Marangoni Patterns in a Non-Isothermal Liquid with Deformable Interface Covered by Insoluble Surfactant
Abstract
:1. Introduction
2. Description of Longwave Marangoni Convection with Insoluble Surfactant
2.1. Formulation of the Problem
2.2. The Case of Perturbations with
2.3. The Case of Perturbations with
3. Pattern Selection in the Longwave Marangoni Convection
3.1. Square Lattice
3.2. Hexagonal Lattice
3.3. Rhombic Lattice
4. Modulational Instability of Stationary Rolls—The Case of 1D Disturbances
- Region 1. Here, all the rolls are unstable with respect to modulation.
- Region 2. Here, the rolls are stable within the interval and monotonically unstable for (monotonic Eckhaus instability).
- Region 3. Here, the rolls are stable within interval , oscillatory unstable for slightly above , and oscillatory or monotonically unstable for .
5. Modulational Instability of Stationary Rolls—The Case of 2D Disturbances
5.1. Transversal Modulation of Rolls,
5.2. Transversal Modulation of Rolls,
6. Distortions of Hexagons
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Basic Wavevectors for the Patterns
Appendix B. Coefficients of (33)–(35)
References
- Bénard, H. Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci Pures Appl. 1900, 11, 1261–1271. [Google Scholar]
- Block, M.J. Surface tension as a cause of Bénard cells and surface deformation in a liquid film. Nature 1956, 176, 650–651. [Google Scholar] [CrossRef]
- Pearson, J.R.A. On convection cells induced by surface tension. J. Fluid Mech. 1958, 4, 489–500. [Google Scholar] [CrossRef]
- Turing, A.M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 1952, 237, 37–72. [Google Scholar]
- De Kepper, P.; Castets, V.; Dulos, E.; Boissonade, J. Turing-type chemical patterns in the chlorite-iodide malonic acid reaction. Physica D 1991, 49, 161–169. [Google Scholar] [CrossRef]
- Normand, C.; Pomeau, Y.; Velarde, M.G. Convective instability—Physicist’s approach. Rev. Mod. Phys. 1977, 49, 581–624. [Google Scholar] [CrossRef]
- Colinet, P.; Nepomnyashchy, A. (Eds.) Pattern Formation at Interfaces; Springer: Vienna, Austria, 2010; p. 304. [Google Scholar]
- Shklyaev, S.V.; Nepomnyashchy, A.A. Longwave Instabilities and Patterns in Fluids; Birkhäuser: New York, NY, USA, 2017; p. 453. [Google Scholar]
- Scriven, L.E.; Sternling, C.V. On cellular convection driven by surface-tension gradients: Effects of mean surface tension and surface viscosity. J. Fluid Mech. 1964, 19, 321–340. [Google Scholar] [CrossRef]
- Sivashinsky, G.I. Large cells in nonlinear Marangoni convection. Physica D 1982, 4, 227–235. [Google Scholar] [CrossRef]
- Knobloch, E. Pattern selection in long-wavelength convection. Physica D 1990, 41, 450–479. [Google Scholar] [CrossRef]
- Davis, S.H. Rapture of thin liquid films. In Waves on Fluid Interfaces; Mayer, R.E., Ed.; Academic Press: New York, NY, USA, 1983; p. 291. [Google Scholar]
- Shklyaev, S.; Alabuzhev, A.A.; Khenner, M. Long-wave Marangoni convection in a thin film heated from below. Phys. Rev. E 2012, 85, 016328. [Google Scholar] [CrossRef]
- Hoyle, R.B. Pattern Formation: An Introduction to Methods; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Lohse, D. Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 2022, 54, 349–382. [Google Scholar] [CrossRef]
- Singh, M.; Haverinnen, H.M.; Dhagat, P.; Jabbour, G.E. Inkjet printing-process and its applications. Adv. Mater. 2010, 22, 673–685. [Google Scholar] [CrossRef]
- Kim, J. Spray cooling heat transfer: The state of the art. Int. J. Heat Fluid Flow 2007, 28, 753–767. [Google Scholar] [CrossRef]
- Smalyukh, I.; Zribi, O.; Butler, J.; Lavrentovich, O.; Wong, G. Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA. Phys. Rev. Lett. 2006, 96, 177801. [Google Scholar] [CrossRef]
- Ziemelis, K. The future of microelectronics. Nature 2000, 406, 1021. [Google Scholar]
- Espinosa, F.F.; Shapiro, A.H.; Fredberg, J.J.; Kamm, R.D. Spreading of exogenous surfactant in an airway. J. Appl. Physiol. 1993, 75, 2028–2039. [Google Scholar] [CrossRef] [PubMed]
- Deegan, R.D. Pattern formation in drying drops. Phys. Rev. E 2000, 61, 475–485. [Google Scholar] [CrossRef]
