Transient Analysis of the Electro-Osmotic Flow of Multilayer Immiscible Maxwell Fluids in an Annular Microchannel
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Physical Model Description
2.2. Governing and Constitutive Equations
- Transient and fully-developed flow.
- The physical and electrical properties of fluids are considered constant [67].
- Planar interfaces between the fluids [69,73,81] which can be assumed by considering the following. (i) very low Reynolds numbers, i.e., , which results in parallel flows [68,81]. (ii) Uniform zeta potentials along the study section of the annular microchannel. And (iii) the gravity does not affect the flow in the channel [69,81]. The characteristic flow velocity is defined by the Helmholtz-Smoluchowski velocity as , where the subscript “” indicates reference quantities.
- The electrochemical interface structure between the immiscible fluids follows the Verwey-Niessen theory [72,86]. Therefore, the electric double layers at the liquid-liquid interfaces are two diffuse charge layers separated by a central inner compact layer. The latter is characterized by a potential drop between the two diffuse layers due to the orientation of the solvent molecules. Also, the continuity of electrical displacements on both sides of the central compact layer in the absence of ions in the inner layer is considered [86,87].
- The annular microchannel is considered very long, and the study region neglects any end effect. Thus, the electric potential can be determined as the superposition of the potential into the electric double layer, , with the external potential, , yielding [6]:
- The free charge density in terms of the electrical potential, , can be described by the Boltzmann distribution as [6]:
- The electric double layers do not overlap.
- The pressure gradient applied in the z-axis of the microchannel remains constant and is produced by syringe pumps.
2.3. Dimensionless Mathematical Model
3. Solution Methodology
3.1. Electric Potential Distribution
3.2. Velocity Profiles
3.3. Steady-State Velocity
4. Results and Discussion
4.1. Validation
4.2. Electric Potential and Velocity Profiles
4.3. Velocity Tracking
5. Conclusions
- The Maxwell fluids exhibit an oscillatory behavior in the transient evolution due to the elastic and memory effects of this type of fluids.
- As the dimensionless relaxation time value increases, the number of oscillations, velocity magnitude, and the time to reach the steady-state regime will increase too.
- The dimensionless viscosity ratios of fluids dictate the degree of resistance they oppose to flow, which, combined with the dimensionless values of the relaxation times, strongly control the magnitude and oscillatory phenomenon of velocity field.
- While the dimensionless internal radius of the annular microchannel directly influences the number of oscillations presented by Maxwell fluids, the number of fluid layers does not affect the general behavior of the flow.
- Higher velocity magnitudes are obtained with symmetric zeta potentials at the microchannel walls. A similar effect is obtained on the velocity with higher dielectric permittivity values and the imposition of a favorable pressure gradient to the flow.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Constants for the Electric Potential Distribution
Appendix B. Constants for the Transient Velocity Distribution
Appendix C. Constants for Steady-State Velocity
References
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Kandlikar, S.G.; Grande, W.J. Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. Heat Transf. Eng. 2003, 24, 3–17. [Google Scholar] [CrossRef]
