Therapeutic Role of Microglia/Macrophage Polarization in Intracerebral Hemorrhage
Abstract
:1. Introduction
2. Inflammatory Response to Intracerebral Hemorrhage (ICH)
3. Immune Cells in ICH
3.1. Local Immune Cells
3.1.1. Microglia
3.1.2. Astrocytes
3.2. Systemic Immune Cells
3.2.1. Innate Immune Cells
Neutrophils
Monocytes/Macrophages
3.2.2. Adaptive Immune Cells
Lymphocytes
4. Crosstalk Between Different Immune Cells Implicated in ICH
5. Role of Microglia/Macrophages as an Immunotherapeutic Target in ICH
6. Strategies to Overcome Off-Target Effects and Improve On-Target Delivery
7. Discussion
Future Perspective and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, Y.M.; Zhang, C.L.; Chen, A.Q.; Wang, H.L.; Zhou, Y.F.; Li, Y.N.; Hu, B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy. Front. Immunol. 2021, 12, 678744. [Google Scholar] [CrossRef] [PubMed]
- Tschoe, C.; Bushnell, C.D.; Duncan, P.W.; Alexander-Miller, M.A.; Wolfe, S.Q. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J. Stroke 2020, 22, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Klebe, D.; McBride, D.; Flores, J.J.; Zhang, J.H.; Tang, J. Modulating the Immune Response Towards a Neuroregenerative Peri-injury Milieu After Cerebral Hemorrhage. J. Neuroimmune Pharmacol. 2015, 10, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wu, C.; Stone, C.; Ding, Y.; Ji, X. Treatment of intracerebral hemorrhage: Current approaches and future directions. J Neurol. Sci. 2020, 416, 117020. [Google Scholar] [CrossRef]
- GBD 2016 Stroke Collaborators; Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nicols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef]
- Al-Kawaz, M.N.; Hanley, D.F.; Ziai, W. Advances in Therapeutic Approaches for Spontaneous Intracerebral Hemorrhage. Neurotherapeutics 2020, 17, 1757–1767. [Google Scholar] [CrossRef]
- Rosand, J. Preserving brain health after intracerebral haemorrhage. Lancet Neurol. 2021, 20, 879–880. [Google Scholar] [CrossRef]
- Singh, S.D.; Brouwers, H.B.; Senff, J.R.; Pasi, M.; Goldstein, J.; Viswanathan, A.; Klijn, C.J.M.; Rinkel, G.J.E. Haematoma evacuation in cerebellar intracerebral haemorrhage: Systematic review. J. Neurol. Neurosurg. Psychiatry 2020, 91, 82–87. [Google Scholar] [CrossRef]
- Liebeskind, D.S. Hemorrhagic Stroke. In eMedicine; Medscape: New York, NY, USA, 2019; Available online: https://emedicine.medscape.com/article/1916662-overview#a1 (accessed on 22 August 2024).
- Kuriakose, D.; Xiao, Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nogles, T.E.; Galuska, M.A. Middle Cerebral Artery Stroke. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK556132/ (accessed on 22 August 2024).
