The Two-Process Model: Origin of Its Concepts and Their Implications
Abstract
:1. Introduction
2. Circadian Rhythms
3. Recovery Process
4. Sleep Homeostasis
5. Process S
6. Interaction of S and C
7. NonREM-REM Sleep Cycle
8. Behavioral Homeostasis
9. Local Sleep and Use Dependence
10. Comparative Sleep Studies
11. Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borbely, A. The two-process model of sleep regulation: Beginnings and outlook. J. Sleep Res. 2022, 31, e13598. [Google Scholar] [CrossRef] [PubMed]
- Borbely, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 2016, 25, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Pittendrigh, C.S.; Daan, S. Functional-analysis of circadian pacemakers in nocturnal rodents. 5. Pacemaker structure—Clock for all seasons. J. Comp. Physiol. 1976, 106, 333–355. [Google Scholar] [CrossRef]
- Borbely, A.A.; Huston, J.P.; Waser, P.G. Control of sleep states in the rat by short light-dark cycles. Brain Res. 1975, 95, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Borbely, A.A.; Neuhaus, H.U. Daily pattern of sleep, motor-activity and feeding in rat—Effects of regular and gradually extended photoperiods. J. Comp. Physiol. 1978, 124, 1–14. [Google Scholar] [CrossRef]
- Borbely, A.A.; Neuhaus, H.U. Circadian-rhythm of sleep and motor-activity in rat during skeleton photoperiod, continuous darkness and continuous light. J. Comp. Physiol. 1978, 128, 37–46. [Google Scholar] [CrossRef]
- Berger, R.J.; Oswald, I. Effects of sleep deprivation on behaviour, subsequent sleep and dreaming. J. Ment. Sci. 1962, 108, 457–465. [Google Scholar] [CrossRef]
- Church, M.W.; March, J.D.; Hibi, S.; Benson, K.; Cavness, C.; Feinberg, I. Changes in frequency and amplitude of delta activity during sleep. Electroencephalogr. Clin. Neurophysiol. 1975, 39, 1–7. [Google Scholar] [CrossRef]
- Borbely, A.A.; Neuhaus, H.U. Sleep-deprivation—Effects on sleep and EEG in the rat. J. Comp. Physiol. 1979, 133, 71–87. [Google Scholar] [CrossRef]
- Borbely, A.A. Sleep: Circadian rhythm versus recovery process. In Functional States of the Brain: Their Determinants; Koukkou, M., Lehmann, D., Angst, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1980; pp. 151–161. [Google Scholar]
- Tobler, I.; Borbely, A.A.; Groos, G. The effect of sleep-deprivation on sleep in rats with suprachiasmatic lesions. Neurosci. Lett. 1983, 42, 49–54. [Google Scholar] [CrossRef]
- Mistlberger, R.E.; Bergmann, B.M.; Waldenar, W.; Rechtschaffen, A. Recovery sleep following sleep deprivation in intact and suprachiasmatic lesioined rats. Sleep 1983, 6, 217–233. [Google Scholar] [CrossRef]
- Tobler, I.; Achermann, P. Sleep homeostasis. Scholarpedia 2007, 2, 2432. [Google Scholar] [CrossRef]
- Borbély, A.A. The sleep process: Circadian and homeostatic aspects. In Advances in Physiological Science; Pergamon Press: London, UK, 1981; Volume 18, pp. 85–91. [Google Scholar]
- Franks, N.P.; Wisden, W. The inescapable drive to sleep: Overlapping mechanisms of sleep and sedation. Science 2021, 374, 556–559. [Google Scholar] [CrossRef]
- Nollet, M.; Franks, N.P.; Wisden, W. Understanding sleep regulation in normal and pathological conditions, and why it matters. J. Huntingt. Dis. 2023, 12, 105–119. [Google Scholar] [CrossRef]
- Borbely, A.A. A two process model of sleep regulation. Hum. Neurobiol. 1982, 1, 195–204. [Google Scholar]
- Borbely, A.A.; Baumann, F.; Brandeis, D.; Strauch, I.; Lehmann, D. Sleep-deprivation—Effect on sleep stages and EEG power-density in man. Electroencephalogr. Clin. Neurophysiol. 1981, 51, 483–493. [Google Scholar] [CrossRef]