- Niculescu, A.-G.; Chircov, C.; Bîrcǎ, A.C.; Grumezescu, A.M. Fabrication and applications of microfluidic devices: A review. Int. J. Mol. Sci. 2021, 22, 2011. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Dai, L.; Yang, Y. Microfluidic technology and its application in the point-of-care testing field. Biosens. Bioelectron. X 2022, 10, 100109. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A. Electrohydrodynamic and Magnetohydrodynamic Micropumps. In Microfluidic Technologies for Miniaturized Analysis Systems; Hardt, S., Schönfeld, F., Eds.; Springer: Boston, MA, USA, 2007; pp. 59–116. [Google Scholar]
- Masliyah, J.H.; Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Biscombe, C.J.C. The discovery of electrokinetic phenomena: Setting the record straight. Angew. Chem. Int. Ed. 2017, 56, 8338–8340. [Google Scholar] [CrossRef] [Green Version]
- Reuss, F.F. Sur un nouvel effet de l’électricité galvanique. Mem. Soc. Imp. Nat. Moscou 1809, 2, 327–337. [Google Scholar]
- Porret, R., Jr. Curious galvanic experiments. Ann. Philos. 1816, 8, 74–76. [Google Scholar]
- Helmholtz, H. Studien über elctrische grenzchichten. Ann. Phys. Chem. 1879, 243, 337–382. [Google Scholar] [CrossRef] [Green Version]
- Smoluchowski, M. Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs. Bull. Int. l’Academie Sci. Crac. 1903, 8, 182–200. [Google Scholar]
- Wall, S. The history of electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 2010, 15, 119–124. [Google Scholar] [CrossRef]
- Alizadeh, A.; Hsu, W.-L.; Wanh, M.; Daiguji, H. Electroosmotic flow: From microfluidics to nanofluidics. Electrophoresis 2021, 42, 834–868. [Google Scholar] [CrossRef] [PubMed]
- Burgreen, D.; Nakache, F.R. Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 1964, 68, 1084–1091. [Google Scholar] [CrossRef]
- Rice, C.L.; Whitehead, R. Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 1965, 69, 4017–4024. [Google Scholar] [CrossRef]
- Levine, S.; Marriott, J.R.; Neale, G.; Epstein, N. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J. Colloid Interface Sci. 1975, 52, 136–149. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, C.-H.; Mikkelsen, J.C., Jr.; Santiago, J.G. Fabrication and characterization of electroosmotic micropumps. Sens. Actuator B-Chem. 2001, 79, 107–114. [Google Scholar] [CrossRef]
- Derakhshan, S.; Adibi, I.; Sarrafha, H. Numerical study of electroosmotic micropump using Lattice Boltzmann method. Comput. Fluids 2015, 114, 232–241. [Google Scholar] [CrossRef]
- Andreev, V.P.; Lisin, E.E. Investigation of the electroosmotic flow effect on the efficiency of capillary electrophoresis. Electrophoresis 1992, 13, 832–837. [Google Scholar] [CrossRef]
- Osuga, T.; Sakamoto, H.; Takagi, T. Hydrodynamics analysis of electroosmotic flow in capillary. J. Phys. Soc. Jpn. 1996, 65, 1854–1858. [Google Scholar] [CrossRef]
- Patankar, N.A.; Hu, H.H. Numerical simulation of electroosmotic flow. Anal. Chem. 1998, 70, 1870–1881. [Google Scholar] [CrossRef]
- Tsao, H.-K. Electroosmotic flow through an annulus. J. Colloid Interface Sci. 2000, 225, 247–250. [Google Scholar] [CrossRef]
- Chang, C.C.; Wang, C.Y. Starting electroosmotic flow in an annulus and in a rectangular channel. Electrophoresis 2008, 29, 2970–2979. [Google Scholar] [CrossRef]
- Yavary, H.; Sadeghi, A.; Saidi, M.H. Hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus. J. Heat Transf.-Trans. ASME 2012, 134, 101703. [Google Scholar] [CrossRef]
- Keh, H.J.; Tseng, H.C. Transient electrokinetic flow in fine capillaries. J. Colloid Interface Sci. 2001, 242, 450–459. [Google Scholar] [CrossRef]