- Zhang, W.; Wu, Q.; Hao, S.; Chen, S. The hallmark and crosstalk of immune cells after intracerebral hemorrhage: Immunotherapy perspectives. Front. Neurosci. 2023, 16, 1117999. [Google Scholar] [CrossRef]
- Zille, M.; Farr, T.D.; Keep, R.F.; Römer, C.; Xi, G.; Boltze, J. Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine 2022, 76, 103880. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.X.; Broughton, B.R.; Kim, H.A.; Lee, S.; Drummond, G.R.; Sobey, C.G. Evidence That Ly6C(hi) Monocytes are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization. Stroke 2015, 46, 1929–1937. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C.; Anrather, J. The immunology of stroke: From mechanisms to translation. Nat. Med. 2011, 17, 796–808. [Google Scholar] [CrossRef] [PubMed]
- Shtaya, A.; Bridges, L.R.; Williams, R.; Trippier, S.; Zhang, L.; Pereira, A.C.; Nicoll, J.A.R.; Boche, D.; Hainsworth, A.H. Innate Immune Anti-Inflammatory Response in Human Spontaneous Intracerebral Hemorrhage. Stroke 2021, 52, 3613–3623. [Google Scholar] [CrossRef]
- Ardic, A.F.; Ardic, N. Role of Neutrophils as Therapeutic Targets in Intracerebral Hemorrhage. Ther. Innov. Regul. Sci. 2024, 58, 807–816. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Wang, X.; Xu, H.; Fang, C.; Yuan, L.; Wang, K.; Zheng, J.; Qi, Y.; Chen, S.; et al. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis. 2023, 14, 1533–1554. [Google Scholar] [CrossRef]
- Malone, K.; Amu, S.; Moore, A.C.; Waeber, C. Immunomodulatory Therapeutic Strategies in Stroke. Front. Pharmacol. 2019, 10, 630. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.; Luo, Y.; Han, Z. Crosstalk between Inflammation and the BBB in Stroke. Curr. Neuropharmacol. 2020, 18, 1227–1236. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Chen, S.; Wu, X.; Li, J.; Li, G.; Tang, Z. Mechanism and application of immune interventions in intracerebral haemorrhage. Expert Rev. Mol. Med. 2024, 26, e22. [Google Scholar] [CrossRef]
- Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012, 43, 3063–3070. [Google Scholar] [CrossRef]
- Dudvarski Stankovic, N.; Teodorczyk, M.; Ploen, R.; Zipp, F.; Schmidt, M.H.H. Microglia-blood vessel interactions: A double-edged sword in brain pathologies. Acta Neuropathol. 2016, 131, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Mracsko, E.; Veltkamp, R. Neuroinflammation after intracerebral hemorrhage. Front. Cell. Neurosci. 2014, 8, 388. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, M.; Kai, T.; Shimizu, Y.; Yano, Y.; Urabe, Y.; Tasaka, S.; Akagi, M.; Yamaguchi, Y.; Inoue, A. Gadolinium causes M1 and M2 microglial apoptosis after intracerebral haemorrhage and exerts acute neuroprotective effects. J. Pharm. Pharmacol. 2020, 72, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M.; Butovsky, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.; Grössinger, E.M.; Horiuchi, M.; Davis, K.W.; Jin, L.W.; Maezawa, I.; Wulff, H. Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia. Glia 2017, 65, 106–121. [Google Scholar] [CrossRef]
- Bi, R.; Fang, Z.; You, M.; He, Q.; Hu, B. Microglia Phenotype and Intracerebral Hemorrhage: A Balance of Yin and Yang. Front. Cell. Neurosci. 2021, 15, 765205. [Google Scholar] [CrossRef]
- Tang, Y.; Le, W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 1181–1194. [Google Scholar] [CrossRef]
- Jiang, C.T.; Wu, W.F.; Deng, Y.H.; Ge, J.W. Modulators of microglia activation and polarization in ischemic stroke (Review). Mol. Med. Rep. 2020, 21, 2006–2018. [Google Scholar] [CrossRef]
