Dependency of Contact Angles on Three-Phase Contact Line: A Review
Abstract
:1. Introduction
1.1. Abandonment of the Use of Wenzel and Cassie Equations on Rough and Patterned SH Surfaces
1.2. The Persistence of the Use of “Wenzel State” or “Cassie State” Visual Concepts
2. Line Energy Concept along the Three-Phase Contact Line and Derivation of Modified Cassie Equations
2.1. Line Energy
2.2. Modified Cassie Equations
3. Recent Advances in the Dependency of Contact Angles on Three-Phase Contact Line
3.1. Line Energy–Contact Angle Relationships
3.2. Stick-Slip Phenomenon of Drops on Solids
3.3. Direct Testing of Wenzel and Cassie Equations
3.4. Thermodynamic Investigations of Contact Angles on Heterogeneous Solids
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erbil, H.Y. Surface Chemistry of Solid and Liquid Interfaces; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Butt, H.J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Bormashenko, E.Y. Wetting of Real Surfaces; De Gruyter: Berlin, Germany, 2013. [Google Scholar]
- McHale, G.; Erbil, H.Y.; Newton, M.I.; Natterer, S. Analysis of Shape Distortions in Sessile Drops. Langmuir 2001, 17, 6995–6998. [Google Scholar] [CrossRef]
- Kashaninejad, N.; Nguyen, N.T.; Chan, W.K. The three-phase contact line shape and eccentricity effect of anisotropic wetting on hydrophobic surfaces. Soft Matter. 2013, 9, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Erbil, H.Y. The debate on the dependence of apparent contact angles on drop contact area or 3-phase contact line: A review. Surf. Sci. Rep. 2014, 69, 325–365. [Google Scholar] [CrossRef]
- Marmur, A.; Volpe, C.D.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 2017, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Good, R.J. Contact angle, wetting, and adhesion: A critical review. In Contact Angle, Wettability and Adhesion; Mittal, K.L., Ed.; VSP: Utrecht, the Netherlands, 1993; pp. 3–36. [Google Scholar]
- Ucar, I.O.; Cansoy, C.E.; Erbil, H.Y.; Pettitt, M.E.; Callow, M.E.; Callow, J.A. Effect of contact angle hysteresis on the removal of the sporelings of the green alga Ulva from the fouling-release coatings synthesized from polyolefin polymers. Biointerphases 2010, 5, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbil, H.Y. Determination of peripheral contact angle of sessile drops on solids from the rate of drop evaporation. J. Phys. Chem. B 1998, 102, 9234–9238. [Google Scholar] [CrossRef]
- Lander, L.M.; Siewierski, L.M.; Brittain, M.J.; Vogler, E.A. A systematic comparison of contact angle methods. Langmuir 1993, 9, 2237–2239. [Google Scholar] [CrossRef]
- Erbil, H.Y.; McHale, G.; Rowan, S.M.; Newton, M.I. Determination of receding contact angle of sessile drops on polymer surfaces by evaporation. Langmuir 1999, 15, 7378–7385. [Google Scholar] [CrossRef]
- Erbil, H.Y. Determination of peripheral contact angle of sessile drops on solids from the rate of evaporation. J. Adhes. Sci. Technol. 1999, 13, 1405–1413. [Google Scholar] [CrossRef]
- Young, T. An essay on the cohesion of fluids. Phil. Trans. Royal Soc. Lond. 1805, 95, 65–87. [Google Scholar]
- Erbil, H.Y.; Yasar, B.; Süzer, S.; Baysal, B.M. Surface characterization of the hydroxy terminated poly(ε-caprolactone)/poly(dimethylsiloxane) triblock copolymers by ESCA and contact angle measurements. Langmuir 1997, 13, 5484–5493. [Google Scholar] [CrossRef]
