Axisymmetric Slow Motion of a Porous Spherical Particle in a Viscous Fluid Using Time Fractional Navier–Stokes Equation
Abstract
:1. Introduction
2. Mathematical Formulation and Solution Methodology
Boundary Conditions
- (i)
- continuity of the velocity components: ,
- (ii)
- continuity of the normal stress component:
- (iii)
- stress jump boundary condition for the shear stress:
3. Force Acting on the Particle
Numerical Inverse Laplace Transform (Euler’s Method)
4. Special Fluid Flows
5. Numerical Results and Discussions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caputo, M. Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 2003, 46, 223–234. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing: Singapore, 2000. [Google Scholar]
- Kumar, S. A new analytical modelling for fractional telegraph equation via Laplace transform. Appl. Math. Model. 2014, 38, 3154–3163. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Abbasbandy, S.; Rashidi, M.M. Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method. Ain Shams Eng. J. 2014, 5, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Peng, L. On the time fractional Navier-Stokes equations. Comput. Math. Appl. 2017, 73, 874–891. [Google Scholar] [CrossRef]
- Wang, K.; Liu, S. Analytical study of time-fractional Navier-Stokes equation by using transform methods. Adv. Differ. Equ. 2016, 2016, 61. [Google Scholar] [CrossRef] [Green Version]
- Stokes, G.G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Philos. Soc. 1851, 9, 8–106. [Google Scholar]
- Basset, A.B. On the motion of a sphere in a viscous liquid. Philos. Trans. R. Soc. Lond. A 1888, 179, 43–63. [Google Scholar]
- Feng, J.; Joseph, D.D. The unsteady motion of solid bodies in creeping flows. J. Fluid Mech. 1995, 303, 83–102. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, E.E.; Feng, J.-G. The Equation of Motion of a Small Viscous Sphere in an Unsteady Flow with Interface Slip. Int. J. Multiph. Flow 1995, 21, 315–321. [Google Scholar] [CrossRef]
- Choudhuri, D.; Padmavati, B.S. A study of an arbitrary unsteady Stokes flow in and around a liquid sphere. Appl. Math. Comput. 2014, 243, 644–656. [Google Scholar] [CrossRef]
- Bogoyavlenskij, O.I. Exact unsteady solutions to the Navier-Stokes and viscous MHD equations. Phys. Lett. A 2013, 307, 281–286. [Google Scholar] [CrossRef]
- Ardekani, A.M.; Rangel, R.H. Unsteady motion of two solid spheres in Stokes flow. Phys. Fluids 2006, 18, 103306. [Google Scholar] [CrossRef] [Green Version]
- Ashmawy, E.A. Unsteady Rotational Motion of a Slip Spherical Particle in a Viscous Fluid. ISRN Math. Phys. 2012, 2012, 513717. [Google Scholar] [CrossRef] [Green Version]
- Ashmawy, E.A. Rotary oscillation of a composite sphere in a concentric spherical cavity using slip and stress jump conditions. Eur. Phys. J. Plus 2015, 130, 163. [Google Scholar] [CrossRef]
- Jaber, K.K.; Ahmad, R.S. Analytical solution of the time fractional Navier-Stokes equation. Ain Shams Eng. J. 2018, 9, 1917–1927. [Google Scholar] [CrossRef]
- Ashmawy, E.A. Unsteady translational motion of a slip sphere in a viscous fluid using the fractional Navier-Stokes equation. Eur. Phys. J. Plus 2017, 132, 142. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, X.; Yu, B. Numerical analysis of the space fractional Navier–Stokes equations. Appl. Math. Lett. 2017, 69, 94–100. [Google Scholar] [CrossRef]
- Kashif, A.A.; Ilyas, K. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discret. Contin. Dyn. Syst. 2020, 13, 377–387. [Google Scholar]
- Zhou, Y.; Peng, L.; Ahmad, B.; Alsaedi, A. Energy methods for fractional Navier–Stokes equations. Chaos Solitons Fractals 2017, 102, 78–85. [Google Scholar] [CrossRef]
- Kang, J.; Zhou, F.; Xia, T.; Ye, G. Numerical modeling and experimental validation of anomalous time and space subdiffusion for gas transport in porous coal matrix. Int. J. Heat Mass Trans. 2016, 100, 747–757. [Google Scholar] [CrossRef]
- Muzaffar, H.L.; Kashif, A.A.; Asif, A.S. Helical flows of fractional viscoelastic fluid in a circular pipe. Int. J. Adv. Appl. Sci. 2017, 4, 97–105. [Google Scholar]
