Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour
Abstract
:1. Introduction
2. Overview of Studies Reporting on the Effect of Phenolics against the Oxidation of o/w Emulsions
3. Interfacial Factors That Affect the Antioxidant Activity of Phenolic Compounds
3.1. Effect of pH of the Aqueous Phase on the Interfacial Activity of Phenolic Compounds
3.2. Effect of the Emulsifier and of the Interfacial Concentration of Phenolics on Their Antioxidant Activity
3.3. Effect of Polarity on the Antioxidant Activity of Phenolic Compounds
3.4. Synergistic Interfacial Activity of Phenolic Compounds against the Lipid Oxidation of o/w Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schroder, A.; Sprakel, J.; Boerkamp, W.; Schroen, K.; Berton-Carabin, C.C. Can we prevent lipid oxidation in emulsions by using fat-based pickering particles? Food Res. Int. 2019, 120, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Dimakou, C.; Oreopoulou, V. Antioxidant activity of carotenoids against the oxidative destabilization of sunflower oil-in-water emulsions. LWT Food Sci. Technol. 2012, 46, 393–400. [Google Scholar] [CrossRef]
- Claire, C.; Berton-Carabin, C.-C.; Ropers, M.-H.; Genot, C. Lipid oxidation in Oil-in-Water Emulsions: Involvement of the Interfacial Layer. Compreh. Rev. Food Sci. Food Saf. 2019, 13, 945–977. [Google Scholar] [CrossRef]
- Kiokias, S.; Gordon, M.; Oreopoulou, V. Compositional and processing factors that monitor oxidative deterioration of food relevant protein stabilized emulsions. Crit. Rev. Food Sci. Nutr. 2017, 57, 549–558. [Google Scholar] [CrossRef]
- Poyato, C.; Navarro-Blasco, I.-E.; Calvo, M.-I.; Cavero, R.-Y.; Astiasarán, I.; Ansorena, D. Oxidative stability of O/W and W/O/W emulsions: Effect of lipid composition and antioxidant polarity. Food Res. Int. 2013, 51, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Zhong, Y. Revisiting the polar paradox theory: A critical overview. J. Agric. Food Chem. 2011, 59, 3499–3504. [Google Scholar] [CrossRef]
- Costa, M.; Barreiro, S.-L.; Magalhães, J.; Monteiro, L.-S.; Bravo-Díaz, C.; Paiva-Martins, F. Effects of the Reactive Moiety of Phenolipids on Their Antioxidant Efficiency in Model Emulsified Systems. Foods 2021, 10, 1028. [Google Scholar] [CrossRef]
- Kiokias, S.; Varzakas, T. Innovative applications of food related emulsions. Crit. Rev. Food Sci. Nutr. 2017, 57, 3165–3172. [Google Scholar] [CrossRef]
- Axmann, M.; Strobl, W.-M.; Plochberger, B.; Stangl, H. Cholesterol transfer at the plasma membrane. Atherosclerosis 2019, 290, 111–117. [Google Scholar] [CrossRef]
- Kiokias, S. Antioxidant effects of vitamins C, E and provitamin A compounds as monitored by use of biochemical oxidative indicators linked to atherosclerosis and carcinogenesis. Int. J. Nutr. Res. 2019, 1, 1–13. [Google Scholar]
- Farooq, S.; Hui, A.; Zhang, H.; Weiss, J. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil–water interface of food emulsions. Compreh. Rev. Food Sci. Food Saf. 2021, 20, 4250–4277. [Google Scholar] [CrossRef] [PubMed]
- Phonsatta, N.; Deetae, P.; Luangpituksa, P.; Grajeda-Iglesias, C.; Figueroa-Espinoza, M.C.; Le Comte, J.; Villeneuve, P.; Decker, E.A.; Visessanguan, W.; Panya, A. Comparison of antioxidant evaluation assays for investigating antioxidative activity of gallic acid and its alkyl esters in different food matrices. J. Agric. Food Chem. 2017, 65, 7509–7518. [Google Scholar] [CrossRef] [PubMed]
