Extraction and Surface Activity of Australian Native Plant Extracts: Alphitonia excelsa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Plant Materials
2.2. Methods
2.2.1. Extract Preparation
2.2.2. Saponin Quantification
2.2.3. LC-MS Analysis
2.2.4. Interfacial Behaviour of Saponin-Rich Extracts
2.2.5. Antibacterial Studies
3. Results and Discussion
3.1. Extract Characterisation
3.2. LC-MS Analysis
3.3. Interfacial Characterisation
3.4. Antimicrobial Effects of A. excelsa Extracts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarzębski, M.; Smułek, W.; Kościński, M.; Białopiotrowicz, T.; Kaczorek, E. Verbascum nigrum L. (mullein) extract as a natural emulsifier. Food Hydrocoll. 2018, 81, 341–350. [Google Scholar] [CrossRef]
- Santini, E.; Jarek, E.; Ravera, F.; Liggieri, L.; Warszynski, P.; Krzan, M. Surface properties and foamability of saponin and saponin-chitosan systems. Colloids Surf. B Biointerfaces 2019, 181, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Cizauskaite, U.; Ivanauskas, L.; Jakštas, V.; Marksiene, R.; Jonaitiene, L.; Bernatoniene, J. Rosmarinus officinalis L. extract and some of its active ingredients as potential emulsion stabilizers: A new approach to the formation of multiple (W/O/W) emulsion. Pharm. Dev. Technol. 2016, 21, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Blyth, W.; Shahsavari, E.; Morrison, P.D.; Ball, A.S. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site. J Environ. Manag. 2015, 162, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Naz, T. Chemical and Biological Studies of Medicinal Plants Used by the Yaegl Aboriginal Community of Australia. Ph.D. Thesis, Macquarie University, Sydney, Australia, 2013. [Google Scholar]
- Packer, J.; Brouwer, N.; Harrington, D.; Gaikwad, J.; Heron, R.; Yaegl Community, E.; Ranganathan, S.; Vemulpad, S.; Jamie, J. An ethnobotanical study of medicinal plants used by the Yaegl Aboriginal community in northern New South Wales, Australia. J. Ethnopharmacol. 2012, 139, 244–255. [Google Scholar] [CrossRef]
- Williams, C.J. Medicinal Plants in Australia. Volume 3, Plants, Potions and Poisons; Rosenberg: Dural, Australia, 2012. [Google Scholar]
- Rogers, K.L.; Grice, I.D.; Griffiths, L.R. Inhibition of platelet aggregation and 5-HT release by extracts of Australian plants used traditionally as headache treatments. Eur. J. Pharm. Sci. 2000, 9, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, S.; Drusch, S. Saponins—Self-assembly and behavior at aqueous interfaces. Adv. Colloid Interface Sci. 2017, 243, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Güçlü-Üstündağ, Ö.; Mazza, G. Saponins: Properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. [Google Scholar] [CrossRef]
- Wan, Z.; Sun, Y.; Ma, L.; Guo, J.; Wang, J.; Yin, S.; Yang, X. Thermoresponsive structured emulsions based on the fibrillar self-assembly of natural saponin glycyrrhizic acid. Food Funct. 2017, 8, 75–85. [Google Scholar] [CrossRef]