- Dijk, D.J.; Beersma, D.G.M.; Daan, S. EEG power density during nap sleep: Reflection of an hourglass measuring the duration of prior wakefulness. J. Biol. Rhythm. 1987, 2, 207–220. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and synaptic homeostasis: A hypothesis. Brain Res. Bull. 2003, 62, 143–150. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Steep function and synaptic homeostasis. Sleep Med. Rev. 2006, 10, 49–62. [Google Scholar] [CrossRef]
- Ehlen, J.C.; Brager, A.J.; Baggs, J.; Pinckney, L.; Gray, C.L.; DeBruyne, J.P.; Esser, K.A.; Takahashi, J.S.; Paul, K.N. Bmal1 function in skeletal muscle regulates sleep. Elife 2017, 6, e26557. [Google Scholar] [CrossRef]
- Tobler, I.; Franken, P. Sleep homeostasis in the guinea-pig—Similar response to sleep-deprivation in the light and dark period. Neurosci. Lett. 1993, 164, 105–108. [Google Scholar] [CrossRef]
- Tobler, I.; Franken, P.; Jaggi, K. Vigilance states, EEG spectra, and cortical temperature in the guinea pig. Am. J. Physiol. 1993, 264, R1125–R1132. [Google Scholar] [CrossRef]
- Dijk, D.J.; Czeisler, C.A. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 1995, 15, 3526–3538. [Google Scholar] [CrossRef]
- Daan, S.; Beersma, D.G.M.; Borbely, A.A. Timing of human sleep—Recovery process gated by a circadian pacemaker. Am. J. Physiol. 1984, 246, R161–R178. [Google Scholar] [CrossRef]
- Achermann, P. Technical note: A problem with identifying nonlinear interactions of circadian and homeostatic processes. J. Biol. Rhythm. 1999, 14, 602–603. [Google Scholar] [CrossRef]
- Achermann, P.; Borbely, A.A. Simulation of human sleep—Ultradian dynamics of electroencephalographic slow-wave activity. J. Biol. Rhythm. 1990, 5, 141–157. [Google Scholar] [CrossRef]
- Achermann, P.; Beersma, D.G.M.; Borbély, A.A. The two-process model: Ultradian dynamics of sleep. In Sleep ’90; Horne, J.A., Ed.; Pontenagel Press: Bochum, Germany, 1990; pp. 296–300. [Google Scholar]
- Achermann, P.; Dijk, D.J.; Brunner, D.P.; Borbely, A.A. A model of human sleep homeostasis based on EEG slow-wave activity—Quantitative comparison of data and simulations. Brain Res. Bull. 1993, 31, 97–113. [Google Scholar] [CrossRef]
- Tobler, I. Effect of forced locomotion on the rest activity cycle of the cockroach. Behav. Brain Res. 1983, 8, 351–360. [Google Scholar] [CrossRef]
- Tobler, I.; Neunerjehle, M. 24-h variation of vigilance in the cockroach Blaberus-giganteus. J. Sleep Res. 1992, 1, 231–239. [Google Scholar] [CrossRef]
- Tobler, I.; Stalder, J. Rest in the scorpion—A sleep-like state. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 1988, 163, 227–235. [Google Scholar] [CrossRef]
- Franken, P.; Dijk, D.J.; Tobler, I.; Borbely, A.A. Sleep-deprivation in rats—Effects on EEG power spectra, vigilance states, and cortical temperature. Am. J. Physiol. 1991, 261, R198–R208. [Google Scholar] [CrossRef]
- Hendricks, J.C.; Finn, S.M.; Panckeri, K.A.; Chavkin, J.; Williams, J.A.; Sehgal, A.; Pack, A.I. Rest in Drosophila is a sleep-like state. Neuron 2000, 25, 129–138. [Google Scholar] [CrossRef]
- Shaw, P.J.; Cirelli, C.; Greenspan, R.J.; Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 2000, 287, 1834–1837. [Google Scholar] [CrossRef]
- Nath, R.D.; Bedbrook, C.N.; Abrams, M.J.; Basinger, T.; Bois, J.S.; Prober, D.A.; Sternberg, P.W.; Gradinaru, V.; Goentoro, L. The jellyfish Cassiopeia exhibits a sleep-like state. Curr. Biol. 2017, 27, 2984–2990.e3. [Google Scholar] [CrossRef]