- Katsouli, M.; Polychniatou, V.; Tzia, C. Optimization of water in olive oil nano-emulsions composition with bioactive compounds by response surface methodology. LWT Food Sci. Technol. 2018, 89, 740–748. [Google Scholar] [CrossRef]
- Mitrus, O.; Zuraw, M.; Losada-Barreiro, S.; Bravo-Díaz, C.; Paiva-Martins, F. Targeting Antioxidants to Interfaces: Control of the oxidative stability of lipid-based emulsions. J. Agric. Food Chem. 2019, 67, 3266–3274. [Google Scholar] [CrossRef]
- Barouh, N.; Bourlieu-Lacanal, C.; Figueroa-Espinoza, M.C.; Durand, E.; Villeneuve, P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr. Rev. Food. Sci. Food Saf. 2022, 21, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, M.; Giménez, B.; López-Caballero, M.-E.; Gómez-Guillén, M.-C.; Montero, P. Release of cinnamon essential oil from polysaccharide bilayer films and its use for microbial growth inhibition in chilled shrimps. LWT Food Sci. Technol. 2014, 59, 989–995. [Google Scholar] [CrossRef]
- Liudvinaviciute, D.; Rutkaite, R.; Bendoraitiene, J.; Klimaviciute, R. Thermogravimetric analysis of caffeic and rosmarinic acid containing chitosan complexes. Carb. Polym. 2019, 222, 115003. [Google Scholar] [CrossRef]
- Garavand, F.; Jalai-Jivan, M.; Assadpour, E.; Jafari, S.M. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chem. 2021, 3641, 130376. [Google Scholar] [CrossRef]
- Choulitoudi, E.; Xristou, M.; Tsimogiannis, D.; Oreopoulou, V. The effect of temperature on the phenolic content and oxidative stability of o/w emulsions enriched with natural extracts from Satureja thymbra. Food Chem. 2021, 349, 129206. [Google Scholar] [CrossRef]
- Lisete-Torres, P.; Losada-Barreiro, S.; Albuquerque, H.; Sanchez-Paz, V.; Paiva-Martins, F.; Bravo-Diaz, C. Distribution of hydroxytyrosol and hydroxytyrosol acetate in olive oil emulsions and their antioxidant efficiency. J. Agric. Food Chem. 2012, 60, 7318–7325. [Google Scholar] [CrossRef]
- Liu, Y.; Carver, J.-A.; Calabrese, A.-N.; Pukala, T.-L. Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochim. Biophys. Acta (BBA) Prot. Proteo. 2014, 1844, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Oreopoulou, V. A review on the health protective effects of phenolic acids against a range of severe pathologic conditions (incl Coronovrus based infections). Molecules 2021, 26, 5405. [Google Scholar] [CrossRef] [PubMed]
- Oreopoulou, A.; Papavassilopoulou, E.; Bardouki, H.; Vamvakias, M.; Bimpilas, A.; Oreopoulou, V. Antioxidant recovery from hydrodistillation residues of selected Lamiaceae species by alkaline extraction. J. Appl. Res. Medic. Aromat. Plants 2018, 8, 83–89. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Oreopoulou, V. Classification of phenolic compounds in plants. In Polyphenols in Plants Isolation Purification and Extract Preparation, 2nd ed.; Watson, R.R., Ed.; Elsevier Inc.: London, UK, 2019; pp. 263–284. [Google Scholar]
- Durand, E.; Zhao, Y.; Ruesgas-Ramón, M.; Figueroa-Espinoza, M.-C.; Lamy, S.; Coupland, J.N.; Elias, R.-J.; Villeneuve, P. Evaluation of antioxidant activity and interaction with radical species using the vesicle conjugated autoxidizable triene (VesiCAT) assay. Europ. J. Lipid Sci. Technol. 2019, 121, 1800419. [Google Scholar] [CrossRef]
- Laguerre, M.; Bily, A.; Roller, M.; Birtić, S. Mass transport phenomena in lipidoxidation and antioxidation. Ann. Rev. Food Sci. Technol. 2017, 8, 391–411. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic acids of plant origin—A review on their antioxidant activity in vitro (o/w emulsion systems) along with their in vivo health biochemical properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef] [Green Version]
