The Influence of Crustal Properties on Patterns of Quaternary Fluvial Stratigraphy in Eurasia
Abstract
:1. Introduction
2. Example Eurasian Records from Areas of Dynamic Crust
3. Contrasting Records from Less Dynamic Crust: The East European Plain, Arabian Platform and Cratonic Regions Such as India
4. Anomalous Records from Orogenic Belts in Central Asia
5. The Effects of Glaciation
6. Discussion: The Influence of Crustal Province on Erosion Rates and Patterns of Stratigraphical Disposition and Preservation of Fluvial Sediments
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nikishin, A.M.; Ziegler, P.A.; Stephenson, R.; Cloetingh, S.; Furne, A.V.; Fokin, P.A.; Ershov, A.V.; Bolotov, S.N.; Korotaev, A.S.; Alekseev, A.S.; et al. Late Precambrian to Triassic history of the East-European Craton: Dynamics of Basin Evolution. Tectonophysics 1996, 268, 23–63. [Google Scholar] [CrossRef]
- Cloetingh, S.A.P.L.; Ziegler, P.A.; Beekman, F.; Andriessen, P.A.M.; Matenco, L.; Bada, G.; Garcia-Castellanos, D.; Hardebol, N.; Dezes, P.; Sokoutis, D. Lithospheric memory, state of stress and rheology: Neotectonic controls on Europe’s intraplate continental topography. Quat. Sci. Rev. 2005, 24, 241–304. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Westaway, R. Preservation patterns of Late Cenozoic fluvial deposits and their implications: Results from IGCP 449. Quat. Int. 2008, 189, 5–38. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Westaway, R. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon. Geomorphology 2008, 98, 285–315. [Google Scholar] [CrossRef] [Green Version]
- Bridgland, D.R.; Westaway, R. Quaternary fluvial archives and landscape evolution: A global synthesis. Proc. Geol. Assoc. 2014, 125, 600–629. [Google Scholar] [CrossRef]
- Westaway, R.; Bridgland, D.R.; Sinha, R.; Demir, T. Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic: A synthesis of data from IGCP 518. Glob. Planet. Chang. 2009, 68, 237–253. [Google Scholar] [CrossRef]
- Bridgland, D.R. River terrace systems in north-west Europe: An archive of environmental change, uplift and early human occupation. Quat. Sci. Rev. 2000, 19, 1293–1303. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Maddy, D.; Bates, M. River terrace sequences: Templates for Quaternary geochronology and marine–terrestrial correlation. J. Quat. Sci. 2004, 19, 203–218. [Google Scholar] [CrossRef]
- Bridgland, D.; Keen, D.; Westaway, R. Global correlation of Late Cenozoic fluvial deposits: A synthesis of data from IGCP 449. Quat. Sci. Rev. 2007, 26, 2694–2700. [Google Scholar] [CrossRef]
- Schreve, D.C.; Keen, D.H.; Limondin-Lozouet, N.; Auguste, P.; Santistebane, J.I.; Ubilla, M.; Matoshko, A.; Bridgland, D.R.; Westaway, R. Progress in faunal correlation of Late Cenozoic fluvial sequences 2000–2004: The report of the IGCP 449 biostratigraphy subgroup. Quat. Sci. Rev. 2007, 26, 2970–2995. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Antoine, P.; Limondin-Lozouet, N.; Santisteban, J.I.; Westaway, R.; White, M.J. The Palaeolithic occupation of Europe as revealed by evidence from the rivers: Data from IGCP 449. J. Quat. Sci. 2006, 21, 437–455. [Google Scholar] [CrossRef]
- Mishra, S.; White, M.J.; Beaumont, P.; Antoine, P.; Bridgland, D.R.; Howard, A.J.; Limondin-Lozouet, N.; Santisteban, J.I.; Schreve, D.C.; Shaw, A.D.; et al. Fluvial deposits as an archive of early human activity. Quat. Sci. Rev. 2007, 26, 2996–3016. [Google Scholar] [CrossRef] [Green Version]