- Kanaya, H.J.; Park, S.; Kim, J.; Kusumi, J.; Krenenou, S.; Sawatari, E.; Sato, A.; Lee, J.; Bang, H.; Kobayakawa, Y.; et al. A sleep-like state in the Hydra unravels conserved sleep mechanisms during the evolutionary development of the central nervous system. Sci. Adv. 2020, 6, eabb9415. [Google Scholar] [CrossRef]
- Moruzzi, G. Sleep-waking cycle. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 1972, 64, 1–165. [Google Scholar]
- Krueger, J.M.; Obal, F. A neuronal group-theory of sleep function. J. Sleep Res. 1993, 2, 63–69. [Google Scholar] [CrossRef]
- Kattler, H.; Dijk, D.J.; Borbely, A.A. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J. Sleep Res. 1994, 3, 159–164. [Google Scholar] [CrossRef]
- Huber, R.; Ghilardi, M.F.; Massimini, M.; Tononi, G. Local sleep and learning. Nature 2004, 430, 78–81. [Google Scholar] [CrossRef]
- Vyazovskiy, V.; Borbely, A.A.; Tobler, I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J. Sleep Res. 2000, 9, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Vyazovskiy, V.V.; Welker, E.; Fritschy, J.M.; Tobler, I. Regional pattern of metabolic activation is reflected in the sleep EEG after sleep deprivation combined with unilateral whisker stimulation in mice. Eur. J. Neurosci. 2004, 20, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Vyazovskiy, V.V.; Tobler, I. Handedness leads to interhemispheric EEG asymmetry during sleep in the rat. J. Neurophysiol. 2008, 99, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Tobler, I.; Jaggi, K. Sleep and EEG spectra in the Syrian-hamster (Mesocricetus-auratus) under baseline conditions and following sleep deprivation. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 1987, 161, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Deboer, T.; Franken, P.; Tobler, I. Sleep and cortical temperature in the Djungarian hamster under baseline conditions and after sleep deprivation. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 1994, 174, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Deboer, T.; Tobler, I. Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: Empirical data and simulations. Brain Res. 2000, 857, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Tobler, I.; Gaus, S.E.; Deboer, T.; Achermann, P.; Fischer, M.; Rulicke, T.; Moser, M.; Oesch, B.; McBride, P.A.; Manson, J.C. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 1996, 380, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Tobler, I.; Deboer, T.; Fischer, M. Sleep and sleep regulation in normal and prion protein-deficient mice. J. Neurosci. 1997, 17, 1869–1879. [Google Scholar] [CrossRef]
- Tobler, I.; Deboer, T. Sleep in the blind mole rat Spalax Ehrenbergi. Sleep 2001, 24, 147–154. [Google Scholar] [CrossRef]
- Tobler, I.; Herrmann, M.; Cooper, H.M.; Negroni, J.; Nevo, E.; Achermann, P. Rest-activity rhythm of the blind mole rat Spalax ehrenbergi under different lighting conditions. Behav. Brain Res. 1998, 96, 173–183. [Google Scholar] [CrossRef]
- Tobler, I.; Scherschlicht, R. Sleep and EEG slow-wave activity in the domestic cat—Effect of sleep deprivation. Behav. Brain Res. 1990, 37, 109–118. [Google Scholar] [CrossRef]