- Zafar, A.A.; Fetecau, C. Flow over an infinite plate of a viscous fluid with non-integer order derivative without singular kernel. Alex. Eng. J. 2016, 5, 2789–2796. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, A.S.; Ali, F.; Khan, I.; Saqib, M. A modern approach of Caputo-Fabrizio timefractional derivative to MHD free convection flow of generalized second grade fluid in a porous medium. Neural Comput. Appl. 2018, 30, 1865–1875. [Google Scholar]
- Atangana, A.; Baleanu, D. Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 2016, 142, D4016005. [Google Scholar] [CrossRef]
- Ochoa-Tapia, J.A.; Whitaker, S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. theoretical development. Int. J. Heat Mass Transf. 1995, 38, 2635–2646. [Google Scholar] [CrossRef]
- Ochoa-Tapia, J.A.; Whitaker, S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. comparison with experiment. Int. J. Heat Mass Transf. 1995, 38, 2647–2655. [Google Scholar] [CrossRef]
- Haq, S.U.; Khan, M.A.; Shah, N.A. Analysis of Magnetohydrodynamic Flow of a Fractional Viscous FluidThrough a Porous Medium. Chin. J. Phy. 2018, 56, 261–269. [Google Scholar] [CrossRef]
- Khan, Z.A.; Haq, S.U.; Khan, T.S.; Khan, I.; Nisar, K.S. Fractional Brinkman type fluid in channel under the effect of MHD with Caputo-Fabrizio fractional derivative. Alex. Eng. J. 2020, 59, 2901–2910. [Google Scholar] [CrossRef]
- Sekhar, G.R.; Amaranath, T. Stokes flow past a porous sphere with an impermeable core. Mech. Res. Commun. 1996, 23, 449–460. [Google Scholar] [CrossRef]
- Nield, D.A. Modelling fluid flow and heat transfer in a saturated porous medium. Adv. Decis. Sci. 2000, 4, 165–173. [Google Scholar] [CrossRef]
- Prakash, J.; Sekhar, G.R. Slow motion of a porous spherical particle with a rigid core in a spherical fluid cavity. Meccanica 2017, 52, 91–105. [Google Scholar] [CrossRef]
- Stehfest, H. Algorithm 368: Numerical inversion of Laplace transforms. Commun. ACM 1970, 13, 47–54. [Google Scholar] [CrossRef]
- Talbot, A. The accurate numerical inversion of Laplace transforms. IMA J. Appl. Math. 1979, 23, 97–120. [Google Scholar] [CrossRef]
- Abate, J.; Whitt, W. A Unified Framework for Numerically Inverting Laplace Transforms. INFORMS J. Comput. 2006, 18, 408–421. [Google Scholar] [CrossRef]
- Doetsch, G. Introduction to the Theory and Application of the Laplace Transformation; Springer: New York, NY, USA, 1974. [Google Scholar]
- Abate, J.; Whitt, W. The Fourier-series method for inverting transforms of probability distributions. Queueing Syst. 1992, 10, 5–88. [Google Scholar] [CrossRef]
- Abate, J.; Choudhury, G.L.; Whitt, W. An introduction to numerical inversion and its application to probability models. In Computational Probability; Grassman, W., Ed.; Kluwer: Boston, MA, USA, 1999; pp. 257–323. [Google Scholar]
- Abate, J.; Valko, P.P. Multi-precision Laplace inversion. Int. J. Numer. Methods Eng. 2004, 60, 979–993. [Google Scholar] [CrossRef]
- Hosono, T. Numerical inversion of Laplace transform and some applications to wave optics. Radio Sci. 1981, 16, 1015–1019. [Google Scholar] [CrossRef]
- Hosono, T. Fast Inversion of Laplace Transform by BASIC; Kyoritsu Publishers: Tokyo, Japan, 1984. (In Japanese) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, J.; Satyanarayana, C. Axisymmetric Slow Motion of a Porous Spherical Particle in a Viscous Fluid Using Time Fractional Navier–Stokes Equation. Colloids Interfaces 2021, 5, 24. https://doi.org/10.3390/colloids5020024
Prakash J, Satyanarayana C. Axisymmetric Slow Motion of a Porous Spherical Particle in a Viscous Fluid Using Time Fractional Navier–Stokes Equation. Colloids and Interfaces. 2021; 5(2):24. https://doi.org/10.3390/colloids5020024
Chicago/Turabian StylePrakash, Jai, and Chirala Satyanarayana. 2021. "Axisymmetric Slow Motion of a Porous Spherical Particle in a Viscous Fluid Using Time Fractional Navier–Stokes Equation" Colloids and Interfaces 5, no. 2: 24. https://doi.org/10.3390/colloids5020024
APA StylePrakash, J., & Satyanarayana, C. (2021). Axisymmetric Slow Motion of a Porous Spherical Particle in a Viscous Fluid Using Time Fractional Navier–Stokes Equation. Colloids and Interfaces, 5(2), 24. https://doi.org/10.3390/colloids5020024