- Yang, C.; Ng, C.B.; Chan, V. Transient analysis of electroosmotic flow in a slit microchannel. J. Colloid Interface Sci. 2002, 248, 524–527. [Google Scholar] [CrossRef]
- Gheshlaghi, B.; Nazaripoor, H.; Kumar, A.; Sadrzadeh, M. Analytical solution for transient electroosmotic flow in a rotating microchannel. RSC Adv. 2016, 6, 17632. [Google Scholar] [CrossRef] [Green Version]
- Marcos; Yang, C.; Wong, T.N.; Ooi, K.T. Dynamic aspects of electroosmotic flow in rectangular microchannels. Int. J. Eng. Sci. 2004, 42, 1459–1481. [Google Scholar] [CrossRef]
- Miller, A.; Villegas, A.; Diez, F.J. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient. Electrophoresis 2015, 36, 692–702. [Google Scholar] [CrossRef]
- Sadeghi, A.; Azari, M.; Hardt, S. Electroosmotic flow in soft microchannels at high grafting densities. Phys. Rev. Fluids 2019, 4, 063701. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, C.; Huang, X. Dynamics aspects of electroosmotic flow in cylindrical microcapillary. Int. J. Eng. Sci. 2002, 40, 2203–2221. [Google Scholar] [CrossRef]
- Khan, A.I.; Dutta, P. Analytical solution of time-periodic electroosmotic flow through cylindrical microchannel with non-uniform surface potential. Micromachines 2019, 10, 498. [Google Scholar] [CrossRef] [Green Version]
- Ferrás, L.L.; Afonso, A.M.; Alves, M.A.; Nóbrega, J.M.; Pinho, F.T. Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids. J. Colloid Interface Sci. 2014, 420, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Sarma, R.; Deka, N.; Sarma, K.; Mondal, P.K. Electroosmotic flow of Phan-Thien–Tanner fluids at high zeta potentials: An exact analytical solutions. Phys. Fluids 2018, 30, 062001. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, S.; Wei, S. Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. J. Non-Newton. Fluid Mech. 2013, 201, 135–139. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, M.; Li, X. Transient electro-osmotic flow of generalized Maxwell fluids in a straight pipe of circular cross section. Cent. Eur. J. Phys. 2014, 12, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhao, M. Analytical solution of the transient electro-osmotic flow of a generalized fractional Maxwell fluid in a straight pipe with a circular cross-section. Eur. J. Mech. B Fluids 2015, 54, 82–86. [Google Scholar] [CrossRef]
- Li, X.-X.; Yin, Z.; Jian, Y.-J.; Chang, L.; Su, J.; Liu, Q.-S. Transient electro-osmotic flow of generalized Maxwell fluids through a microchannel. J. Non-Newton. Fluid Mech. 2012, 187–188, 43–47. [Google Scholar] [CrossRef]
- Zhao, C.; Zholkovskij, E.; Masliyah, J.H.; Yang, C. Analysis of electroosmotic flow of power-law fluids in a slit microchannels. J. Colloid Interface Sci. 2008, 326, 503–510. [Google Scholar] [CrossRef]
- Nayak, A.K.; Haque, A.; Weigand, B. Analysis of electroosmotic flow and Joule heating effect in a hydrophobic channel. Chem. Eng. Sci. 2018, 176, 165–179. [Google Scholar] [CrossRef]
- Bello, M.S.; de Besi, P.; Rezzonico, R.; Righetti, P.G.; Casiraghi, E. Electroosmosis of polymer solutions in fused silica capillaries. Electrophoresis 1994, 15, 623–626. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, J. Electro-osmotic flow of Eyring fluids in a circular microtube with Navier’s slip boundary condition. Phys. Lett. A 2017, 381, 2573–2577. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Bag, N. Enhanced electroosmotic flow of Herschel-Bulkley fluid in a channel patterned with periodically arranged slipping surfaces. Phys. Fluids 2019, 31, 072007. [Google Scholar] [CrossRef]