- Golemanov, K.; Tcholakova, S.; Denkov, N.; Pelan, E.; Stoyanov, S.D. Surface Shear Rheology of Saponin Adsorption Layers. Langmuir 2012, 28, 12071–12084. [Google Scholar] [CrossRef]
- Stanimirova, R.; Marinova, K.; Tcholakova, S.; Denkov, N.D.; Stoyanov, S.; Pelan, E. Surface Rheology of Saponin Adsorption Layers. Langmuir 2011, 27, 12486–12498. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wu, Z.L.; Wang, Y.J.; Li, L.L. Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation. Ind. Crops Prod. 2013, 51, 163–170. [Google Scholar] [CrossRef]
- Mitra, S.; Dungan, S.R. Micellar Properties of Quillaja Saponin. 1. Effects of Temperature, Salt, and pH on Solution Properties. J. Agric. Food Chem. 1997, 45, 1587–1595. [Google Scholar] [CrossRef]
- Golemanov, K.; Tcholakova, S.; Denkov, N.; Pelan, E.; Stoyanov, S.D. Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins. Soft Matter 2013, 9, 5738–5752. [Google Scholar] [CrossRef]
- Ulaganathan, V.; Del Castillo, L.; Webber, J.L.; Ho, T.T.M.; Ferri, J.K.; Krasowska, M.; Beattie, D.A. The influence of pH on the interfacial behaviour of Quillaja bark saponin at the air-solution interface. Colloids Surf. B Biointerfaces 2019, 176, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Le, A.V.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Improving the Vanillin-Sulphuric Acid Method for Quantifying Total Saponins. Technologies 2018, 6, 84. [Google Scholar] [CrossRef]
- Hadidi, M.; Ibarz, A.; Pagan, J. Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology. Food Chem. 2020, 309, 125786. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef]
- Jurek, I.; Góral, I.; Mierzyńska, Z.; Moniuszko-Szajwaj, B.; Wojciechowski, K. Effect of synthetic surfactants and soapwort (Saponaria officinalis L.) extract on skin-mimetic model lipid monolayers. Biochim. Biophys. Acta (BBA) Biomembr. 2019, 1861, 556–564. [Google Scholar] [CrossRef]
- Jarzębski, M.; Smułek, W.; Siejak, P.; Rezler, R.; Pawlicz, J.; Trzeciak, T.; Jarzębska, M.; Majchrzak, O.; Kaczorek, E.; Kazemian, P.; et al. Aesculus hippocastanum L. as a Stabilizer in Hemp Seed Oil Nanoemulsions for Potential Biomedical and Food Applications. Int. J. Mol. Sci. 2021, 22, 887. [Google Scholar] [CrossRef] [PubMed]
- Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfur1c acid. Planta Med. 1976, 29, 116–122. [Google Scholar] [CrossRef]
- Peng, H.; Deng, Z.; Chen, X.; Sun, Y.; Zhang, B.; Li, H. Major chemical constituents and antioxidant activities of different extracts from the peduncles of Hovenia acerba Lindl. Int. J. Food Prop. 2018, 21, 2135–2155. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef]
- Myers, O.D.; Sumner, S.J.; Li, S.; Barnes, S.; Du, X. One Step Forward for Reducing False Positive and False Negative Compound Identifications from Mass Spectrometry Metabolomics Data: New Algorithms for Constructing Extracted Ion Chromatograms and Detecting Chromatographic Peaks. Anal. Chem. 2017, 89, 8696–8703. [Google Scholar] [CrossRef] [PubMed]
- Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. In M7-A7; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006.