- Poudel, B.; Ekperikpe, U.S.; Mandal, S.; Wilson, G.E.; Shields, C.A.; Cornelius, D.C.; Williams, J.M. Chronic treatment with IL-25 increases renal M2 macrophages and reduces renal injury in obese Dahl salt-sensitive rats during the prepubescent stage. Am. J. Physiol. Ren. Physiol. 2023, 325, F87–F98. [Google Scholar] [CrossRef]
- Ghosh, P.; Sinha, S.; Katkar, G.D.; Taheri, S.; Dang, D.; Das, S.; Sahoo, D. Machine learning identifies signatures of macrophage reactivity and tolerance that predict disease outcomes. EBioMedicine 2023, 94, 104719. [Google Scholar] [CrossRef]
- Luo, M.; Qiu, Z.; Tang, X.; Li, S.; Zhu, J.; Jiang, Y. Inhibiting Cyclin B1-treated Pontine Infarction by Suppressing Proliferation of SPP1 + Microglia. Mol. Neurobiol. 2023, 60, 1782–1796. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, J.A.; Smyth, L.C.D.; Cross, K.A.; Dykstra, T.; Sun, J.; Du, S.; Mamuladze, T.; Smirnov, I.; Rustenhoven, J.; Kipnis, J. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. Nat. Neurosci. 2022, 25, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Blank-Stein, N.; Mass, E. Macrophage and monocyte subsets in response to ischemic stroke. Eur. J. Immunol. 2023, 53, e2250233. [Google Scholar] [CrossRef] [PubMed]
- Colombo, E.; Farina, C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016, 37, 608–620. [Google Scholar] [CrossRef]
- Kang, M.; Yao, Y. Oligodendrocytes in intracerebral hemorrhage. CNS Neurosci. Ther. 2019, 25, 1075–1084. [Google Scholar] [CrossRef]
- Gautam, J.; Yao, Y. Roles of Pericytes in Stroke Pathogenesis. Cell Transplant. 2018, 27, 1798–1808. [Google Scholar] [CrossRef]
- Pikija, S.; Sztriha, L.K.; Killer-Oberpfalzer, M.; Weymayr, F.; Hecker, C.; Ramesmayer, C.; Hauer, L.; Sellner, J. Neutrophil to lymphocyte ratio predicts intracranial hemorrhage after endovascular thrombectomy in acute ischemic stroke. J. Neuroinflamm. 2018, 15, 319. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Liu, Z.; Chang, L.; Bai, X.; Kang, L.; Cao, Y.; Yang, X.; Yu, H.; Shi, M.J.; et al. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 2021, 138, 91–103. [Google Scholar] [CrossRef]
- Gelderblom, M.; Gallizioli, M.; Ludewig, P.; Thom, V.; Arunachalam, P.; Rissiek, B.; Bernreuther, C.; Glatzel, M.; Korn, T.; Arumugam, T.V.; et al. IL-23 (Interleukin-23)-Producing Conventional Dendritic Cells Control the Detrimental IL-17 (Interleukin-17) Response in Stroke. Stroke 2018, 49, 155–164. [Google Scholar] [CrossRef]
- Bielawska-Pohl, A.; Crola, C.; Caignard, A.; Gaudin, C.; Dus, D.; Kieda, C.; Chouaib, S. Human NK cells lyse organ-specific endothelial cells: Analysis of adhesion and cytotoxic mechanisms. J. Immunol. 2005, 174, 5573–5582. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, L.; Peng, J.; Zhang, J.H.; Zhang, H. LJ529 attenuates mast cell-related inflammation via A3R-PKCε-ALDH2 pathway after subarachnoid hemorrhage in rats. Exp. Neurol. 2021, 340, 113686. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Shao, Y.; Fang, Y.; Lu, J.; Lu, J.; Zheng, J.; Xu, S.; Wu, H.; Sun, Z.; Yu, J.; et al. The Changes of Leukocytes in Brain and Blood After Intracerebral Hemorrhage. Front. Immunol. 2021, 12, 617163. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Yong, V.W. Neuroinflammation in intracerebral haemorrhage: Immunotherapies with potential for translation. Lancet Neurol. 2020, 19, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 2007, 13, 1173–1175. [Google Scholar] [CrossRef] [PubMed]