- Traber, G.-M.; Jeffrey, A. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Im, G.-J.; An, Y.-S.; Lee, S.-H.; Jung, H.-H.; Park, S.-Y. The effects of the antioxidant α-tocopherol succinate on cisplatin-induced ototoxicity in HEI-OC1 auditory cells. Int. J. Pediatr. Otorhin. 2016, 86, 9–14. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.; Geng, F.; Cheng, C.; Yang, J.; Deng, Q. Effects of tocopherols on the stability of flaxseed oil-in-water emulsions stabilized by different emulsifiers: Interfacial partitioning and interaction. Food Chem. 2022, 374, 131691. [Google Scholar] [CrossRef]
- Rajasekaran, B.; Singh, A.; Nagarajan, M.; Benjakul, S. Effect of chitooligosaccharide and α-tocopherol on physical properties and oxidative stability of shrimp oil-in water emulsion stabilized by bovine serum albumin-chitosan complex. Food Contr. 2022, 137, 108899. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Oreopoulou, V. Defining the role of flavonoid structure on cottonseed oil stabilization: Study of A- and C-ring substitution. J. Am. Oil Chem. Soc. 2007, 84, 129–136. [Google Scholar] [CrossRef]
- Oh, W.Y.; Ambigaipalan, P.; Shahidi, F. Quercetin and its ester derivatives inhibit oxidation of food, LDL and DNA. Food Chem. 2021, 364, 130394. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, X.Y.; Lee, J.H. Effects of flavonoids on physical and oxidative stability of soybean oil O/W emulsions. Food Sci. Biotechnol. 2015, 24, 851–858. [Google Scholar] [CrossRef]
- Valerga, J.; Reta, M.; Lanari, M.C. Polyphenol input to the antioxidant activity of yerba mate (Ilex paraguariensis) extracts. LWT Food Sci. Technol. 2012, 45, 28–35. [Google Scholar] [CrossRef]
- Skerget, M.; Kotnik, P.; Hadolin, M.; Hras, A.; Simonic, M.; Knez, Z. Phenols, pronahtocyaninds, flavones, and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Beker, B.-Y.; Bakir, T.; Filiz, I.; Apak, R. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper (II)/ascorbic acid. Chem. Phys. Lipids 2011, 164, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Roedig-Penman, A.; Gordon, M.H. Antioxidant properties of myricetin and quercetin in oil and emulsions. J. Am. Oil Chem. Soc. 1998, 75, 169–180. [Google Scholar] [CrossRef]
- Duffus, L.J.; Norton, J.E.; Smith, P.; Norton, I.T.; Spyropoulos, F. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions. J. Coll. Interfac. Sci. 2016, 473, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Tong, Q.; Yi, Z.; Ran, Y.; Chen, X.; Chen, G.; Li, X. Green tea polyphenol-stabilized gel-like high internal phase pickering emulsions. ACS Sustain. Chem. Eng. 2021, 9, 4076–4090. [Google Scholar] [CrossRef]
- Skowyra, M.; Gallego, M.G.; Segovia, F.; Almajano, M.P. Antioxidant properties of Artemisia annua extracts in model food emulsions. Antioxidants 2014, 3, 116–128. [Google Scholar] [CrossRef] [Green Version]
- García-Iñiguez de Ciriano, M.; Rehecho, S.; Calvo, M.I.; Cavero, R.Y.; Navarro, I.; Astiasarán, I.; Ansorena, D. Effect of lyophilized water extracts of Melissa officinalis on the stability of algae and linseed oil-in-water emulsion to be used as a functional ingredient in meat products. Meat Sci. 2010, 85, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.M.; Ntouma, G.; Skibsted, L.H. Synergism and antagonism between quercetin and other chain-breaking antioxidants in lipid systems of increasing structural organisation. Food Chem. 2007, 103, 1288–1296. