The Effect of the Open Vase-like Microcapsules Formation with NiFe Double-Hydroxide Walls during Hydrolysis of the Mixture NiSO4 and FeSO4 Salt Solution Microdroplets Deposited on the Alkaline Solution Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Reagents, and Synthesis Conditions
2.2. Physical Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Kleinen, J.; Venzmer, J.; Trybala, A.; Starov, V.; Gambaryan-Roisman, T. Spreading and Imbibition of Vesicle Dispersion Droplets on Porous Substrates. Colloids Interfaces 2019, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Yano, Y.F.; Ina, T.; Urug, T. Understanding the Dynamics of a Lipid Monolayer on a Water Surface under a Marangoni Flow. Colloids Interfaces 2021, 5, 31. [Google Scholar] [CrossRef]
- Gochev, G.G.; Ulaganathan, V.; Retzlaff, I.; Gehin-Delval, C.; Gunes, D.Z.; Leser, M.; Kulozik, U.; Miller, R.; Braunschweig, B. β-Lactoglobulin Adsorption Layers at the Water/Air Surface: 4. Impact on the Stability of Foam Films and Foams. Minerals 2020, 10, 636. [Google Scholar] [CrossRef]
- Javadi, A.; Dowlati, S.; Miller, R.; Schneck, E.; Eckert, K.; Kraume, M. Dynamics of Competitive Adsorption of Lipase and Ionic Surfactants at the Water–Air Interface. Langmuir 2020, 36, 12010–12022. [Google Scholar] [CrossRef] [PubMed]
- Chirkov, N.S.; Akentiev, A.V.; Campbell, R.A.; Lin, S.-Y.; Timoshen, K.A.; Vlasov, P.S.; Noskov, B.A. Network Formation of DNA/Polyelectrolyte Fibrous Aggregates Adsorbed at the Water–Air Interface. Langmuir 2019, 35, 13967–13976. [Google Scholar] [CrossRef]
- Milyaeva, O.Y.; Bykov, A.G.; Campbell, R.; Loglio, G.; Miller, R.; Noskov, B.A. Polydopamine layer formation at the liquid-gas interface. Colloids Surf. A 2019, 579, 123637. [Google Scholar] [CrossRef]
- Noskov, B.A.; Timoshen, K.A.; Akentiev, A.V.; Chirkov, N.S.; Dubovsky, I.M.; Lebedev, V.T.; Lin, S.-Y.; Loglio, G.; Miller, R.; Sedov, V.P.; et al. Dynamic Surface Properties of Fullerenol Solutions. Langmuir 2019, 35, 3773–3779. [Google Scholar] [CrossRef]
- Fainerman, V.B.; Kovalchuk, V.I.; Aksenenko, E.V.; Ravera, F.; Liggieri, L.; Loglio, G.; Makievski, A.V.; Mishchuk, N.O.; Schneck, E.; Miller, R.M. Adsorption Model for the Adsorption of C14EO4 and C14EO8 at the Solution/Air Interface. Colloids Interfaces 2021, 5, 39. [Google Scholar] [CrossRef]
- Gulina, L.B.; Tolstoy, V.P.; Kasatkin, I.A.; Petrov, Y.V. Facile synthesis of LaF3 strained 2D nanoparticles and microtubes at solution–gas interface. J. Fluor. Chem. 2015, 180, 117–121. [Google Scholar] [CrossRef]
- Gulina, L.B.; Tolstoy, V.P.; Kasatkin, I.A.; Kolesnikov, I.E.; Danilov, D.V. Formation of oriented LaF3 and LaF3:Eu3+ nanocrystals at the gas-solution interface. J. Fluor. Chem. 2017, 200, 18–23. [Google Scholar] [CrossRef]
- Gulina, L.B.; Gurenko, V.E.; Tolstoy, V.P.; Mikhailovskii, V.Y.; Koroleva, A.V. Interface-Assisted Synthesis of the Mn3-xFexO4 Gradient Film with Multifunctional Properties. Langmuir 2019, 35, 14983–14989. [Google Scholar] [CrossRef] [PubMed]
- Gulina, L.B.; Tolstoy, V.P.; Solovev, A.A.; Gurenko, V.E.; Huang, G.; Mei, Y. Gas-Solution Interface Technique as a simple method to produce inorganic microtubes with scroll morphology. Prog. Nat. Sci. 2020, 30, 279–288. [Google Scholar] [CrossRef]
- Tolstoy, V.P.; Vladimirova, N.I.; Gulina, L.B. Ordered honeycomb-like network of MnO2·nH2O nanocrystals formed on the surface of a Mn(OAc)2 solution drop upon interaction with O3 gas. Mend. Commun. 2019, 29, 713–715. [Google Scholar] [CrossRef]