- Bridgland, D.R.; White, M.J. Fluvial archives as a framework for the Lower and Middle Palaeolithic: Patterns of British artefact distribution and potential chronological implications. Boreas 2014, 43, 543–555. [Google Scholar] [CrossRef]
- Bridgland, D.R.; White, M.J. Chronological variations in handaxes: Patterns detected from fluvial archives in NW Europe. J. Quat. Sci. 2015, 30, 623–638. [Google Scholar] [CrossRef]
- Chauhan, P.R.; Bridgland, D.R.; Moncel, M.-H.; Antoine, P.; Bahain, J.-J.; Briant, R.M.; Cunha, P.; Locht, J.-L.; Martins, A.; Schreve, D.; et al. Fluvial deposits as an archive of early human activity: Progress during the 20 years of the Fluvial Archives Group. Quat. Sci. Rev. 2017, 166, 114–149. [Google Scholar] [CrossRef] [Green Version]
- Maddy, D. Uplift-driven valley incision and river terrace formation in southern England. J. Quat. Sci. 1997, 12, 539–545. [Google Scholar] [CrossRef]
- Westaway, R.; Bridgland, D.R. Late Cenozoic uplift of southern Italy deduced from fluvial and marine sediments: Coupling between surface processes and lower-crustal flow. Quat. Int. 2007, 175, 86–124. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Demir, T.; Seyrek, A.; Daoudd, M.; Abou Romieh, M.; Westaway, R. River terrace development in the NE Mediterranean region (Syria and Turkey): Patterns in relation to crustal type. Quat. Sci. Rev. 2017, 166, 307–323. [Google Scholar] [CrossRef] [Green Version]
- Kukla, G.; An, Z. Loess stratigraphy in Central China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 72, 203–225. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.; Derbyshire, E.; FitzPatrick, E.A.; Kemp, R. Micromorphology of the Beiyuan Loess-Paleosol sequence in Gansu Province, China: Geomorphological and paleoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 111, 289–303. [Google Scholar]
- Ding, Z.; Derbyshire, E.; Yang, S.; Yu, Z.; Xiong, S.; Liu, T. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography 2002, 17, 1033–1053. [Google Scholar] [CrossRef]
- Kukla, G.J. Loess stratigraphy of Central Europe. In After the Australopithecines: Stratigraphy, Ecology and Culture Change in the Middle Pleistocene; Butzer, K.W., Isaac, G.L., Eds.; Mouton: The Hague, The Netherlands, 1975; pp. 99–188. ISBN 9027976295. [Google Scholar]
- Kukla, G.J. Pleistocene land-sea correlations. I. Europe. Earth Sci. Rev. 1977, 13, 307–374. [Google Scholar] [CrossRef]
- Kukla, G.J. The classical European glacial stages: Correlation with deep-sea sediments. Trans. Nebraska Acad. Sci. 1978, 6, 57–93. [Google Scholar]
- Antoine, P.; Limondin Lozouet, N.; Chaussé, C.; Lautridou, J.-P.; Pastre, J.-F.; Auguste, P.; Bahain, J.-J.; Falguères, C.; Galehb, B. Pleistocene fluvial terraces from northern France (Seine, Yonne, Somme): Synthesis, and new results from interglacial deposits. Quat. Sci. Rev. 2007, 26, 2701–2723. [Google Scholar] [CrossRef]
- Vandenberghe, J. Timescales, climate and river development. Quat. Sci. Rev. 1995, 14, 631–638. [Google Scholar] [CrossRef]
- Vandenberghe, J. The relation between climate and river processes, landforms and deposits during the Quaternary. Quat. Int. 2002, 91, 17–23. [Google Scholar] [CrossRef]
- Vandenberghe, J. Climate forcing of fluvial system development; an evolution of ideas. Quat. Sci. Rev. 2003, 22, 2053–2060. [Google Scholar] [CrossRef]
- Vandenberghe, J. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology 2008, 98, 275–284. [Google Scholar] [CrossRef]