- Shin, S.-J.; Park, J.-Y.; Lee, J.-Y.; Park, H.; Park, Y.-D.; Lee, K.-B.; Whang, C.-M.; Lee, S.-H. “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 2007, 23, 9104–9108. [Google Scholar] [CrossRef]
- Chung, B.G.; Lee, K.-H.; Khademhosseini, A.; Lee, S.-H. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 2012, 12, 45–59. [Google Scholar] [CrossRef]
- Keaswejjareansuk, W.; Keawmaloon, S.; Sawangrat, N.; Puttipipatkhachorn, S.; Yata, T.; Maitarad, P.; Shi, L.; Khongkow, M.; Namdee, K. Degradable alginate hydrogel microfiber for cell-encapsulation based on alginate lyase loaded nanoparticles. Mater. Today Commun. 2021, 28, 102701. [Google Scholar] [CrossRef]
- Aota, A.; Mawatari, K.; Kitamori, T. Parallel multiphase microflows: Fundamental physics, stabilization methods and applications. Lab Chip 2009, 9, 2470–2476. [Google Scholar] [CrossRef]
- Vobecká, L.; Tichá, L.; Atanasova, A.; Slouka, Z.; Hasal, P.; Přibyl, M. Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment. Chem. Eng. J. 2020, 396, 125236. [Google Scholar] [CrossRef]
- Přibyl, M. Separation efficiency of parallel flow microfluidic extractors with transport enhanced by electric field. Sep. Purif. Technol. 2019, 221, 311–318. [Google Scholar] [CrossRef]
- Brask, A.; Goranović, G.; Jensen, M.J.; Bruus, H. A novel electro-osmotic pump design for nonconducting liquids: Theoretical analysis of flow rate–pressure characteristics and stability. J. Micromech. Microeng. 2005, 15, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Weng, X.; Li, D. A novel microfluidic flow focusing method. Biomicrofluidics 2014, 8, 054120. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yamane, D.G.; Li, S.; Biswas, S.; Reddy, R.K.; Goettert, J.S.; Nandakumar, K.; Kumar, C.S.S.R. Geometric optimization of liquid–liquid slug flow in a flow-focusing millifluidic device for synthesis of nanomaterials. Chem. Eng. J. 2013, 217, 447–459. [Google Scholar] [CrossRef]
- Meng, S.-X.; Xue, L.-H.; Xie, C.-Y.; Bai, R.-X.; Yang, X.; Qiu, Z.-P.; Guo, T.; Wang, Y.-L.; Meng, T. Enhanced enzymatic reaction by aqueous two-phase systems using parallel-laminar flow in a double Y-branched microfluidic device. Chem. Eng. J. 2018, 335, 392–400. [Google Scholar] [CrossRef]
- Abbasi, A.; Rahbar-Kelishami, A.; Ghasemi, M.J. Development of a microfluidic-chip system based on parallel flow for intensified Gd(III) extraction from nitrate media using cationic extractant. J. Rare Earths 2018, 36, 1198–1204. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, H.; Yan, Y.; Guan, S.; Wang, S.; Li, P.C.H.; Sun, Y. Integration of laminar flow extraction and capillary electrophoretic separation in one microfluidic chip for detection of plant alkaloids in blood samples. Anal. Chim. Acta 2017, 985, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Tetela, K.K.R.; Swarts, J.W.; Chen, B.; Janssen, A.E.M.; van Beek, T.A. A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab Chip 2009, 9, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, M.; Taira, S.; Yamamura, S.; Morita, Y.; Nagatani, N.; Takamura, Y.; Tamiya, E. Cell separation by an aqueous two-phase system in a microfluidic device. Analyst 2009, 134, 1994–1998. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Khalid, N.; Neves, M.A.; Kuroiwa, T.; Nakajima, M.; Uemura, K.; Ichikawa, S.; Kobayashi, I. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Adv. Drug Deliv. Rev. 2013, 65, 1626–1663. [Google Scholar]
- Shui, L.; Pennathur, S.; Ejikel, J.C.T.; van den Berg, A. Multiphase flow in lab on chip devices: A real tool for the future? Lab Chip 2008, 8, 1010–1014. [Google Scholar]