- Kleinewietfeld, M.; Hafler, D.A. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin. Immunol. 2013, 25, 305–312. [Google Scholar] [CrossRef]
- Liesz, A.; Suri-Payer, E.; Veltkamp, C.; Doerr, H.; Sommer, C.; Rivest, S.; Giese, T.; Veltkamp, R. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 2009, 15, 192–199. [Google Scholar] [CrossRef]
- Shang, Y.; Zheng, L.; Du, Y.; Shang, T.; Liu, X.; Zou, W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol. Neurobiol. 2024, 62, 518–532. [Google Scholar] [CrossRef]
- Zhou, K.; Zhong, Q.; Wang, Y.C.; Xiong, X.Y.; Meng, Z.Y.; Zhao, T.; Zhu, W.Y.; Liao, M.F.; Wu, L.R.; Yang, Y.R.; et al. Regulatory T cells ameliorate intracerebral hemorrhage-induced inflammatory injury by modulating microglia/macrophage polarization through the IL-10/GSK3β/PTEN axis. J. Cereb. Blood Flow Metab. 2017, 37, 967–979. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- McKimmie, C.S.; Graham, G.J. Astrocytes modulate the chemokine network in a pathogen-specific manner. Biochem. Biophys. Res. Commun. 2010, 394, 1006–1011. [Google Scholar] [CrossRef]
- Lee, G.A.; Lin, T.N.; Chen, C.Y.; Mau, S.Y.; Huang, W.Z.; Kao, Y.C.; Ma, R.Y.; Liao, N.S. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav. Immun. 2018, 73, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Xu, C.Q.; Yan, Z.Y.; Yan, Y.; Jiang, S.Z.; Wang, Y.R. Post-Stroke Microglia Induce Sirtuin2 Expression to Suppress the Anti-inflammatory Function of Infiltrating Regulatory T Cells. Inflammation 2019, 42, 1968–1979. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Jiang, Q.; Ding, W.; Yue, P.; Wang, J.; Zhao, K.; Zhang, H. Interleukin 4 inhibits high mobility group box-1 protein-mediated NLRP3 inflammasome formation by activating peroxisome proliferator-activated receptor-γ in astrocytes. Biochem. Biophys. Res. Commun. 2019, 509, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.; Zhao, S.; Zhang, H.; Cai, W.; Cai, M.; Ji, X.; Leak, R.K.; Gao, Y.; Chen, J.; et al. Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke 2016, 47, 498–504. [Google Scholar] [CrossRef]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Choudhury, G.R.; Winters, A.; Yang, S.H.; Jin, K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur. J. Immunol. 2015, 45, 180–191. [Google Scholar] [CrossRef]
- Hijioka, M.; Anan, J.; Ishibashi, H.; Kurauchi, Y.; Hisatsune, A.; Seki, T.; Koga, T.; Yokomizo, T.; Shimizu, T.; Katsuki, H. Inhibition of Leukotriene B4 Action Mitigates Intracerebral Hemorrhage-Associated Pathological Events in Mice. J. Pharmacol. Exp. Ther. 2017, 360, 399–408. [Google Scholar] [CrossRef]
- David, S.; Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 2011, 12, 388–399. [Google Scholar] [CrossRef]
- Yang, G.; Fan, X.; Mazhar, M.; Guo, W.; Zou, Y.; Dechsupa, N.; Wang, L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front. Mol. Neurosci. 2022, 15, 1013706. [Google Scholar] [CrossRef]
- Yang, Y.; Salayandia, V.M.; Thompson, J.F.; Yang, L.Y.; Estrada, E.Y.; Yang, Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J. Neuroinflamm. 2015, 12, 26. [Google Scholar] [CrossRef]