- Cloetingh, S.; Burov, E. Lithospheric folding and sedimentary basin evolution: A review and analysis of formation mechanisms. Basin Res. 2011, 23, 257–290. [Google Scholar] [CrossRef]
- Abou Romieh, M.; Westaway, R.; Daoud, M.; Radwan, Y.; Yassminh, R.; Khalil, A.; Al-Ashkar, A.; Loughlin, S.; Arrell, K.; Bridgland, D.R. Active crustal shortening in NE Syria revealed by deformed terraces of the River Euphrates. Terra Nova 2009, 27, 427–437. [Google Scholar] [CrossRef]
- Krzyszkowski, D.; Bridgland, D.R.; Allen, P.; Westaway, R.; Wachecka-Kotkowska, L.; Czerwonka, J.A. Drainage evolution in the Polish Sudeten Foreland in the context of European fluvial archives. Quat. Res. 2018, in press. [Google Scholar] [CrossRef]
- Brunnacker, K.; Löscher, M.; Tillmans, W.; Urban, B. Correlation of the Quaternary terrace sequence in the lower Rhine valley and northern Alpine foothills of central Europe. Quat. Res. 1982, 18, 152–173. [Google Scholar] [CrossRef]
- Gábris, G.; Nádor, A. Long-term fluvial archives in Hungary: Response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: A review and new synthesis. Quat. Sci. Rev. 2007, 26, 2758–2782. [Google Scholar] [CrossRef]
- Bosinski, G. The earliest occupation of Europe: Western Central Europe. In The Earliest Occupation of Europe; Roebroeks, W., Van Kolfschoten, T., Eds.; University of Leiden: Leiden, The Netherlands, 1995; pp. 103–121. ISBN 90-73368-07-3. [Google Scholar]
- Meyer, W.; Stets, J. Pleistocene to recent tectonics in the Rhenish Massif (Germany). Neth. J. Geosci. (Geologie en Mijnbouw) 2002, 81, 217–221. [Google Scholar] [CrossRef]
- Pharaoh, T.C.; England, R.W.; Verniers, J.C.L.; Zelazniewicz, A. Introduction: Geological and geophysical studies in the Trans-European Suture Zone. Geol. Mag. 1997, 134, 585–590. [Google Scholar] [CrossRef]
- Aplonov, S. Oil in ‘Holes-in-the-Continent’ (Relict Oceanic Basins). In Paradoxes in Geology; Briegel, U., Xiao, W.-J., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 113–130. [Google Scholar]
- Garzanti, E.; Gaetani, M. Unroofing history of Late Paleozoic magmatic arcs within the “Turan Plate” (Tuarkyr, Turkmenistan). Sediment. Geol. 2002, 151, 67–87. [Google Scholar] [CrossRef]
- Brunet, M.-F.; Korotaev, M.V.; Ershov, A.V.; Nikishin, A.M. The South Caspian Basin: A review of its evolution from subsidence modelling. Sediment. Geol. 2003, 156, 119–148. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A. Tectonics of the Altaids: An example of a Turkic-type Orogeny. In Earth Structure, 2nd ed.; van der Pluijm, B.A., Marshak, S., Eds.; W.W. Norton: New York, NY, USA, 2004; pp. 535–546. [Google Scholar]
- Jahn, B.M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In Aspects of the Tectonic Evolution of China; Malpas, J., Fletcher, C.J.N., All, J.R., Aitchison, J.C., Eds.; Special Publication 226; Geological Society: London, UK, 2004; pp. 73–100. [Google Scholar]
- Khain, V.; Bogdanov, N. (Eds.) International Tectonic Map of the Caspian Sea Region; Geological Institute, Russian Academy of Sciences: Moscow, Russia, 2005; 140p. [Google Scholar]
- Natal’in, B.A.; Şengör, A.M.C. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure. Tectonophysics 2005, 404, 175–202. [Google Scholar] [CrossRef]
- Sinha, R.; Kumar, R.; Tandon, S.K.; Gibling, M.R. Late Cenozoic fluvial deposits of India: An overview. Quat. Sci. Rev. 2007, 26, 2801–2822. [Google Scholar] [CrossRef]