- Minakov, A.V.; Shebeleva, A.A.; Yagodnitsyna, A.A.; Kovalev, A.V.; Bilsky, A.V. Flow regimes of viscous immiscible liquids in T-type microchannels. Chem. Eng. Technol. 2019, 42, 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Liang, Q.; Hu, P.; Ren, K.; Wang, Y.; Luo, G. Selectively modified microfluidic chip for solvent extraction of Radix Salvia Miltiorrhiza using three-phase laminar flow to provide double liquid-liquid interface area. Microfluid Nanofluid 2010, 9, 365–373. [Google Scholar] [CrossRef]
- Lu, Y.; Xia, Y.; Luo, G. Phase separation of parallel laminar flow for aqueous two phase systems in branched microchannel. Microfluid Nanofluid 2011, 10, 1079–1086. [Google Scholar] [CrossRef]
- Huh, Y.S.; Jeon, S.J.; Lee, E.Z.; Park, H.S.; Hong, W.H. Microfluidic extraction using two phase laminar flow for chemical and biological applications. Korean J. Chem. Eng. 2011, 28, 633–642. [Google Scholar] [CrossRef]
- Abdollahi, P.; Karimi-Sabet, J.; Moosavian, M.A.; Amini, Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol. 2020, 231, 115875. [Google Scholar] [CrossRef]
- Qi, C.; Ng, C. Electroosmotic flow of a two-layer fluid in a slit channel with gradually varying wall shape and zeta potential. Int. J. Heat Mass Transf. 2018, 119, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Xiao, T.; Wu, S. Two-layer combined electroosmotic and pressure-driven flow of power-law fluids in a circular microcapillary. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 610, 125727. [Google Scholar] [CrossRef]
- Gao, Y.; Wong, T.N.; Yang, C.; Ooi, K.T. Two-fluid electroosmotic flow in microchannels. J. Colloid Interface Sci. 2005, 284, 306–314. [Google Scholar] [CrossRef]
- Haiwang, L.; Wong, T.N.; Nguyen, N.-T. Time-dependent model of mixed electroosmotic/pressure-driven three immiscible fluids in a rectangular microchannel. Int. J. Heat Mass Transf. 2010, 53, 772–785. [Google Scholar] [CrossRef] [Green Version]
- Ngoma, G.D.; Erchiqui, F. Pressure gradient and electroosmotic effects on two immiscible fluids in a microchannel between two parallel plates. J. Micromech. Microeng. 2006, 16, 83–91. [Google Scholar] [CrossRef]
- Afonso, A.M.; Alves, M.A.; Pinho, F.T. Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids. J. Colloid Interface Sci. 2013, 395, 277–286. [Google Scholar] [CrossRef]
- Gaikwad, H.; Basu, D.N.; Mondal, P.K. Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip: The role applied pressure gradient. Electrophoresis 2016, 37, 1998–2009. [Google Scholar] [CrossRef]
- Samec, Z. Electrical double layer at the interface between two immiscible electrolyte solutions. Chem. Rev. 1988, 88, 617–632. [Google Scholar] [CrossRef]
- Choi, W.S.; Sharma, A.; Qian, S.; Lim, G.; Joo, S.W. On steady two-fluid electroosmotic flow with full interfacial electrostatics. J. Colloid Interface Sci. 2011, 357, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Jian, Y.-J.; Chang, L.; Liu, Q.-S. Transient electro-osmotic and pressure driven flows of two-layer fluids through a slit microchannel. Acta Mech. Sin. 2013, 29, 534–542. [Google Scholar] [CrossRef]
- Shit, G.C.; Mondal, A.; Sinha, A.; Kundu, P.K. Two-layer electro-osmotic flow and heat transfer in a hydrophobic micro-channel with fluid–solid interfacial slip and zeta potential difference. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 535–549. [Google Scholar] [CrossRef]
- Jian, Y.; Su, J.; Chang, L.; Liu, Q.; He, G. Transient electroosmotic flow of general Maxwell fluids through a slit microchannel. Z. Angew. Math. Phys. 2014, 65, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Kenis, P.J.A.; Ismagilov, R.F.; Takayama, S.; Whitesides, G.M.; Li, S.; White, H.S. Fabrication inside microchannels using fluid flow. Acc. Chem. Res. 2000, 33, 841–847. [Google Scholar] [CrossRef]