- Lu, Y.; Xiao, G.; Luo, W. Minocycline Suppresses NLRP3 Inflammasome Activation in Experimental Ischemic Stroke. Neuroimmunomodulation 2016, 23, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Rothhammer, V.; Kenison, J.E.; Tjon, E.; Takenaka, M.C.; de Lima, K.A.; Borucki, D.M.; Chao, C.C.; Wilz, A.; Blain, M.; Healy, L.; et al. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc. Natl. Acad. Sci. USA 2017, 114, 2012–2017. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, S.; Han, Z.; Yin, D.; Luo, Y.; Tian, Y.; Wang, Z.; Zhang, J. Fingolimod administration improves neurological functions of mice with subarachnoid hemorrhage. Neurosci. Lett. 2020, 736, 135250. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Hao, J.; Zhang, N.; Ren, L.; Sun, N.; Li, Y.J.; Yan, Y.; Huang, D.; Yu, C.; Shi, F.D. Fingolimod for the treatment of intracerebral hemorrhage: A 2-arm proof-of-concept study. JAMA Neurol. 2014, 71, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Emsley, H.C.; Smith, C.J.; Georgiou, R.F.; Vail, A.; Hopkins, S.J.; Rothwell, N.J.; Tyrrell, P.J. Acute Stroke Investigators. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry 2005, 76, 1366–1372. [Google Scholar] [CrossRef]
- Wang, J.; Xing, H.; Wan, L.; Jiang, X.; Wang, C.; Wu, Y. Treatment targets for M2 microglia polarization in ischemic stroke. Biomed. Pharmacother. 2018, 105, 518–525. [Google Scholar] [CrossRef]
- Wang, M.; Feng, L.R.; Li, Z.L.; Ma, K.G.; Chang, K.W.; Chen, X.L.; Yang, P.B.; Ji, S.F.; Ma, Y.B.; Han, H.L. Thymosin β4 reverses phenotypic polarization of glial cells and cognitive impairment via negative regulation of NF-κB signaling axis in APP/PS1 mice. J. Neuroinflamm. 2021, 18, 146. [Google Scholar] [CrossRef]
- Wang, G.; Shi, Y.; Jiang, X.; Leak, R.K.; Hu, X.; Wu, Y.; Pu, H.; Li, W.W.; Tang, B.; Wang, Y.; et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc. Natl. Acad. Sci. USA 2015, 112, 2853–2858. [Google Scholar] [CrossRef]
- Bai, Q.; Xue, M.; Yong, V.W. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: Therapeutic opportunities. Brain 2020, 143, 1297–1314. [Google Scholar] [CrossRef]
- Hammond, M.D.; Taylor, R.A.; Mullen, M.T.; Ai, Y.; Aguila, H.L.; Mack, M.; Kasner, S.E.; McCullough, L.D.; Sansing, L.H. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J. Neurosci. 2014, 34, 3901–3909. [Google Scholar] [CrossRef]
- Garau, A.; Bertini, R.; Colotta, F.; Casilli, F.; Bigini, P.; Cagnotto, A.; Mennini, T.; Ghezzi, P.; Villa, P. Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine 2005, 30, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.A.; Hammond, M.D.; Ai, Y.; Sansing, L.H. CX3CR1 signaling on monocytes is dispensable after intracerebral hemorrhage. PLoS ONE 2014, 9, e114472. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, Z.; Li, S.; Ren, J.; Suresh, V.; Xu, D.; Zang, W.; Liu, X.; Li, W.; Wang, H. Minocycline Preserves the Integrity and Permeability of BBB by Altering the Activity of DKK1-Wnt Signaling in ICH Model. Neuroscience 2019, 415, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Zheng, H.; Li, J.; Zeng, M.; He, D.; Liang, J.; Sun, K.; Luo, Y.; Li, F.; Ping, B.; et al. Targeting NLRP3 inflammasome modulates gut microbiota, attenuates corticospinal tract injury and ameliorates neurobehavioral deficits after intracerebral hemorrhage in mice. Biomed. Pharmacother. 2022, 149, 112797. [Google Scholar] [CrossRef]
- Li, Q.; Wan, J.; Lan, X.; Han, X.; Wang, Z.; Wang, J. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J. Cereb. Blood Flow Metab. 2017, 37, 3110–3123. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Okauchi, M.; Hua, Y.; Keep, R.F.; Xi, G. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl. Stroke Res. 2013, 4, 546–553. [Google Scholar] [CrossRef]
- Dingyi, L.; Libin, H.; Jifeng, P.; Ding, Z.; Yulong, L.; Zhangyi, W.; Yunong, Y.; Qinghua, W.; Feng, L. Silencing CXCL16 alleviate neuroinflammation and M1 microglial polarization in mouse brain hemorrhage model and BV2 cell model through PI3K/AKT pathway. Exp. Brain Res. 2024, 242, 1917–1932. [Google Scholar] [CrossRef]