- Janik, T.; Grad, M.; Guterch, A.; Vozár, J.; Bielik, M.; Vozárova, A.; Hegedüs, E.; Kovács, C.A.; Kovács, I.; Keller, G.R. Crustal structure of the Western Carpathians and Pannonian Basin: Seismic models from CELEBRATION 2000 data and geological implications. J. Geodyn. 2011, 52, 97–113. [Google Scholar] [CrossRef]
- Cunha, P.P.; de Vicente, G.; Martín-González, F. Cenozoic sedimentation along the piedmonts of thrust related basement ranges and strike-slip deformation belts of the Iberian Variscan Massif. In The Geology of Iberia: a geodynamic approach; Quesada, C., Oliveira, J.T., Eds.; Regional Geology Review series; Springer: Berlin, Germany, 2018; (in press). Volume 4, Chapter 5. [Google Scholar]
- Stern, R.J.; Li, S.-M.; Keller, G.R. Continental crust of China: A brief guide for the perplexed. Earth Sci. Rev. 2018, 179, 72–94. [Google Scholar] [CrossRef]
- Westaway, R. Flow in the lower continental crust as a mechanism for the Quaternary uplift of the Rhenish Massif, north-west Europe. In River Basin Sediment Systems: Archives of Environmental Change; Maddy, D., Macklin, M., Woodward, J., Eds.; Balkema: Abingdon, UK, 2001; pp. 87–167. [Google Scholar]
- Westaway, R. Long-term river terrace sequences: Evidence for global increases in surface uplift rates in the Late Pliocene and early Middle Pleistocene caused by flow in the lower continental crust induced by surface processes. Neth. J. Geosci. 2002, 81, 305–328. [Google Scholar] [CrossRef]
- Westaway, R.; Bridgland, D.R.; Mishra, S. Rheological differences between Archaean and younger crust can determine rates of Quaternary vertical motions revealed by fluvial geomorphology. Terra Nova 2003, 15, 287–298. [Google Scholar] [CrossRef]
- Matoshko, A.V.; Gozhik, P.F.; Danukalova, G. Key Late Cenozoic fluvial archives of eastern Europe: The Dniester, Dnieper, Don and Volga. Proc. Geol. Assoc. 2004, 115, 141–173. [Google Scholar] [CrossRef]
- Pan, B.; Su, H.; Hu, Z.; Hu, X.; Gao, H.; Li, J.; Kirby, E. Evaluating the role of climate and tectonics during non-steady incision of the Yellow River: Evidence from a 1.24 Ma terrace record near Lanzhou, China. Quat. Sci. Rev. 2009, 28, 3281–3290. [Google Scholar] [CrossRef]
- Demir, T.; Seyrek, A.; Westaway, R.; Guillou, H.; Scaillet, S.; Beck, A.; Bridgland, D.R. Late Cenozoic regional uplift and localised crustal deformation within the northern Arabian Platform in southeast Turkey: Investigation of the Euphrates terrace staircase using multidisciplinary techniques. Geomorphology 2012, 165–166, 7–24. [Google Scholar] [CrossRef]
- Westaway, R.; Bridgland, D.R. Relation between alternations of uplift and subsidence revealed by Late Cenozoic fluvial sequences and physical properties of the continental crust. Boreas 2014, 43, 505–527. [Google Scholar] [CrossRef] [Green Version]
- Westaway, R. The Quaternary evolution of the Gulf of Corinth, central Greece: Coupling between surface processes and flow in the lower continental crust. Tectonophysics 2002, 348, 269–318. [Google Scholar] [CrossRef]
- Westaway, R. Improved modelling of the Quaternary evolution of the Gulf of Corinth, incorporating erosion and sedimentation coupled by lower-crustal flow. Tectonophysics 2007, 440, 67–84. [Google Scholar] [CrossRef]
- Herman, F.; Champagnac, J.-D. Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. Terra Nova 2016, 28, 2–10. [Google Scholar] [CrossRef]
- Westaway, R. Feedbacks between climate change and landscape evolution. Terra Nova Debates 2016. Available online: https://terranovadebates.wordpress.com/2015/10/13/debate-articles-have-changes-in-quaternary-climate-affected-erosion/ (accessed on 26 November 2018).