- van Gaalen, R.T.; Wijshoff, H.M.A.; Kuerten, J.G.M.; Diddens, C. Competition between thermal and surfactant-induced Marangoni flow in evaporating sessile droplets. J. Coll. Int. Sci. 2022, 622, 892–903. [Google Scholar] [CrossRef]
- Karapetsas, G.; Sahu Kirti, C.; Matar, O.K. Evaporation of sessile droplets laden with particles and insoluble surfactants. Langmuir 2016, 32, 6871–6881. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Fang, X.; Attinger, D. Pattern formation during the evaporation of a colloidal nanoliter drop: A numerical and experimental study. New J. Phys. 2009, 11, 075020. [Google Scholar] [CrossRef]
- Maillard, M.; Motte, L.; Ngo, A.T.; Pileni, M.P. Rings and hexagons of nanocrystals: A Marangoni effect. J. Phys. Chem. B 2000, 104, 11871–11877. [Google Scholar] [CrossRef]
- Sauleda, M.L.; Chu, H.C.W.; Tilton, R.D.; Garoff, S. Surfactant driven Marangoni spreading in the presence of predeposited insoluble surfactant monolayers. Langmuir 2021, 37, 3309–3320. [Google Scholar] [CrossRef] [PubMed]
- Wodlei, F.; Sebilleau, J.; Magnaudet, J.; Pimienta, V. Marangoni-driven flower-like patterning of a evaporating drop spreading on a liquid substrate. Nat. Commun. 2018, 9, 820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, X.; Duan, F.; Hou, Y.; Zhong, X. Role of surfactant in controlling the deposition pattern of a particle-laden droplet: Fundamentals and strategies. Adv. Coll. Int. Sci. 2020, 275, 102049. [Google Scholar] [CrossRef]
- Newell, A.C.; Whitehead, J.A. Finite bandwidth, finite amplitude convection. J. Fluid Mech. 1969, 38, 279–303. [Google Scholar] [CrossRef]
- Segel, L.A. Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 1969, 38, 203–224. [Google Scholar] [CrossRef]
- Mikishev, A.B.; Nepomnyashchy, A.A. Patterns and their large-scale distortions in Marangoni convection with insoluble surfactant. Fluids 2021, 6, 282. [Google Scholar] [CrossRef]
- Gershuni, G.Z.; Zhukhovitsky, E.M. Convective Stability of Incompressible Fluid; Keter: Jerusalem, Israel, 1976. [Google Scholar]
- Rosen, M.J.; Zhen, H.Z. Enchancement of wetting properties of water-insoluble surfactant via solubilization. J. American Oil Chem. Soc. 1993, 70, 65–68. [Google Scholar] [CrossRef]
- Miller, R.; Aksenenko, E.V.; Fainerman, V.B. Dynamic interfacial tension of surfactant solutions. Adv. Colloid Interface Sci. 2017, 247, 115–129. [Google Scholar] [CrossRef]
- Levich, V.G. Physicochemical Hydrodynamics; Prentice Hall: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Wong, H.; Rumschitski, C.; Maldarelli, C. On the surfactant mass balance at a deforming fluid interface. Phys. Fluids 1996, 8, 3203–3204. [Google Scholar] [CrossRef]
- Mikishev, A.B.; Nepomnyashchy, A.A. Instabilities in evaporating liquid layer with insoluble surfactant. Phys. Fluids 2013, 25, 054109. [Google Scholar] [CrossRef]
- Stone, H. A simple derivation of the time-dependent convective diffusion equation for surfactant transport along a deformed interface. Phys. Fluids A 1990, 2, 111–112. [Google Scholar] [CrossRef]
- Mikishev, A.B.; Nepomnyashchy, A.A. Long-wavelength Marangoni convection in a liquid layer with insoluble surfactant: Linear theory. Microgravity Sci. Technol. 2010, 22, 415–423. [Google Scholar] [CrossRef]
- Mikishev, A.B.; Nepomnyashchy, A.A. Amplitude equations for large-scale Marangoni convection in a liquid layer with insoluble surfactant on deformable free surface. Microgravity Sci. Technol. 2011, 23, 59–63. [Google Scholar] [CrossRef]
- Mikishev, A.B.; Friedman, B.A.; Nepomnyashchy, A.A. Generation of transverse waves in a liquid layer with insoluble surfactant subjected to temperature gradient. Fluid Dyn. Res. 2016, 48, 061403. [Google Scholar] [CrossRef]
- Nepomnyashchy, A.A.; Simanovskii, I.B. Thermocapillary convection in two-layer systems in the presence of a surface active agent at the interface. Fluid Dyn. 1986, 21, 169–179. [Google Scholar] [CrossRef]
- Nepomnyashchy, A.A.; Simanovskii, I.B. Occurance of thermocapillary convection in a two-layer system in presence of a soluble surfactant. Fluid Dyn. 1988, 23, 302–306. [Google Scholar] [CrossRef]
- Nepomnyashchy, A.A.; Simanovskii, I.B. Onset of oscillatory convection in a two-layer system due to the presence of surfactant at the interface. Sov. Phys. Dokl. 1989, 34, 420–422. [Google Scholar]