- Shi, H.; Zheng, K.; Su, Z.; Su, H.; Zhong, M.; He, X.; Zhou, C.; Chen, H.; Xiong, Q.; Zhang, Y. Sinomenine enhances microglia M2 polarization and attenuates inflammatory injury in intracerebral hemorrhage. J. Neuroimmunol. 2016, 299, 28–34. [Google Scholar] [CrossRef]
- Wang, B.; Chen, J.; Wang, S.; Chen, L.; Zhang, X.; Zhou, T.; Zhong, J.; Zhang, C.; He, Y.; Zuo, Y.; et al. Kv1.3 Blockade Alleviates White Matter Injury through Reshaping M1/M2 Phenotypes via the NF-κB Signaling Pathway after Intracerebral Hemorrhage. J. Integr. Neurosci. 2023, 22, 171. [Google Scholar] [CrossRef]
- Taylor, R.A.; Chang, C.F.; Goods, B.A.; Hammond, M.D.; Mac Grory, B.; Ai, Y.; Steinschneider, A.F.; Renfroe, S.C.; Askenase, M.H.; McCullough, L.D.; et al. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J. Clin. Investig. 2017, 127, 280–292. [Google Scholar] [CrossRef]
- Li, Y.J.; Chang, G.Q.; Liu, Y.; Wei, D.; Li, T.; Jiang, P.; Guan, J.; Zhang, X.; Shi, X.; Liang, N.; et al. Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage. Neurosci. Bull. 2015, 31, 755–762. [Google Scholar] [CrossRef]
- Qin, M.; Feng, L.; Yang, C.; Wei, D.; Li, T.; Jiang, P.; Guan, J.; Zhang, X.; Shi, X.; Liang, N.; et al. Edaravone use in acute intracerebral hemorrhage: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2022, 13, 935198. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.; Foster, L.D.; Moy, C.S.; Xi, G.; Hill, M.D.; Morgenstern, L.B.; Greenberg, S.M.; James, M.L.; Singh, V.; Clark, W.M.; et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): A multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019, 18, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Abd Elrahman, A.A.; Mansour, F.R. Targeted magnetic iron oxide nanoparticles: Preparation, functionalization and biomedical application. J. Drug Deliv. Sci. Technol. 2019, 52, 702–712. [Google Scholar] [CrossRef]
- Qiao, R.; Fu, C.; Forgham, H.; Javed, I.; Javed, I.; Huang, X.; Zhu, J.; Whittaker, A.K.; Davis, T.P. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 2023, 197, 114822. [Google Scholar] [CrossRef]
- Hersh, A.M.; Alomari, S.; Tyler, B.M. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int. J. Mol. Sci. 2022, 23, 4153. [Google Scholar] [CrossRef]
- Dinc, R. The Role of Immune Mechanisms in Abdominal Aortic Aneurysm: Could It be a Promising Therapeutic Strategy? Acta Cardiol. Sin. 2023, 39, 675–686. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, W.; Liu, J.; Zhang, B.; Zheng, L.; Zou, W. The dual role of microglia in intracerebral hemorrhage. Behav. Brain Res. 2024, 473, 115198. [Google Scholar] [CrossRef]
- Zhao, X.; Kruzel, M.; Ting, S.M.; Sun, G.; Savitz, S.I.; Aronowski, J. Optimized lactoferrin as a highly promising treatment for intracerebral hemorrhage: Pre-clinical experience. J. Cereb. Blood Flow Metab. 2021, 41, 53–66. [Google Scholar] [CrossRef]
- Zeng, H.; Fu, X.; Cai, J.; Sun, C.; Yu, M.; Peng, Y.; Zhuang, J.; Chen, J.; Chen, H.; Yu, Q.; et al. Neutrophil Extracellular Traps may be a Potential Target for Treating Early Brain Injury in Subarachnoid Hemorrhage. Transl. Stroke Res. 2022, 13, 112–131. [Google Scholar] [CrossRef]
- Rosales, C. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol. 2020, 108, 377–396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kawabori, M.; Houkin, K. FTY720 (Fingolimod) Ameliorates Brain Injury through Multiple Mechanisms and is a Strong Candidate for Stroke Treatment. Curr. Med. Chem. 2020, 27, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, Y.; Hu, Q.; Shou, J.; Zhu, L.; Tian, N.; Sun, L.; Luo, H.; Zuo, F.; Li, F.; et al. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage. FASEB J. 2020, 34, 2774–2791. [Google Scholar] [CrossRef] [PubMed]