- Westaway, R. Isostatic compensation of Quaternary vertical crustal motions: Coupling between uplift of Britain and subsidence beneath the North Sea. J. Quat. Sci. 2017, 32, 169–182. [Google Scholar] [CrossRef]
- England, P.C.; Molnar, P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 1990, 18, 1173–1177. [Google Scholar] [CrossRef]
- Morley, C.K.; Westaway, R. Subsidence in the super-deep Pattani and Malay basins of Southeast Asia: A coupled model incorporating lower-crustal flow in response to post-rift sediment-loading. Basin Res. 2006, 18, 51–84. [Google Scholar] [CrossRef]
- Westaway, R.; Bridgland, D.R.; White, M.J. The Quaternary uplift history of central southern England: Evidence from the terraces of the Solent River system and nearby raised beaches. Quat. Sci. Rev. 2006, 25, 2212–2250. [Google Scholar] [CrossRef]
- Chen, W.P.; Molnar, P. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res. 1983, 88, 4183–4214. [Google Scholar] [CrossRef]
- Bürgmann, R.; Dresen, G. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 2008, 36, 531–567. [Google Scholar] [CrossRef]
- Westaway, R. A numerical modelling technique that can account for alternations of uplift and subsidence revealed by Late Cenozoic fluvial sequences. Geomorphology 2012, 165–166, 124–143. [Google Scholar] [CrossRef]
- Zhang, P.; Molnar, P.; Downs, W.R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 2001, 410, 891–897. [Google Scholar]
- Willenbring, J.K.; Jerolmack, D.J. The null hypothesis: Globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. Terra Nova 2016, 28, 11–18. [Google Scholar] [CrossRef]
- Keen, D.H. Significance of the record provided by Pleistocene fluvial deposits and their included molluscan faunas for palaeoenvironmental reconstruction and stratigraphy: Cases from the English Midlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1990, 80, 25–34. [Google Scholar] [CrossRef]
- Keen, D.H. Towards a late Middle Pleistocene non-marine molluscan biostratigraphy for the British Isles. Quat. Sci. Rev. 2001, 20, 1657–1665. [Google Scholar] [CrossRef]
- Schreve, D.C. Differentiation of the British late Middle Pleistocene interglacials: The evidence from mammalian biostratigraphy. Quat. Sci. Rev. 2001, 20, 1693–1705. [Google Scholar] [CrossRef]
- White, T.S.; Bridgland, D.R.; Schreve, D.C.; Limondin-Lozouet, N.; Markova, A.K.; Santisteban, J.I.; Woodburne, M.O. Fossil evidence from Quaternary fluvial archives: Biostratigraphical, biogeographical and palaeoclimatic potential. Quat. Sci. Rev. 2017, 166, 150–176. [Google Scholar] [CrossRef]
- Rixhon, G.; Briant, R.; Cordier, S.; Duval, M.; Jones, A.; Scholz, D. Dating techniques (from methodological improvements to a better knowledge of the evolution of fluvial environments). Quat. Sci. Rev. 2017, 166, 91–113. [Google Scholar] [CrossRef]
- Pastre, J.-F. The Perrier Plateau: A Plio–Pleistocene long fluvial record in the River Allier basin, Massif Central, France. Quaternaire 2004, 15, 87–101. [Google Scholar] [CrossRef]
- Westaway, R.; Guillou, H.; Yurtmen, S.; Beck, A.; Bridgland, D.R.; Demir, T.; Scaillet, S.; Rowbotham, G. Late Cenozoic uplift of western Turkey: Improved dating of the Kula Quaternary volcanic field and numerical modelling of the Gediz river terrace staircase. Glob. Planet. Chang. 2006, 51, 131–171. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Demir, T.; Seyrek, A.; Pringle, M.; Westaway, R.; Beck, A.R.; Rowbotham, G.; Yurtmen, S. Dating Quaternary volcanism and incision by the River Tigris at Diyarbakır, SE Turkey. J. Quat. Sci. 2007, 22, 387–393. [Google Scholar] [CrossRef]
- Seyrek, A.; Demir, T.; Pringle, M.; Yurtmen, S.; Westaway, R.; Bridgland, D.R.; Beck, A.; Rowbotham, G. Late Cenozoic uplift of the Amanos Mountains and incision of the Middle Ceyhan river gorge, southern Turkey; Ar–Ar dating of the Düziçi basalt. Geomorphology 2008, 97, 321–355. [Google Scholar] [CrossRef]
- Westaway, R.; Guillou, H.; Seyrek, A.; Demir, T.; Bridgland, D.R.; Scaillet, S.; Beck, A. Late Cenozoic surface uplift, basaltic volcanism, and incision by the River Tigris around Diyarbakır, SE Turkey. Int. J. Earth Sci. 2009, 98, 601–625. [Google Scholar] [CrossRef]
