What Can You Learn about Apparent Surface Free Energy from the Hysteresis Approach?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Plasma Activation
2.3. Contact Angle Measurements
2.4. Optical Profilometry
- -
- the arithmetic mean deviation of the profile from the mean line, measured along the measuring or elementary section: Ra;
- -
- the Root Mean Square deviation standard from the vertical mean value of measurement coordinates: Rq;
- -
- the distance between the deepest valley and the highest elevation: Rt
- -
- Roughness parameters were calculated using WYKO—Vison software, and the 3d images were obtained using GWYDDION software.
2.5. Infrared Spectroscopy (IR-ATR)
2.6. X-ray Photoelectron Spectroscopy (XPS)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Żenkiewicz, M. Methods for the calculation of surface free energy of solids. J. Achiev. 2007, 24, 137–145. [Google Scholar]
- Drelich, J.W.; Boinovich, L.; Chibowski, E.; Della Volpe, C.; Hołysz, L.; Marmur, A.; Siboni, S. Contact angles: History of over 200 years of open questions. Surf. Innov. 2020, 8, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Chibowski, E. On some relations between advancing, receding and Young’s contact angles. Adv. Colloid Interface Sci. 2007, 133, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Bormashenko, E. Apparent contact angles for reactive wetting of smooth, rough, and heterogeneous surfaces calculated from the variational principles. J. Colloid Interface Sci. 2019, 537, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Chibowski, E. Contact angle hysteresis due to a film present behind the drop. In Contact Angle, Wettability and Adhesion, 2nd ed.; Mittal, K.L., Ed.; VSP: Utrecht, The Netherlands, 2002; Volume 2, pp. 265–288. [Google Scholar]
- Chibowski, E. On the interpretation of contact angle hysteresis. J. Adhes. Sci. Technol. 2002, 16, 1367–1404. [Google Scholar] [CrossRef]
- van Oss, C.J.; Good, R.J.; Chaudhury, M.K. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J. Colloid Interface Sci. 1986, 111, 378–390. [Google Scholar] [CrossRef]
- van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 1988, 4, 884–891. [Google Scholar] [CrossRef]
- van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Schmitt, M.; Heib, F. High-precision drop shape analysis on inclining flat surfaces: Introduction and comparison of this special method with commercial contact angle analysis. J. Chem. Phys. 2013, 139, 1–10. [Google Scholar] [CrossRef]
- Schmitt, M.; Heib, F. More Appropriate Procedure to Measure and Analyse Contact Angles/Drop Shape Behaviours. In Advances in Contact Angle, Wettability and Adhesion, 3rd ed.; Mittal, K.L., Ed.; Wiley-Scrivener: Beverly, MA, USA, 2018; Volume 3, pp. 3–57. [Google Scholar]
- Perèz-Huertas, S.; Terpiłowski, K.; Tomczyńska-Mleko, M.; Mleko, S.; Szajnecki, Ł. Time-based changes in surface properties of poly(ethylene terephthalate) activated with air and argon-plasma treatments. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 322–329. [Google Scholar] [CrossRef]
- Rymuszka, K.; Terpiłowski, K.; Borowski, P.; Hołysz, L. Time-dependent changes of surface properties of polyether ether ketone caused by air plasma treatment. Polym. Int. 2016, 65, 827–834. [Google Scholar] [CrossRef]
- Pèrez-Huertas, S.; Terpilowski, K.; Tomczyńska-Mleko, M.; Mleko, S. Surface modification of albumin/gelatin films gelled on low-temperature plasma-treated polyethylene terephthalate plates. Plasma Process Polym. 2020, 3, 1900171. [Google Scholar] [CrossRef]
- Available online: https://omnexus.specialchem.com/selection-guide/polyacetal-polyoxymethylene-pom-plastic (accessed on 12 January 2021).
- Available online: https://www.relyon-plasma.com/glossary/polyoxymethylene (accessed on 5 October 2020).