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Effect of natural Food Antioxidants against LDL and DNA Oxidative damages. Antioxidants 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Sugahara, S.; Chiyo, A.; Fukuoka, K.; Ueda, Y.; Tokunaga, Y.; Nishida, Y.; Kinoshita, H.; Matsuda, Y.; Igoshi, K.; Ono, M.; et al. Unique antioxidant effects of herbal leaf tea and stem tea from Moringa oleifera L. especially on superoxide anion radical generation systems. Biosci. Biotechnol. Biochem. 2018, 82, 1973–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpinc, P.; Polak, T.; Šegatin, N.; Hanzlowsky, A. Antioxidant properties of 4-vinyl derivatives of hydroxycinnamic acid. Food Chem. 2011, 128, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Gordon, M.-H.; Moure, A.; Dominguez, H. Effects of caffeic acid and bovine serum albumin in reducing the rate of development of rancidity in oil-in-water and water-in-oil emulsions. Food Chem. 2011, 129, 1652–1659. [Google Scholar] [CrossRef] [Green Version]
- Mojica, L.; Meyer, A.; Berhow, M.; González, E. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Res. Int. 2015, 69, 38–48. [Google Scholar] [CrossRef]
- Oehlke, K.; Heins, A.; Stöckmann, H.; Schwarz, K. Impact of emulsifier microenvironments on acid–base equilibrium and activity of antioxidants. Food Chem. 2010, 118, 48–55. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Shin, J.-A.; Jeong, S.-H.; Jia, C.-H.; Hong, S.-T.; Lee, K.-T. Comparison of antioxidant capacity of 4-vinylguaiacol with catechin and ferulic acid in oil-in-water emulsion. Food Sci. Biotechnol. 2019, 28, 35–41. [Google Scholar] [CrossRef]
- Pandurangan, A.-K.; Mohebali, N.; Norhaizan, M.-E.; Looi, C.-Y. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice. Drug Des. Dev. Ther. 2015, 9, 3923–3934. [Google Scholar] [CrossRef] [PubMed]
- Da Silveira, T.F.; Laguerre, M.; Bourlieu-Lacanal, C.; Lecomte, J.; Durand, E.; Figueroa-Espinoza, M.C.; Barea, B.; Barouh, N.; Castro, I.A.; Villeneuve, P. Impact of surfactant concentration and antioxidant mode of incorporation on the oxidative stability of oil-in-water nanoemulsions. LWT Food Sci. Technol. 2021, 141, 110982. [Google Scholar] [CrossRef]
- Evangeliou, V.; Panagopoulou, E.; Mandala, I. Encapsulation of EGCG and esterified EGCG derivatives in double emulsions containing Whey Protein Isolate, Bacterial Cellulose and salt. Food Chem. 2019, 281, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wu, C.; Chen, Y.; Xie, M. Antioxidant effects of different polar gallic acid and its alkyl esters in oil-in-water emulsions. J. Chin. Instit. Food Sci. Technol. 2019, 19, 13–22. [Google Scholar]
- Bou, R.; Boo, C.; Kwek, A.; Hidalgo, D.; Decke, E.A. Research ArticleEffect of different antioxidants on lycopene degradation inoil-in-water emulsions. Eur. J. Lipid Sci. Technol. 2011, 113, 724–729. [Google Scholar] [CrossRef]
- Alavi Rafiee, S.; Farhoosh, R.; Sharif, A. Antioxidant activity of gallic acid as affected by an extra carboxyl group than pyrogallol in various oxidative environments. Eur. J. Lipid Sci. Technol. 2018, 120, 1800319. [Google Scholar] [CrossRef]
- Trisha, S. Role of hesperdin, luteolin and coumaric acid in arthritis management: A Review. Inter. J. Phys. Nutr. Phys. Educ. 2018, 3, 1183–1186. [Google Scholar]