- Ucar, I.O.; Doganci, M.D.; Cansoy, C.E.; Erbil, H.Y.; Avramova, I.; Suzer, S. Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends. App. Surf. Sci. 2011, 257, 9587–9594. [Google Scholar] [CrossRef] [Green Version]
- Mert, O.; Doganci, E.; Erbil, H.Y.; Demir, A.S. Surface characterization of poly L-lactic acid-methoxy polyethylene glycol diblock copolymers by static, dynamic contact angle measurements, ESCA and FTIR. Langmuir 2008, 24, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Erbil, H.Y.; Meric, R.A. Determination of surface free energy components of polymers from contact angle data using nonlinear programming methods. Colloids Surf. 1988, 33, 85–97. [Google Scholar] [CrossRef]
- Erbil, H.Y. Surface energetics of films of poly(vinyl acetate-butyl acrylate) emulsion copolymers. Polymer 1996, 37, 5483–5491. [Google Scholar] [CrossRef]
- Schultz, J.; Tsutsumi, K.; Donnet, J.B. Surface properties of high energy solids, Determination of the dispersive component of the surface free energy of mica and its energy of adhesion to water and n-alkanes. J. Colloid Interface Sci. 1977, 59, 272–276. [Google Scholar] [CrossRef]
- Hejazi, V.; Nosonovsky, M. Wetting Transitions in Two-, Three-, and Four-Phase Systems. Langmuir 2012, 28, 2173–2180. [Google Scholar] [CrossRef]
- Erbil, H.Y. Work of adhesion between water and substituted aromatic hydrocarbons. Langmuir 1994, 10, 286–290. [Google Scholar] [CrossRef]
- Ozkan, O.; Erbil, H.Y. Interpreting contact angle results under air, water and oil for the same surface. Surf. Topogr. Metrol. Prop. 2017, 5, 024002. [Google Scholar] [CrossRef]
- Lord Rayleigh: ‘On the theory of surface forces’. Phil. Mag. 1890, 30, 285–298, 456–475. [CrossRef] [Green Version]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface roughness and contact angle. J. Phys. Colloid Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Cassie, A.B.D. Contact Angles. Discuss. Faraday Soc. 1948, 3, 11–16. [Google Scholar] [CrossRef]
- Pease, D.C. The significance of the contact angle in relation to the solid surface. J. Phys. Chem. 1945, 49, 107–110. [Google Scholar] [CrossRef]
- Bartell, F.E.; Shepard, J.W. Surface roughness as related to hysteresis of contact angles. I-The system paraffin-water-air. J. Phys. Chem. 1953, 57, 211–215. [Google Scholar] [CrossRef]
- Bartell, F.E.; Shepard, J.W. Surface roughness as related to hysteresis of contact angles. II-The systems paraffin-3 molar calcium chloride solution-air and paraffin-glycerol-air. J. Phys. Chem. 1953, 57, 455–458. [Google Scholar] [CrossRef]
- Extrand, C.W. Contact angles and hysteresis on surfaces with chemically heterogeneous islands. Langmuir 2003, 19, 3793–3896. [Google Scholar] [CrossRef]
- Gao, L.; McCarty, T.J. How Wenzel and Cassie were wrong. Langmuir 2007, 23, 3762–3765. [Google Scholar] [CrossRef]
- Gao, L.; McCarthy, T.J. The “Lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir 2006, 22, 2966–2967. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; McCarthy, T.J. Contact angle hysteresis explained. Langmuir 2006, 22, 6234–6237. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; McCarthy, T.J. An attempt to correct the faulty intuition perpetuated by the Wenzel and Cassie “Laws”. Langmuir 2009, 25, 7249–7255. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.F.; McCarty, T.J. Using the fact that wetting is contact line dependent. Langmuir 2011, 27, 3693–3697. [Google Scholar] [CrossRef] [PubMed]