- Jeong, W.; Kim, J.; Kim, S.; Lee, S.; Mensing, G.; Beebe, D.J. Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab Chip 2004, 4, 576–580. [Google Scholar] [CrossRef]
- Morimoto, Y.; Kiyosawa, M.; Takeuchi, S. Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices. Sens. Actuator B Chem. 2018, 274, 491–500. [Google Scholar] [CrossRef]
- Torres, D.; Escandón, J. Transient analysis of combined electroosmotic and pressure-driven flow with multi-layer immiscible fluids in a narrow capillary. Rev. Mex. Fis. 2020, 66, 137–152. [Google Scholar] [CrossRef]
- Li, J.; Sheeran, P.S.; Kleinstreuer, C. Analysis of multi-layer immiscible fluid flow in a microchannel. J. Fluids Eng.-Trans. ASME 2011, 133, 111202. [Google Scholar] [CrossRef]
- Escandón, J.P.; Gómez, J.R.; Hernández, C.G. Multilayer analysis of Phan-Thien-Tanner immiscible fluids under electro-osmotic and pressure-driven effects in a slit microchannel. J. Fluids Eng.-Trans. ASME 2020, 142, 061205. [Google Scholar] [CrossRef]
- Escandón, J.; Torres, D.; Hernández, C.; Vargas, R. Start-up electroosmotic flow of multi-layer immiscible Maxwell fluids in a slit microchannel. Micromachines 2020, 11, 757. [Google Scholar] [CrossRef]
- Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids. Volume 1 Fluid Mechanics; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Morrison, F.A. Understanding Rheology; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Das, S.; Hardt, S. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes. Phys. Rev. E 2011, 84, 022502. [Google Scholar] [CrossRef] [Green Version]
- Gavach, C.; Seta, P.; D’Epenoux, B. The double layer and ion adsorption at the interface between two non miscible solutions. Part I. interfacial tension measurements for the water-nitrobenzene tetraalkylammonium bromide systems. J. Electroanal. Chem. 1977, 83, 225–235. [Google Scholar] [CrossRef]
- Probstein, R.F. Physicochemical Hydrodynamics: An Introduction; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar]
- Horváth, G.; Horváth, I.; Almousa, S.A.-D.; Telek, M. Numerical inverse Laplace transformation using concentrated matrix exponential distributions. Perform. Eval. 2020, 137, 102067. [Google Scholar] [CrossRef]
- Hoffman, J.D. Numerical Methods for Engineers and Scientists; Marcel Dekker, Inc.: New York, NY, USA, 2001. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escandón, J.P.; Torres, D.A.; Hernández, C.G.; Gómez, J.R.; Vargas, R.O. Transient Analysis of the Electro-Osmotic Flow of Multilayer Immiscible Maxwell Fluids in an Annular Microchannel. Colloids Interfaces 2022, 6, 60. https://doi.org/10.3390/colloids6040060
Escandón JP, Torres DA, Hernández CG, Gómez JR, Vargas RO. Transient Analysis of the Electro-Osmotic Flow of Multilayer Immiscible Maxwell Fluids in an Annular Microchannel. Colloids and Interfaces. 2022; 6(4):60. https://doi.org/10.3390/colloids6040060
Chicago/Turabian StyleEscandón, Juan P., David A. Torres, Clara G. Hernández, Juan R. Gómez, and René O. Vargas. 2022. "Transient Analysis of the Electro-Osmotic Flow of Multilayer Immiscible Maxwell Fluids in an Annular Microchannel" Colloids and Interfaces 6, no. 4: 60. https://doi.org/10.3390/colloids6040060
APA StyleEscandón, J. P., Torres, D. A., Hernández, C. G., Gómez, J. R., & Vargas, R. O. (2022). Transient Analysis of the Electro-Osmotic Flow of Multilayer Immiscible Maxwell Fluids in an Annular Microchannel. Colloids and Interfaces, 6(4), 60. https://doi.org/10.3390/colloids6040060