- Park, J.; Gim, S.-Y.; Jeon, J.-Y.; Kim, M.-J.; Choi, H.-K.; Lee, J. Chemical profiles and antioxidant properties of roasted rice hull extracts in bulk oil and oil-in-water emulsion. Food Chem. 2019, 272, 242–250. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Alamed, J.; Chaiyasit, W.; McClements, D.-J.; Decker, E.-A. Relationships between free radical scavenging and antioxidant activity in foods. J. Agric. Food Chem. 2009, 257, 2969–2976. [Google Scholar] [CrossRef]
- Panya, A.; Kittipongpittaya, K.; Laguerre, M.; Bayrasy, C.; Lecomte, J.; Villeneuve, P.; Decker, E.-A. Interactions between α-tocopherol and rosmarinic acid and its alkyl esters in emulsions: Synergistic, additive, or antagonistic effect? J. Agric. Food Chem. 2012, 60, 10320–10330. [Google Scholar] [CrossRef] [PubMed]
- Bakota, E.-L.; Winkler-Moser, J.-K.; Berhow, M.-A.; Eller, F.-J.; Vaughn, S.-F. Antioxidant activity and sensory evaluation of a rosmarinic acid-enriched extract of Salvia officinalis. J. Food Sci. 2015, 80, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Locquet, N.; Cuvelier, M.E. Partitioning of vanillic acid in oil-in-water emulsions: Impact of the Tween®40 emulsifier. Food Res. Int. 2016, 88, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Dai, T.; Zhou, W.; Fu, G.; Wan, Y.; McClements, D.J.; Li, J. Impact of pH, ferrous ions, and tannic acid on lipid oxidation in plant-based emulsions containing saponin-coated flaxseed oil droplets. Food Res. Int. 2020, 136, 109618. [Google Scholar] [CrossRef]
- Jayasinghe, C.; Gotoh, N.; Wada, S. Pro-oxidant/antioxidant behaviours of ascorbic acid, tocopherol, and plant extracts in n-3 highly unsaturated fatty acid rich oil-in-water emulsions. Food Chem. 2013, 141, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Narra, M.-R.; Rajendar, K.; Rudra, R.; Rao, J.-V.; Begum, G. The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere 2015, 132, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Dimakou, C.; Kiokias, S.; Tsaprouni, I.; Oreopoulou, V. Effect of processing and storage parameters on oxidative deterioration of oil-in-water emulsions. Food Biophys. 2007, 2, 38–45. [Google Scholar] [CrossRef]
- Kiokias, S.; Dimakou, C.; Tsaprouni, I.; Oreopoulou, V. Effect of compositional factors against the thermal oxidation of novel food emulsions. Food Biophys. 2006, 1, 115–123. [Google Scholar] [CrossRef]
- Raikos, V.; Neacsu, M.; Morrice, P.; Duthie, G. Physicochemical stability of egg protein-stabilized oil-in-water emulsions supplemented with vegetable powders. Int. J. Food Sci. Technol. 2014, 49, 2433–2440. [Google Scholar] [CrossRef]
- Cheng, C.; Yu, X.; McClements, D.-J.; Huang, Q.-D.; Tang, H.; Yu, K.; Xiang, X.; Chen, P.; Wang, X.-T.; Deng, Q.-C. Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions. Food Chem. 2019, 301, 125207. [Google Scholar] [CrossRef]
- Kiokias, S.; Oreopoulou, V. Antioxidant properties of natural carotenoid preparations against the AAPH-oxidation of food emulsions. Innov. Food Sci. Emerg. Tech. 2006, 7, 132–139. [Google Scholar] [CrossRef]
- Seo, S.-R.; Lee, H.-Y.; Kim, J.-C. Thermo- and pH-responsiveness of emulsions stabilized with acidic thermosensitive polymers. J. Food Eng. 2016, 111, 449–457. [Google Scholar]
- Branco, G.F.; Rodrigues, M.I.; Gioielli, L.A.; Castro, I.A. Effect of the simultaneous interaction among ascorbic acid, iron and ph on the oxidative stability of oil-in-water emulsions. J. Agric. Food Chem. 2011, 59, 12183–12192. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Losada-Barreiro, S.; Paiva-Martins, F.; Bravo-Dıaz, C.; Romsted, L.S. A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the “cut-off” effect. Food Chem. 2015, 175, 233–242. [Google Scholar] [CrossRef]