- Wolansky, G.; Marmur, A. Apparent contact angles on rough surfaces: The Wenzel equation revisited. Colloids Surf. A Physicochem. Eng. Asp. 1999, 156, 381–388. [Google Scholar] [CrossRef]
- Bormashenko, E.; Pogreb, R.; Whyman, G.; Erlich, M. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Langmuir 2007, 23, 6501–6503. [Google Scholar] [CrossRef]
- Erbil, H.Y.; Cansoy, C.E. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Langmuir 2009, 25, 14135–14145. [Google Scholar] [CrossRef]
- Cansoy, C.E.; Erbil, H.Y.; Akar, O.; Akin, T. Effect of pattern size and geometry on the use of Cassie-Baxter equation for superhydrophobic surfaces. Col. Surf. A Phy. Eng. Aspects 2011, 386, 116–124. [Google Scholar] [CrossRef]
- Yang, C.W.; He, F.; Hao, P.F. The apparent contact angle of water droplet on the micro-structured hydrophobic surface. Sci. China-Chem. 2010, 53, 912–916. [Google Scholar] [CrossRef]
- Liu, J.; Mei, Y.; Xia, R. A New wetting mechanism based upon triple contact line pinning. Langmuir 2011, 27, 196–200. [Google Scholar] [CrossRef]
- Erbil, H.Y. Practical applications of superhydrophobic materials and coatings: Problems and perspectives. Langmuir 2020, 36, 2493–2509. [Google Scholar] [CrossRef] [PubMed]
- McHale, G.; Aqil, S.; Shirtcliffe, N.J.; Newton, M.I.; Erbil, H.Y. Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 2005, 21, 11053–11060. [Google Scholar] [CrossRef] [PubMed]
- Doganci, M.D.; Sesli, B.U.; Erbil, H.Y. Diffusion-controlled evaporation of sodium dodecyl sulfate solution drops placed on a hydrophobic substrate. J. Coll. Interf. Sci. 2011, 362, 524–531. [Google Scholar] [CrossRef]
- Susarrey-Arce, A.; Marin, A.G.; Nair, H.; Lefferts, L.; Gardeniers, J.G.E.; Lohse, D.; van Houselt, A. Absence of an evaporation-driven wetting transition on omniphobic surfaces. Soft Matter 2012, 8, 9765–9770. [Google Scholar] [CrossRef]
- Erbil, H.Y. Evaporation of pure liquid sessile drops: A review. Adv. Colloid Interface Sci. 2012, 170, 67–86. [Google Scholar] [CrossRef]
- Good, R.J.; Koo, M.N. The effect of drop size on contact angle. J. Colloid Interface Sci. 1979, 71, 283–292. [Google Scholar] [CrossRef]
- Joanny, J.F.; De Gennes, P.G. A model for contact angle hysteresis. J. Chem. Phys. 1984, 81, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Lin, F.Y.H.; Neumann, A.W. Effect of corrugations of the three phase line on the drop size dependence of contact angles. J. Colloid Interface Sci. 1991, 142, 224–231. [Google Scholar] [CrossRef]
- Tadmor, R. Line energy and the relation between advancing, receding, and Young contact angles. Langmuir 2004, 20, 7659–7664. [Google Scholar] [CrossRef]
- Tadmor, R. Line energy, line tension and drop size. Surf. Sci. 2008, 602, L108–L111. [Google Scholar] [CrossRef]
- Pompe, T.; Herminghaus, S. Three-phase contact line energetics from nanoscale liquid surface topographies. Phys. Rev. Lett. 2000, 85, 1930–1935. [Google Scholar] [CrossRef] [PubMed]
- Boruvka, L.; Gaydos, J.; Neumann, A.W. A novel strategy for determining line tension from the shape of a liquid meniscus near a strip-wise heterogeneous wall. Colloids Surf. 1990, 43, 307–326. [Google Scholar] [CrossRef]