- Gesche, R.; Kovacs, R.; Scherer, J. Mobile plasma activation of polymer using the plasma gun. Surf. Coat. Technol. 2005, 200, 544–547. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Chibowski, E.; Terpiłowski, K. Comparison of Apparent Surface Free Energy of Some Solids Determined by Different Approaches. In Contact Angle, Wettability and Adhesion; Mittal, K.L., Ed.; CRC Press: London, UK, 2009; Volume 6, pp. 283–299. [Google Scholar]
- Terpiłowski, K.; Wiącek, A.E.; Jurak, M. Influence of nitrogen plasma treatment on the wettability of polyetheretherketone and deposited chitosan layers. Adv. Polym. Technol. 2018, 37, 1557–1569. [Google Scholar] [CrossRef] [Green Version]
- Fowkes, F.M. Attractive forces at interfaces. Ind. Eng. Chem. 1964, 56, 40–52. [Google Scholar] [CrossRef]
- Terpiłowski, K.; Hołysz, L.; Chibowski, E. Surface free energy of sulfur—Revisited II. Samples solidified against different solid surfaces. J. Colloid Interface Sci. 2008, 319, 505–513. [Google Scholar] [CrossRef]
- Jurak, M.; Chibowski, B. Surface free energy and topography of mixed lipid layers on mica. Colloids Surf. B 2010, 75, 165–174. [Google Scholar] [CrossRef]
- Chibowski, E. Some problems of characterization of a solid surface via the surface free energy changes. Adsorp. Sci. Technol. 2017, 35, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Stammitti-Scarpone, A.; Acosta, E.J. Solid-liquid-liquid wettability and its prediction with surface free energy models. Adv. Colloid Interface Sci. 2019, 264, 28–46. [Google Scholar] [CrossRef]
- Chibowski, E.; Perea-Carpio, R. Problems of contact angle and solid surface free energy determination. Adv. Colloid Interface Sci. 2002, 98, 245–264. [Google Scholar] [CrossRef]
- Filipić, A.; Gutierrezi-Aguiree, I.; Primc, G.; Mozetič, M.; Dobnik, D. Cold Plasma, a New Hope in the Field of Virus Inactivation. Trends Biotechnol. 2020, 38, 1278–1291. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Fuzhi, L.; Li, B.; Kwok, D.Y. Wettability Interpretation of Oxygen Plasma Modified Poly(methyl methacrylate). Langmuir 2004, 20, 10919–10927. [Google Scholar] [CrossRef] [PubMed]
- Karimian, D.; Yadollahi, B.; Zendehdel, M.; Mirkhani, V. Efficient dye-sensitized solar cell with a pure thin film of a hybrid polyoxometalate covalently attached organic dye as a working electrode in a cobalt redox mediator system. RSC Adv. 2015, 5, 76875–76882. [Google Scholar] [CrossRef]
- Gernot, M.; Wallner, G.M.; Geretschläger, K.J.; Hintersteiner, I.; Buchberger, W. Characterization of polyoxymethylene for backsheets of photovoltaic modules. J. Plast. 2016, 33, 345–360. [Google Scholar]