- Zhou, L.; Elias, R.-J. Antioxidant and pro-oxidant activity of (−)-epigallocatechin-3-gallate in food emulsions: Influence of pH and phenolic concentration. Food Chem. 2013, 138, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.-D.; Villeneuve, P.; Jacobsen, C. Alkyl caffeates as antioxidants in O/W emulsions: Impact of emulsifier type and endogenous tocopherols. Europ. J. Lipid Sci. Technol. 2017, 119, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Elias, R.-J. Factors influencing the antioxidant and pro-oxidant activity of polyphenols in oil-in-water emulsions. J. Agric. Food Chem. 2012, 60, 2906–2915. [Google Scholar] [CrossRef]
- Roedig-Penman, A.; Gordon, M.-H. Antioxidant properties of catechins and green tea extracts in model food emulsions. J. Agric. Food Chem. 1997, 45, 4267–4270. [Google Scholar] [CrossRef]
- Kim, J.; Choe, E. Effect of the pH on the lipid oxidation and polyphenols of soybean oil-in-water emulsion with added peppermint (Mentha piperita) extract in the presence and absence of iron. Food Sci. Biotechnol. 2018, 27, 1285–1292. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, S.; Yi, Z.; Cui, L.; Decker, E.-A.; McClements, D.-E. Antioxidant and prooxidant activities of tea polyphenols in oil-in-water emulsions depend on the level used and the location of proteins. Food Chem. 2022, 1, 375. [Google Scholar] [CrossRef]
- Kittipongpittaya, K.; Panya, A.; Phonsatta, N.; Decker, E.A. Effects of Environmental pH on Antioxidant Interactions between Rosmarinic Acid and α-Tocopherol in Oil-in-Water (O/W) Emulsions. J. Agric. Food Chem. 2016, 64, 6575–6583. [Google Scholar] [CrossRef] [PubMed]
- Losada-Barreiro, S.; Dıaz, C.-B.; Romsted, L.-S. Distributions of phenolic acid antioxidants between the interfacial and aqueous regions of corn oil emulsions: Effects of pH and emulsifier concentration. Eur. J. Lipid Sci. Technol. 2015, 117, 1801–1813. [Google Scholar] [CrossRef]
- Costa, M.; Losada-Barreiro, S.; Paiva-Martins, F.; Bravo-Dıaz, C.; Romsted, L.S. Physical evidence that the variations in the efficiency of homologous series of antioxidants in emulsions are due to differences in their distribution. J. Sci. Food Agric. 2017, 97, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Zorić, Z.; Markić, J.; Pedisić, S.; Bučević-Popović, V.; Generalić-Mekinić, I.; Grebenar, K.; Kulišić-Bilušić, T. Stability of rosmarinic acid in aqueous extracts from different Lamiaceae species after in vitro digestion with human gastrointestinal enzymes. Food Technol. Biotechnol. 2016, 54, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, P.; Bourlieu-Lacanal, C.; Durand, E.; Lecomte, J.; McClements, D.-J.; Decker, E.-A. Lipid oxidation in emulsions and bulk oils: A review of the importance of micelles. Crit. Rev. Food Sci. Nutr. 2021, 29, 1–41. [Google Scholar] [CrossRef]
- Kanikidi, L.-D.; Tsimogiannis, D.; Kiokias, S.; Oreopoulou, V. Formulation of Rosemary Extracts through Spray-Drying Encapsulation or Emulsification). Neutraceuticals 2022, 2, 1–21. [Google Scholar] [CrossRef]
- Chaiyasit, W.; Elias, R.; McClements, D.-E.; Decker, E.-A. Role of physical structures in bulk oils on lipid oxidation. Crit. Rev. Food Sci. Nutr. 2007, 47, 299–317. [Google Scholar] [CrossRef]
- Waraho, T.; McClements, D.-J.; Decker, E.-A. Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Technol. 2011, 22, 3–13. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E. Interfacial antioxidants: A review of natural and synthetic emulsifiers and co-emulsifiers that can inhibit lipid oxidation. J. Agric. Food Chem. 2018, 66, 20–35. [Google Scholar] [CrossRef]