- Walsh, D.; Arcelli, L.; Swinerd, V.Y.; Fletcher, J.; Mann, S. Aerosol-Mediated Fabrication of Porous Thin Films Using Ultrasonic Nebulization. Chem. Mater. 2007, 19, 503–508. [Google Scholar] [CrossRef]
- Tolstoy, V.P.; Meleshko, A.A. Hydrolysis of NiSO4 and FeSO4 Mixture in Microdrops of Their Aqueous Solution Deposited on The Surface of An Alkali Solution and Obtaining Vase-Like Microcapsules with Walls of Ni(II) and Fe(III) Double Hydroxide. Russ. J. Gen. Chem. 2022, 92, 276–280. [Google Scholar] [CrossRef]
- Dette, C.; Hurst, M.R.; Deng, J.; Nellist, M.R.; Boettcher, S.W. Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11, 5590–5594. [Google Scholar] [CrossRef]
- Dionigi, F.; Strasser, P. NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes. Adv. Energy Mater 2016, 6, 1600621. [Google Scholar] [CrossRef]
- Kazimirov, V.; Smirnov, M.; Bourgeois, L.; Guerlou-Demourgues, L.; Servant, L.; Balagurov, A.; Natkaniec, I.; Khasanova, N.; Antipov, E. Atomic structure and lattice dynamics of Ni and Mg hydroxides. Solid State Ion. 2010, 181, 1764–1770. [Google Scholar] [CrossRef]
- Sriram, B.; Jeena, N.B.; Wang, S.-F.; Roselin, R.M.; Govindasamy, M.; George, M. Eutectic Solvent-Mediated Synthesis of NiFe-LDH/Sulfur-Doped Carbon Nitride Arrays: Investigation of Electrocatalytic Activity for the Dimetridazole Sensor in Human Sustenance. ACS Sustain. Chem. Eng. 2020, 8, 17772–17782. [Google Scholar] [CrossRef]
- Tolstoy, V.P.; Kuklo, L.I.; Gulina, L.B. Ni(II) doped FeOOH 2D nanocrystals, synthesized by Successive Ionic Layer Deposition, and their electrocatalytic properties during oxygen evolution reaction upon water splitting in the alkaline medium. J. Alloy. Compd. 2019, 786, 198–204. [Google Scholar] [CrossRef]
- Sah, A.; Wei, Y.; Law, C.K. Kinematics of vortex ring generated by a drop upon impacting a liquid pool. J. Fluid Mech. 2019, 875, 842–853. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolstoy, V.P.; Meleshko, A.A.; Golubeva, A.A.; Bathischeva, E.V. The Effect of the Open Vase-like Microcapsules Formation with NiFe Double-Hydroxide Walls during Hydrolysis of the Mixture NiSO4 and FeSO4 Salt Solution Microdroplets Deposited on the Alkaline Solution Surface. Colloids Interfaces 2022, 6, 32. https://doi.org/10.3390/colloids6020032
Tolstoy VP, Meleshko AA, Golubeva AA, Bathischeva EV. The Effect of the Open Vase-like Microcapsules Formation with NiFe Double-Hydroxide Walls during Hydrolysis of the Mixture NiSO4 and FeSO4 Salt Solution Microdroplets Deposited on the Alkaline Solution Surface. Colloids and Interfaces. 2022; 6(2):32. https://doi.org/10.3390/colloids6020032
Chicago/Turabian StyleTolstoy, Valeri P., Alexandra A. Meleshko, Anastasia A. Golubeva, and Elizaveta V. Bathischeva. 2022. "The Effect of the Open Vase-like Microcapsules Formation with NiFe Double-Hydroxide Walls during Hydrolysis of the Mixture NiSO4 and FeSO4 Salt Solution Microdroplets Deposited on the Alkaline Solution Surface" Colloids and Interfaces 6, no. 2: 32. https://doi.org/10.3390/colloids6020032
APA StyleTolstoy, V. P., Meleshko, A. A., Golubeva, A. A., & Bathischeva, E. V. (2022). The Effect of the Open Vase-like Microcapsules Formation with NiFe Double-Hydroxide Walls during Hydrolysis of the Mixture NiSO4 and FeSO4 Salt Solution Microdroplets Deposited on the Alkaline Solution Surface. Colloids and Interfaces, 6(2), 32. https://doi.org/10.3390/colloids6020032