- Drelich, J. The significance and the magnitude of the line tension in three-phase (solid-liquid-fluid) systems. Colloids Surf. A 1996, 116, 43–52. [Google Scholar] [CrossRef]
- Checco, A.; Guenoun, P.; Daillant, J. Nonlinear dependence of the contact angle of nanodroplets on contact line curvature. Phys. Rev. Lett. 2003, 91, 186101. [Google Scholar] [CrossRef] [Green Version]
- Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E. Wetting and spreading. Rev. Mod. Phys. 2009, 81, 739. [Google Scholar] [CrossRef]
- Sefiane, K. Thoughts on some outstanding issues in the physics of equilibrium wetting and conceptual understanding of contact lines. Eur. Phys. J. Spec. Top. 2011, 197, 151–157. [Google Scholar] [CrossRef]
- Amirfazli, A.; Neumann, A.W. Status of the three-phase line tension: A review. Adv. Colloid Interface Sci. 2004, 110, 121–141. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Gee, M.L. Contact angles on chemically heterogeneous surfaces. Langmuir 1989, 5, 288–289. [Google Scholar] [CrossRef]
- Drelich, J.; Miller, J.D. The line/pseudo-line tension in three-phase systems. Particulate Sci. Technol. 1992, 10, 1–20. [Google Scholar] [CrossRef]
- Drelich, J.; Miller, J.D. Modification of the Cassie equation. Langmuir 1993, 9, 619–621. [Google Scholar] [CrossRef]
- Swain, P.S.; Lipowsky, R. Contact angles on heterogeneous surfaces: A new look at Cassie’s and Wenzel’s Laws. Langmuir 1998, 14, 6772–6780. [Google Scholar] [CrossRef] [Green Version]
- Woodward, J.T.; Gwin, H.; Schwartz, D.K. Contact angles on surfaces with mesoscopic chemical heterogeneity. Langmuir 2000, 16, 2957–2961. [Google Scholar] [CrossRef]
- Cubaud, T.; Fermigier, M. Advancing contact lines on chemically patterned surfaces. J. Colloid Interface Sci. 2004, 269, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.T.; Taboryski, R. A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces. Langmuir 2009, 25, 1282–1284. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X. The modified Cassie’s equation and contact angle hysteresis. Colloid Polym. Sci. 2013, 291, 299–306. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, F.; Ma, S.; Selzer, M.; Nestler, B. How do chemical patterns affect equilibrium droplet shapes? Soft Matter. 2020, 16, 6115–6127. [Google Scholar] [CrossRef]
- Kashaninejad, N.; Chan, W.K.; Nguyen, N.T. Eccentricity effect of micropatterned surface on contact angle. Langmuir 2012, 28, 4793–4799. [Google Scholar] [CrossRef] [Green Version]
- Drelich, J.W.; Boinovich, L.; Chibowski, E.; Volpe, C.D.; Hołysz, L.; Marmur, A.; Siboni, S. Contact angles: History of over 200 years of open questions. Surf. Innov. 2020, 8, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z. New equations of wetting. Phil. Mag. Lett. 2020, 100, 181–188. [Google Scholar] [CrossRef]
- Varagnolo, S.; Ferraro, D.; Fantinel, P.; Pierno, M.; Mistura, G.; Amati, G.; Biferale, L.; Sbragaglia, M. Stick-Slip Sliding of Water Drops on Chemically Heterogeneous Surfaces. Phys. Rev. Lett. 2013, 111, 066101. [Google Scholar] [CrossRef] [Green Version]
- Shanahan, M.E.R. Simple Theory of “Stick-Slip” Wetting Hysteresis. Langmuir 1995, 11, 1041–1043. [Google Scholar] [CrossRef]