- Kiralan, S.-S.; Doğu-Baykut, E.; Kittipongpittaya, K.; McClements, D.-J.; Decker, E.-A. Increased antioxidant efficacy of tocopherols by surfactant solubilization in oil-in water emulsions. J. Agric. Food Chem. 2014, 62, 10561–10566. [Google Scholar] [CrossRef]
- Almajano, M.-P.; Delgado, E.; Gordon, M.-H. Albumin causes a synergistic increase in the antioxidant activity of green tea catechins in oil-in-water emulsions. Food Chem. 2007, 102, 1375–1382. [Google Scholar] [CrossRef]
- Sabouri, S.; Geng, J.-H.; Corredig, M. Tea polyphenols association to caseinate-stabilized oil-water interfaces. Food Hydrocol. 2015, 51, 95–100. [Google Scholar] [CrossRef]
- Tian, B.; Wang, Y.-X.; Wang, T.-J.; Mao, L.-J.; Lu, Y.-N.; Wang, H.-T.; Feng, Z.-B. Structure and functional properties of antioxidant nano-emulsions prepared with tea polyphenols and soybean protein isolate. J. Oleo Sci. 2019, 68, 689–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilasaua, J.; Solansa, C.; Gomezb, M.J.; Dabriob, J.; Mujika-Garaib, R.; Esquenaa, J. Influence of a mixed ionic/nonionic surfactant system and the emulsification process on the properties of paraffin emulsions. Coll. Surf. A Physicochem. Eng. Aspects 2011, 392, 38–44. [Google Scholar] [CrossRef]
- Fu, Y.; McClements, D.J.; Luo, S.; Ye, J.; Chengmei, L. Degradation kinetic of rutin encapsulated in oil-in-water emulsions: Impact of particle size. J. Sci. Food Agric. 2022, 103, 770–778. [Google Scholar] [CrossRef]
- Kharat, M.; Aberg, J.; Dai, T.; McClements, D.J. Comparison of Emulsion and Nanoemulsion Delivery Systems: The Chemical Stability of Curcumin Decreases as Oil Droplet Size Decreases. J. Agric. Food Chem. 2020, 68, 9205–9212. [Google Scholar] [CrossRef] [PubMed]
- Losada-Barreiro, S.; Dıaz, C.-B.; Martins, F.-P.; Romsted, L.-S. Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the “Cut off Effect”. J. Agric. Food Chem. 2013, 61, 6533–6543. [Google Scholar] [CrossRef]
- Almeida, J.; Losada-Barreiro, S.; Costa, M.; Paiva-Martins, F.; Bravo-Díaz, C.; Romsted, L.S. Interfacial Concentrations of Hydroxytyrosol and Its Lipophilic Esters in Intact Olive Oil-in-Water Emulsions: Effects of Antioxidant Hydrophobicity, Surfactant Concentration, and the Oil-to-Water Ratio on the Oxidative Stability of the Emulsions. J. Agric. Food Chem. 2016, 64, 5274–5283. [Google Scholar] [CrossRef]
- Meireles, M.; Losada-Barreiro, S.; Costa, M.; Paiva-Martins, F.; Bravo-Díaz, C.; Monteiro, L.-S. Control of antioxidant efficiency of chlorogenates in emulsions: Modulation of antioxidant interfacial concentrations. J. Sci. Food. Agric. 2019, 99, 3917–3925. [Google Scholar] [CrossRef]
- Huang, S.W.; Frankel, E.N.; Schwarz, K.; Aeschbach, R.; German, J.B. Antioxidant activity of carnosic acid and methyl carnosate in bulk oils and oil-in-water emulsions. J. Agric. Food Chem. 1996, 44, 2951–2956. [Google Scholar] [CrossRef]
- Li, A.; Zhao, M.T.; Yin, F.W.; Zhang, M.; Liu, H.L.; Zhou, D.Y.; Shahidi, F. Antioxidant effects of gallic acid alkyl esters of various chain lengths in oyster during frying process. Food Sci. Technol. 2021, 56, 2938–2945. [Google Scholar] [CrossRef]
- Noon, J.; Mills, T.B.; Norton, I.T. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. J. Food Eng. 2020, 281, 110006. [Google Scholar] [CrossRef]
