Coater, Pre-Press Equipment, RK Print Coat Instruments. Available online: https://www.rkprint.com/products/k-hand-coater/ (accessed on 12 October 2020).
- Kamyshny, A.; Steinke, J.; Magdassi, S. Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 2011, 4, 19–36. [Google Scholar] [CrossRef]
- Khan, M.J.; Shameli, K.; Sazili, A.Q.; Selamat, J.; Kumari, S. Rapid Green Synthesis and Characterization of Silver Nanoparticles Arbitrated by Curcumin in an Alkaline Medium. Molecules 2019, 24, 719. [Google Scholar] [CrossRef] [Green Version]
- Shameli, K.; Ahmad, M.B.; Shabanzadeh, P.; Al-Mulla, E.A.J.; Zamanian, Y.A.; Abdollahi, S.D.; Jazayeri, M.; Eili, F.A.; Jalilian, R.Z. Haroun Effect of curcuma longa tuber powder extract on size of silver nanoparticles prepared by green method. Res. Chem. Intermed. 2013, 40, 1313–1325. [Google Scholar] [CrossRef]
- Magdassi, S.; Grouchko, M.; Kamyshny, A. Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability. Materials 2010, 3, 4626–4638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goebl, C.; Faltenbacher, J. Low temperature sinter technology die attachment for power electronic applications. In Proceedings of the 2010 6th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 16–18 March 2010. [Google Scholar]
- Balantrapu, K.; McMurran, M.; Goia, D.V. Inkjet printable silver dispersions: Effect of bimodal particle-size distribution on film formation and electrical conductivity. J. Mater. Res. 2010, 25, 821–827. [Google Scholar] [CrossRef]
- Mohammadi, M.M.; Gunturi, S.S.; Shao, S.; Konda, S.; Buchner, R.D.; Swihart, M.T. Flame-synthesized nickel-silver nanoparticle inks provide high conductivity without sintering. Chem. Eng. J. 2019, 372, 648–655. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pajor-Świerzy, A.; Szendera, F.; Pawłowski, R.; Szczepanowicz, K. Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering. Colloids Interfaces 2021, 5, 15. https://doi.org/10.3390/colloids5010015
Pajor-Świerzy A, Szendera F, Pawłowski R, Szczepanowicz K. Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering. Colloids and Interfaces. 2021; 5(1):15. https://doi.org/10.3390/colloids5010015
Chicago/Turabian StylePajor-Świerzy, Anna, Franciszek Szendera, Radosław Pawłowski, and Krzysztof Szczepanowicz. 2021. "Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering" Colloids and Interfaces 5, no. 1: 15. https://doi.org/10.3390/colloids5010015
APA StylePajor-Świerzy, A., Szendera, F., Pawłowski, R., & Szczepanowicz, K. (2021). Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering. Colloids and Interfaces, 5(1), 15. https://doi.org/10.3390/colloids5010015