- Tobler, I.; Franken, P.; Scherschlicht, R. Sleep and EEG spectra in the rabbit under baseline conditions and following sleep deprivation. Physiol. Behav. 1990, 48, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Tobler, I.; Sigg, H. Long-term motor-activity recording of dogs and the effect of sleep deprivation. Experientia 1986, 42, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Tobler, I.; Borbely, A.A. Effect of rest deprivation on motor-activity of fish. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 1985, 157, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Tobler, I.; Ruhlé, C.; Hindenlang, K. Long-term rest-activity recording in two female Ibex (Capra Ibex) in the wild. J. Sleep Res. 1994, 3, 255. [Google Scholar]
- Tobler, I. Behavioral sleep in the asian elephant incaptivity. Sleep 1992, 15, 1–12. [Google Scholar]
- Tobler, I.; Schwierin, B. Behavioural sleep in the giraffe (Giraffa camelopardalis) in a zoological garden. J. Sleep Res. 1996, 5, 21–32. [Google Scholar] [CrossRef]
- Hess, W.R. The autonomic nervous system. Lancet 1932, 2, 1259–1261. [Google Scholar] [CrossRef]
- Franken, P.; Tobler, I.; Borbély, A.A. Sleep and waking have a major effect on the 24-hr rhythm of cortical temperature in the rat. J. Biol. Rhythm. 1992, 7, 341–352. [Google Scholar] [CrossRef]
- Sela, Y.; Hoekstra, M.M.B.; Franken, P. Sub-minute prediction of brain temperature based on sleep-wake state in the mouse. Elife 2021, 10, e62073. [Google Scholar] [CrossRef]
- Adamantidis, A.R.; de Lecea, L. Sleep and the hypothalamus. Science 2023, 382, 405–412. [Google Scholar] [CrossRef]
- Franken, P.; Dijk, D.J. Sleep and circadian rhythmicity as entangled processes serving homeostasis. Nat. Rev. Neurosci. 2024, 25, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Abhilash, L.; Shafer, O.T. A two-process model of Drosophila sleep reveals an inter-dependence between circadian clock speed and the rate of sleep pressure decay. Sleep 2023. [Google Scholar] [CrossRef] [PubMed]
- Skeldon, A.C.; Dijk, D.J. Modelling Drosophila sleep: Fly in the sky? Sleep 2023. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.W.; Guillaumin, M.C.C.; McKillop, L.E.; Achermann, P.; Vyazovskiy, V.V. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. Elife 2020, 9, e54148. [Google Scholar] [CrossRef]
- Vyazovskiy, V.V.; Olcese, U.; Hanlon, E.C.; Nir, Y.; Cirelli, C.; Tononi, G. Local sleep in awake rats. Nature 2011, 472, 443–447. [Google Scholar] [CrossRef]
- Guthrie, R.S.; Ciliberti, D.; Mankin, E.A.; Poe, G.R. Recurrent Hippocampo-neocortical sleep-state divergence in humans. Proc. Natl. Acad. Sci. USA 2022, 119, e2123427119. [Google Scholar] [CrossRef]
- Nobili, L.; Ferrara, M.; Moroni, F.; De Gennaro, L.; Lo Russo, G.; Campus, C.; Cardinale, F.; De Carli, F. Dissociated wake-like and sleep-like electro-cortical activity during sleep. Neuroimage 2011, 58, 612–619. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borbély, A.; Tobler, I. The Two-Process Model: Origin of Its Concepts and Their Implications. Clin. Transl. Neurosci. 2024, 8, 5. https://doi.org/10.3390/ctn8010005
Borbély A, Tobler I. The Two-Process Model: Origin of Its Concepts and Their Implications. Clinical and Translational Neuroscience. 2024; 8(1):5. https://doi.org/10.3390/ctn8010005
Chicago/Turabian StyleBorbély, Alexander, and Irene Tobler. 2024. "The Two-Process Model: Origin of Its Concepts and Their Implications" Clinical and Translational Neuroscience 8, no. 1: 5. https://doi.org/10.3390/ctn8010005
APA StyleBorbély, A., & Tobler, I. (2024). The Two-Process Model: Origin of Its Concepts and Their Implications. Clinical and Translational Neuroscience, 8(1), 5. https://doi.org/10.3390/ctn8010005