- Di Mattia, C.D.; Sacchetti, G.; Mastrocola, D.; Sarker, D.K.; Pittia, P. Surface properties of phenolic compounds and their influence on the dispersion and oxidative stability of olive oil O/W emulsions. Food Hydrocol. 2010, 24, 652–658. [Google Scholar] [CrossRef]
- Bravo-Dıaz, C.; Romsted, L.-S.; Liu, S.; Losada-Barreiro, S.; Gallego, M.-J.; Xiang, G. To model chemical reactivity in heterogeneous emulsions, think homogeneous microemulsions. Langmuir 2015, 31, 8961–8979. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Varzakas, T.; Oreopoulou, V. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Critic. Rev. Food Sci. Nutr. 2008, 48, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Bast, A.; Haanen, G.-R.; den Berg, V. Antioxidant effects of carotenoids. Int. J. Vit. Nutr. Res. 2007, 68, 399–403. [Google Scholar]
- Filip, V.; Hradkova, I.; Smidrkal, J. Antioxidants in margarine emulsions. Czech J. Food Sci. 2009, 27, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Chang, M.; Liu, R.; Xu, Y.; Wang, X. Interactions between α-tocopherol and γ-oryzanol in oil-in-water emulsions. Food Chem. 2021, 356, 129648. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, X.Y.; Zhang, M.R.; Chen, Y.; Nie, S.P.; Xie, M.Y. Combined application of gallate ester and α-tocopherol in oil-in-water emulsion: Their distribution and antioxidant efficiency. J. Disp. Sci. Technol. 2019, 41, 909–917. [Google Scholar]
Structure | Emulsion Systems/Reported Antioxidant Activities | Literature |
---|---|---|
α,δ Tocopherols | Flaxseed o/w emulsions/ Clear effect of tocopherols (δToc > α-Toc) | [30] |
Flavonoids (general structure) | Clear effect of flavonoids in various o/w emulsions (with quercetin being the stronger antitoxidant)/ | [34,35,37] |
Caffeic acid (CA) | Tween-based linoleic acid o/w emulsions/clear CA effect | [46] |
Citrem- and Tween-based o/w emulsions/clear CA effect in the presence of endogenous tocopherols | [77] | |
Ferulic acid (FA) | Corn oil-based o/w emulsions /clear FA effect | [49] |
Tween-linoleic acid-based emulsions/clear FA effect | [50] | |
Gallic acid (GA) | SDS stabilised rapeseed o/w nano-emulsions/clear GA effect | [53] |
Clear effect of GA or its alkyl esters added in combination with α-toc in o/w emulsions | [110] | |
Rosmarinic acid (RA) | Tween-based o/w emulsions prepared with linoleic acid or soybean emulsions/clear RA effect | [62] |
Clear effect of RA-rich plant extracts in sunflower o/w emulsions | [19] | |
Vanillic acid (VA) | Tween 40-based o/w systems, at pH 3.5/clear effect of VA in the emulsified system | [64] |
Ascorbic acid | Mixtures of ascorbic acid with α-tocopherol in o/w emulsions/strong synergistic antioxidant effect | [108] |
Mixtures of ascorbic acid with quercetin in o/w emulsions/observed synergistic activity | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiokias, S.; Oreopoulou, V. Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. Colloids Interfaces 2022, 6, 79. https://doi.org/10.3390/colloids6040079
Kiokias S, Oreopoulou V. Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. Colloids and Interfaces. 2022; 6(4):79. https://doi.org/10.3390/colloids6040079
Chicago/Turabian StyleKiokias, Sotirios, and Vassiliki Oreopoulou. 2022. "Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour" Colloids and Interfaces 6, no. 4: 79. https://doi.org/10.3390/colloids6040079
APA StyleKiokias, S., & Oreopoulou, V. (2022). Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. Colloids and Interfaces, 6(4), 79. https://doi.org/10.3390/colloids6040079