- Orejon, D.; Sefiane, K.; Shanahan, M.E.R. Stick-Slip of Evaporating Droplets: Substrate Hydrophobicity and Nanoparticle Concentration. Langmuir 2011, 27, 12834–12843. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.A.H.; Hampton, M.A.; Nguyen, A.V. Evaporation of Nanoparticle Droplets on Smooth Hydrophobic Surfaces: The In ner Coffee Ring Deposits. J. Phys. Chem. C 2013, 117, 4707–4716. [Google Scholar] [CrossRef]
- Askounis, A.; Sefiane, K.; Koutsos, V.; Shanahan, M.E.R. The Effect of Evaporation Kinetics on Nanoparticle Structuring Within Contact Line Deposits of Volatile Drops. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 441, 855–866. [Google Scholar] [CrossRef]
- Oksuz, M.; Erbil, H.Y. Comments on the energy barrier calculations during “Stick-slip” behavior of evaporating droplets containing nanoparticles. J. Phys. Chem. C 2014, 118, 9228–9238. [Google Scholar] [CrossRef]
- Iliev, S.; Pesheva, N.; Iliev, P. Depinning regimes and contact angle hysteresis of a drop on doubly periodic microtextured surfaces. Phy. Rev. E 2020, 101, 052801. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, A.; Rivetti, M.; Teisseire, J.; Barthel, E. Role of kinks in the dynamics of contact lines receding on superhydrophobic surfaces. Phys. Rev. Lett. 2013, 110, 046101. [Google Scholar] [CrossRef]
- Zahiri, B.; Sow, P.K.; Kung, C.H.; Mérida, W. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets. J. Colloid Interface Sci. 2017, 501, 34–44. [Google Scholar] [CrossRef]
- Mackenzie-Dover, C.M.; Sefiane, K. Revisited Cassie’s law to incorporate microstructural capillary effects. Phys. Rev. Fluids 2019, 4, 081601(R). [Google Scholar] [CrossRef]
- Huang, X.; Gates, I. Apparent contact angle around the periphery of a liquid drop on roughened surfaces. Sci. Rep. 2020, 10, 8220. [Google Scholar] [CrossRef]
- Sadeghinezhad, E.; Siddiqui, M.A.Q.; Roshan, H.; Regenauer-Lieb, K. On the interpretation of contact angle for geomaterial wettability: Contact area versus three-phase contact line. J. Petroleum Sci. Eng. 2020, 195, 107579. [Google Scholar] [CrossRef]
- Cheng, C.T.; To, S.; Zhang, G. Characterization of intermediate wetting states on micro-grooves by water droplet contact line. J. Ind. Eng. Chem. 2020, 91, 69–78. [Google Scholar] [CrossRef]
- Kung, C.H.; Sow, P.K.; Zahiri, B.; Mérida, W. Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: Challenges and opportunities. Adv. Mater. Interfaces 2019, 6, 1900839. [Google Scholar] [CrossRef]
- Shardt, N.; Elliott, J.A.W. Gibbsian thermodynamics of Cassie−Baxter wetting (Were Cassie and Baxter wrong? Revisited). Langmuir 2018, 34, 12191–12198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shardt, N.; Elliott, J.A.W. Gibbsian thermodynamics of Wenzel wetting (Was Wenzel wrong? Revisited). Langmuir 2020, 36, 435–446. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erbil, H.Y. Dependency of Contact Angles on Three-Phase Contact Line: A Review. Colloids Interfaces 2021, 5, 8. https://doi.org/10.3390/colloids5010008
Erbil HY. Dependency of Contact Angles on Three-Phase Contact Line: A Review. Colloids and Interfaces. 2021; 5(1):8. https://doi.org/10.3390/colloids5010008
Chicago/Turabian StyleErbil, H. Yildirim. 2021. "Dependency of Contact Angles on Three-Phase Contact Line: A Review" Colloids and Interfaces 5, no. 1: 8. https://doi.org/10.3390/colloids5010008
APA StyleErbil, H. Y. (2021). Dependency of Contact Angles on Three-Phase Contact Line: A Review. Colloids and Interfaces, 5(1), 8. https://doi.org/10.3390/colloids5010008