- Mikishev, A.B.; Nepomnyashchy, A.A. Weakly nonlinear analysis of long-wave Marangoni convection in a liquid layer covered by insoluble surfactant. Phys. Rev. Fluids 2019, 4, 094002. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology; Springer: Berlin, Germany, 1989; 767p. [Google Scholar]
- Wollkind, D.J.; Sriranganathan, R.; Oulton, D.B. Interfacial patterns during plane front alloy solidification. Physica D 1984, 12, 215–240. [Google Scholar] [CrossRef]
- Edwards, W.S.; Fauve, S. Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 1994, 278, 123–148. [Google Scholar] [CrossRef]
- Arecchi, F.T.; Boccaletti, S.; Ducci, S.; Pampoloni, E.; Ramazza, P.L.; Residori, S. The liquid crystal light valve with optical feed back: A case study in pattern formation. J. Nonlinear Opt. Phys. Mat. 2000, 9, 183–204. [Google Scholar] [CrossRef]
- Abou, B.; Westfreid, J.-E.; Roux, S. The normal field instability in ferrofluids: Hexagon-square transition mechanism and wavenumber selection. J. Fluid Mech. 2000, 416, 217–237. [Google Scholar] [CrossRef]
- Ouyang, Q.; Gunaratne, G.H.; Swinney, H.L. Rhombic patterns: Broken hexagonal symmetry. Chaos 1993, 3, 707–711. [Google Scholar] [CrossRef]
- Pansuwan, A.; Rattanakul, C.; Lenbury, Y.; Wollkind, D.J.; Harrison, L.; Rajapakse, I.; Cooper, K. Nonlinear stability analyses of pattern formation on solid surfaces during ion-sputtered erosion. Math. Comput. Modell. 2005, 41, 939–964. [Google Scholar] [CrossRef]
- Skeldon, A.C.; Silber, M. New stability results for patterns in a model of long-wavelength convection patterns. Physica D 1998, 122, 117–133. [Google Scholar] [CrossRef]
- Franz, J.; Grünebaum, J.; Schäfer, M.; Mulac, D.; Kehfeldt, F.; Langer, K.; Kramer, A.; Riethmüller, C. Rhombic organization of microvilli domains found in a cell model of the human intenstine. PLoS ONE 2018, 13, e0189970. [Google Scholar]
- Ouyang, Q.; Swinney, H.L. Transition from a uniform state to hexagonal and striped Turing patterns. Nature 1991, 352, 610–612. [Google Scholar] [CrossRef]
- Gunaratne, G.H.; Ouyang, Q.; Swinney, H.L. Pattern formation in the presence of symmetries. Phys. Rev. E 1994, 50, 2802–2820. [Google Scholar] [CrossRef]
- Nuz, A.; Nepomnyashchy, A.A.; Golovin, A.A.; Hari, A.A.; Pismen, L.M. Stability of rolls and hexagonal patterns in non-potential systems. Physica D 2000, 135, 233–262. [Google Scholar] [CrossRef]
- Brand, H.R. Envelope equations near the onset of a hexagonal pattern. Progr. Theor. Phys. Suppl. 1989, 99, 442–449. [Google Scholar] [CrossRef]
- Kuznetsov, E.A.; Nepomnyashchy, A.A.; Pismen, L.M. New amplitude equation for Boussinesq convection and non-equilateral hexagonal patterns. Phys. Let. A 1995, 2051, 261–265. [Google Scholar] [CrossRef]
- Golovin, A.A.; Nepomnyashchy, A.A.; Pismen, L.M. Nonlinear evolution and secondary instabilities of Marangoni convection in a liquid-gas system with deformable interface. J. Fluid Mech. 1997, 341, 317–341. [Google Scholar] [CrossRef]
- Bragard, J.; Velarde, M.G. Bénard-Marangoni convection: Planforms and related related theoretical predictions. J. Fluid Mech. 1998, 368, 165–194. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikishev, A.B.; Nepomnyashchy, A.A. Marangoni Patterns in a Non-Isothermal Liquid with Deformable Interface Covered by Insoluble Surfactant. Colloids Interfaces 2022, 6, 53. https://doi.org/10.3390/colloids6040053
Mikishev AB, Nepomnyashchy AA. Marangoni Patterns in a Non-Isothermal Liquid with Deformable Interface Covered by Insoluble Surfactant. Colloids and Interfaces. 2022; 6(4):53. https://doi.org/10.3390/colloids6040053
Chicago/Turabian StyleMikishev, Alexander B., and Alexander A. Nepomnyashchy. 2022. "Marangoni Patterns in a Non-Isothermal Liquid with Deformable Interface Covered by Insoluble Surfactant" Colloids and Interfaces 6, no. 4: 53. https://doi.org/10.3390/colloids6040053
APA StyleMikishev, A. B., & Nepomnyashchy, A. A. (2022). Marangoni Patterns in a Non-Isothermal Liquid with Deformable Interface Covered by Insoluble Surfactant. Colloids and Interfaces, 6(4), 53. https://doi.org/10.3390/colloids6040053