- Li, Y.; Zhou, T.; Chen, Z.; Hui, J.; Li, L.; Zhang, A. Non-isothermal crystallization process of polyoxymethylene studied by two-dimensional correlation infrared spectroscopy. Polymer 2011, 52, 2059–2069. [Google Scholar] [CrossRef]
Sample | γtotCAH(W,DM,G) | γtotCAH(W) | γtotCAH(DM) | γtotCAH(W) − γtotCAH(DM) | γtotLWAB(W,DM,G) | γLW | γ− | γ+ | γAB |
---|---|---|---|---|---|---|---|---|---|
UT | 38.1 ± 4.0 | 37.1 ± 5.8 | 42.5 ± 2.2 | - | 36.0 ± 2.8 | 34.6 ± 3.7 | 6.7 ± 7.0 | 0.3 | 2.1 ± 1.4 |
Air | 42.9 ± 4.5 | 48.8 ± 1.7 | 40.5 ± 3.2 | 7.6 ± 1.5 | 38.7 ± 2.5 | 36.6 ± 3.4 | 22.2 ± 0.6 | 0.4 | 6.0 ± 1.4 |
Oxygen | 42.6 ± 6.5 | 49.9 ± 2.9 | 40.7 ± 4.7 | 9.1 ± 1.8 | 33.2 ± 3.0 | 27.8 ± 2.8 | 30.2 ± 1.5 | 0.2 | 5.3 ± 0.2 |
Argon | 44.6 ± 4.0 | 61.4 ± 4.5 | 38.9 ± 4.7 | 22.5 ± 0.2 | 31.0 ± 3.3 | 31.0 ± 3.3 | 68.4 ± 3.6 | - | - |
Nitrogen | 42.1 ± 4.0 | 47.5 ± 2.7 | 41.1 ± 3.3 | 6.4 ± 0.6 | 37.0 ± 3.8 | 35.6 ± 3.1 | 23.6 ± 0.9 | 0.03 | 1.5 ± 0.6 |
Species | UT | Argon Plasma | Oxygen Plasma |
---|---|---|---|
C-O-C (main POM molecular unit) | 40.6 | 36.3 | 36.7 |
C-O-C (epoxy groups) | 7.2 | 14.9 | 14.3 |
C-H sp3 (aliphatic carbon) | 6.6 | 3.8 | 4.0 |
C-C sp3 (aliphatic carbon) | 12.3 | 4.0 | 5.0 |
C=O (carbonyl group) | 11.7 | 14.8 | 14.7 |
Species | UT | Argon Plasma | Oxygen Plasma |
---|---|---|---|
C-O-C (main POM unit) | 61.3 | 61.8 | 65.4 |
OH-C (hydroxyl groups bound to aliphatic carbon) | 9.8 | 8.8 | 10.4 |
O-C=O (carboxyl groups) | 26.6 | 24.5 | 23.1 |
Ra | Rq | Rt | |
---|---|---|---|
UT | 2.6 ± 0.4 | 3.3 ± 0.4 | 32.8 ± 7.3 |
Air | 2.1 ± 0.4 | 2.7 ± 0.4 | 30.8 ± 5.8 |
Oxygen | 2.2 ± 0.2 | 2.9 ± 0.1 | 34.6 ± 3.7 |
Argon | 2.2 ± 0.01 | 2.9 ± 0.02 | 34.0 ± 1.4 |
Nitrogen | 2.5 ± 0.1 | 3.2 ± 0.1 | 32.9 ± 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terpiłowski, K.; Hołysz, L.; Chodkowski, M.; Clemente Guinarte, D. What Can You Learn about Apparent Surface Free Energy from the Hysteresis Approach? Colloids Interfaces 2021, 5, 4. https://doi.org/10.3390/colloids5010004
Terpiłowski K, Hołysz L, Chodkowski M, Clemente Guinarte D. What Can You Learn about Apparent Surface Free Energy from the Hysteresis Approach? Colloids and Interfaces. 2021; 5(1):4. https://doi.org/10.3390/colloids5010004
Chicago/Turabian StyleTerpiłowski, Konrad, Lucyna Hołysz, Michał Chodkowski, and David Clemente Guinarte. 2021. "What Can You Learn about Apparent Surface Free Energy from the Hysteresis Approach?" Colloids and Interfaces 5, no. 1: 4. https://doi.org/10.3390/colloids5010004
APA StyleTerpiłowski, K., Hołysz, L., Chodkowski, M., & Clemente Guinarte, D. (2021). What Can You Learn about Apparent Surface Free Energy from the Hysteresis Approach? Colloids and Interfaces, 5(1), 4. https://doi.org/10.3390/colloids5010004