- Fernando, S.M.; Qureshi, D.; Talarico, R.; Tanuseputro, P.; Dowlatshahi, D.; Sood, M.M.; Smith, E.E.; Hill, M.D.; McCredie, V.A.; Scales, D.C.; et al. Intracerebral Hemorrhage Incidence, Mortality, and Association with Oral Anticoagulation Use: A Population Study. Stroke 2021, 52, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zeng, X.; Tang, L.; Liu, X.; Xia, K.; Gao, F.; Huang, X.; Li, N.; Fan, D. Association of APOE genotype with CT markers of cerebral amyloid angiopathy in spontaneous intracerebral haemorrhage. Stroke Vasc. Neurol. 2024, 1–9. [Google Scholar] [CrossRef]
- Foschi, M.; Ornello, R.; De Santis, F.; Gabriele, F.; Romoli, M.; Conversi, F.; De Santis, F.; Orlandi, B.; Sacco, S. Incidence and prognosis of first-ever intracerebral hemorrhage on antiplatelet therapy over 10 years in a population-based stroke registry. Sci. Rep. 2024, 14, 29664. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wang, P.F.; Fang, H.; Chen, J.; Xiong, X.Y.; Yang, Q.W. Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke 2013, 44, 2545–2552. [Google Scholar] [CrossRef]
Immune Cell | Phenotype | Essential Function | Role in ICH | Reference |
---|---|---|---|---|
Microglia/Macrophage | M1 | Pro-inflammatory |
| [12] |
M2 | Anti-inflammatory |
| [12] | |
Astrocyte | A1 | Pro-inflammatory |
| [12] |
A2 | Resolution of inflammation |
| [12] | |
Neutrophil | N1 | Pro-inflammatory |
| [17] |
N2 | Resolution of inflammation |
| [17] | |
Lymphocyte | Th1 | Support cell-mediated immunity and phagocytotic protective responses |
| [12,20] |
Th2 | Support humoral immunity |
| [12,20] | |
Th17 | Creation of inflammation |
| [20,21] | |
Treg | Maintenance of peripheral tolerance |
| [20,21] |
Therapy | Major Action Mechanisms/ Administration Route | Outcomes | Reference |
---|---|---|---|
Animal Studies | |||
Minocycline | Rat/(intraperitoneal):
|
| [69,75] |
Gadolinium | Mice/(intraperitoneal):
|
| [25] |
MCC950 | Mice/(intraperitoneal):
|
| [76] |
VK-28/Deferoxamine | Mice/(intraperitoneal)/Rat/(intramuscular):
|
| [77,78] |
siRNA | Mice/(intranasal): Specific silencing of CXCL16 |
| [79] |
Sinomenin | Mice/(intraperitoneal):
|
| [80] |
PAP-1 | Mice/(tail vein): Kv1.3 blockade |
| [81] |
TGF-β/(intravenous) | Mice: Immune regulation |
| [82] |
Human studies | |||
Fingolimod (FTY720)/(oral) |
|
| [83] |
Edaravone/(intravenous) |
|
| [84] |
Deferoxamine/(intravenous) |
|
| [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinc, R.; Ardic, N. Therapeutic Role of Microglia/Macrophage Polarization in Intracerebral Hemorrhage. Clin. Transl. Neurosci. 2025, 9, 4. https://doi.org/10.3390/ctn9010004
Dinc R, Ardic N. Therapeutic Role of Microglia/Macrophage Polarization in Intracerebral Hemorrhage. Clinical and Translational Neuroscience. 2025; 9(1):4. https://doi.org/10.3390/ctn9010004
Chicago/Turabian StyleDinc, Rasit, and Nurittin Ardic. 2025. "Therapeutic Role of Microglia/Macrophage Polarization in Intracerebral Hemorrhage" Clinical and Translational Neuroscience 9, no. 1: 4. https://doi.org/10.3390/ctn9010004
APA StyleDinc, R., & Ardic, N. (2025). Therapeutic Role of Microglia/Macrophage Polarization in Intracerebral Hemorrhage. Clinical and Translational Neuroscience, 9(1), 4. https://doi.org/10.3390/ctn9010004