- Giménez-Ribes, G.; Habibi, M.; Sagis, L.M.C. Interfacial rheology and relaxation behavior of adsorption layers of the triterpenoid saponin Escin. J. Colloid Interface Sci. 2020, 563, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Langevin, D. Influence of interfacial rheology on foam and emulsion properties. Adv. Colloid Interface Sci. 2000, 88, 209–222. [Google Scholar] [CrossRef]
- Tcholakova, S.; Mustan, F.; Pagureva, N.; Golemanov, K.; Denkov, N.D.; Pelan, E.G.; Stoyanov, S.D. Role of surface properties for the kinetics of bubble Ostwald ripening in saponin-stabilized foams. Colloids Surf. A Physicochem. Eng. Asp. 2017, 534, 16–25. [Google Scholar] [CrossRef]
- Georgieva, D.; Schmitt, V.; Leal-Calderon, F.; Langevin, D. On the Possible Role of Surface Elasticity in Emulsion Stability. Langmuir 2009, 25, 5565–5573. [Google Scholar] [CrossRef] [PubMed]
- Saint-Jalmes, A. Physical chemistry in foam drainage and coarsening. Soft Matter 2006, 2, 836–849. [Google Scholar] [CrossRef]
- Tcholakova, S.; Mitrinova, Z.; Golemanov, K.; Denkov, N.D.; Vethamuthu, M.; Ananthapadmanabhan, K.P. Control of Ostwald Ripening by Using Surfactants with High Surface Modulus. Langmuir 2011, 27, 14807–14819. [Google Scholar] [CrossRef]
- Morgan, J.R. Microbial Contamination of Creams. In Topics in Topicals: Current Trends in the Formulation of Topical Agents; Marks, R., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 61–67. [Google Scholar]
- Cock, I.E. Alphitonia excelsa (Fenzl) Benth. Leaf Extracts Inhibit the Growth of a Panel of Pathogenic Bacteria. Pharmacogn. Commun. 2020, 10, 67–74. [Google Scholar]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, D.; Lalun, N.; Bobichon, H.; Le Magrex Debar, E.; Gangloff, S.C.; Nour, M.; Voutquenne-Nazabadioko, L. Triterpenoids from the leaves of Alphitonia xerocarpus Baill and their biological activity. Phytochemistry 2016, 129, 45–57. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Extract Yield (% of Dry Weight) | Appearance | TSC (g OE/100 g) |
---|---|---|---|
CYP-Et | 22.86 | 62.63 ± 0.67 | |
CYP-H2O | 13.28 | 36.68 ± 3.55 | |
BG-Et | 18.22 | 36.21 ± 3.88 | |
BG-H2O | 15.37 | 24.07 ± 3.74 |
GRAM-POSITIVE | GRAM-NEGATIVE | |||
---|---|---|---|---|
Extract | Staphylococcus aureus ATCC 29213 MIC μg/mL | Bacillus subtilis ATCC 11774 MIC μg/mL | Escherichia coli ATCC 25922 MIC μg/mL | Salmonella typhimurium ATCC 13311 MIC μg/mL |
BG-Et | >512 | >512 | >512 | >512 |
BG-H2O | >512 | >512 | >512 | >512 |
CYP-Et | 512 | >512 | >512 | >512 |
CYP-H2O | >512 | >512 | >512 | >512 |
Levofloxacin (pos. control) | 0.31 | 0.16 | 0.02 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebben, D.A.; Semple, S.J.; Condina, M.R.; Dilmetz, B.A.; Hoffmann, P.; Claudie, D.J.; Krasowska, M.; Beattie, D.A. Extraction and Surface Activity of Australian Native Plant Extracts: Alphitonia excelsa. Colloids Interfaces 2024, 8, 46. https://doi.org/10.3390/colloids8040046
Sebben DA, Semple SJ, Condina MR, Dilmetz BA, Hoffmann P, Claudie DJ, Krasowska M, Beattie DA. Extraction and Surface Activity of Australian Native Plant Extracts: Alphitonia excelsa. Colloids and Interfaces. 2024; 8(4):46. https://doi.org/10.3390/colloids8040046
Chicago/Turabian StyleSebben, Damien A., Susan J. Semple, Mark R. Condina, Brooke A. Dilmetz, Peter Hoffmann, David J. Claudie, Marta Krasowska, and David A. Beattie. 2024. "Extraction and Surface Activity of Australian Native Plant Extracts: Alphitonia excelsa" Colloids and Interfaces 8, no. 4: 46. https://doi.org/10.3390/colloids8040046
APA StyleSebben, D. A., Semple, S. J., Condina, M. R., Dilmetz, B. A., Hoffmann, P., Claudie, D. J., Krasowska, M., & Beattie, D. A. (2024). Extraction and Surface Activity of Australian Native Plant Extracts: Alphitonia excelsa. Colloids and Interfaces, 8(4), 46. https://doi.org/10.3390/colloids8040046