- Abou Romieh, M.; Westaway, R.; Daoud, M.; Bridgland, D.R. First indications of high slip rates on active reverse faults NW of Damascus, Syria, from observations of deformed Quaternary sediments: Implications for the partitioning of crustal deformation in the Middle Eastern region. Tectonophysics 2012, 538–540, 86–104. [Google Scholar] [CrossRef]
- Bridgland, D.R. Quaternary of the Thames; Geological Conservation Review Series 7; Chapman and Hall: London, UK, 1994; 401p. [Google Scholar]
- Bridgland, D.R.; Schreve, D.C. Quaternary lithostratigraphy and mammalian biostratigraphy of the Lower Thames terrace system, south-east England. Quaternaire 2004, 15, 29–40. [Google Scholar] [CrossRef]
- Bridgland, D.R. The Middle and Upper Pleistocene sequence in the Lower Thames; a record of Milankovitch climatic fluctuation and early human occupation of southern Britain: Henry Stopes Memorial Lecture. Proc. Geol. Assoc. 2006, 117, 281–305. [Google Scholar] [CrossRef]
- Antoine, P.; Lautridou, J.P.; Laurent, M. Long-term fluvial archives in NW France: Response of the Seine and Somme rivers to tectonic movements, climate variations and sea-level changes. Geomorphology 2000, 33, 183–207. [Google Scholar] [CrossRef]
- Van den Berg, M.W. Neo-tectonics in the Roer Valley Rift System. Style and rate of crustal deformation inferred from syntectonic sedimentation. Geologie en Mijnbouw 1994, 73, 143–156. [Google Scholar]
- Van den Berg, M.W.; van Hoof, T. The Maas terrace sequence at Maastricht, SE Netherlands: Evidence for 200 m of late Neogene and Quaternary surface uplift. In River Basin Sediment Systems: Archives of Environmental Change; Maddy, D., Macklin, M., Woodward, J., Eds.; Balkema: Abingdon, UK, 2001; pp. 45–86. [Google Scholar]
- Bibus, E.; Wesler, J. The middle Neckar as an example of fluviomorphological processes during the Late Quaternary Period. Zeitschrift für Geomorphologie 1995, 100, 15–26. [Google Scholar]
- Cordier, S.; Frechen, M.; Harmand, D.; Beiner, M. Middle and Upper Pleistocene fluvial evolution of the Meurthe and Moselle valleys in the Paris Basin and the Rhenish Massif. Quaternaire 2005, 16, 201–215. [Google Scholar] [CrossRef]
- Cordier, S.; Harmand, D.; Frechen, M.; Beiner, M. Fluvial system response to Middle and Upper Pleistocene climate change in the Meurthe and Moselle valleys (Eastern Paris Basin and Rhenish Massif). Quat. Sci. Rev. 2006, 25, 1460–1474. [Google Scholar] [CrossRef]
- Cordier, S.; Harmand, D.; Lauer, T.; Voinchet, P.; Bahain, J.-J.; Frechen, M. Geochronological reconstruction of the Pleistocene evolution of the Sarre valley (France and Germany) using OSL and ESR dating techniques. Geomorphology 2012, 165–166, 91–106. [Google Scholar] [CrossRef]
- Santisteban, J.I.; Schulte, L. Fluvial networks of the Iberian Peninsula: A chronological framework. Quat. Sci. Rev. 2007, 26, 2738–2757. [Google Scholar] [CrossRef]
- Cunha, P.P.; Martins, A.A.; Huot, S.; Murray, A.; Raposo, L. Dating the Tejo river lower terraces in the Rodao area (Portugal) to assess the role of tectonics and uplift. Geomorphology 2008, 102, 43–54. [Google Scholar] [CrossRef]
- Martins, A.A.; Cunha, P.P.; Huot, S.; Murray, A.S.; Buylaert, J.-P. Geomorphological correlation of the tectonically displaced Tejo River terraces (Gavião–Chamusca area, central Portugal) supported by luminescence dating. Quat. Int. 2009, 199, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.A.; Cunha, P.P.; Rosina, P.; Osterbeck, L.; Cura, S.; Grimaldi, S.; Gomes, J.; Buylaert, J.-P.; Murray, A.; Matos, J. Geoarchaeology of Pleistocene open air sites in the Vila Nova da Barquinha-Santa Cita area (Lower Tejo River basin, central Portugal). Proc. Geol. Assoc. 2010, 121, 128–140. [Google Scholar] [CrossRef]
- Meikle, C.; Stokes, M.; Maddy, D. Field mapping and GIS visualisation of Quaternary river terrace landforms: An example from the Rio Almanzora, SE Spain. J. Maps 2010, 6, 531–542. [Google Scholar] [CrossRef]
- Viveen, W.; Van Balen, R.T.; Schoorl, J.M.; Veldkamp, A.; Temme, A.J.A.M.; Vidal-Romani, J.R. Assessment of recent tectonic activity on the NW Iberian Atlantic margin by means of geomorphic indices and field studies of the lower Miño River terraces. Tectonophysics 2012, 544–545, 13–30. [Google Scholar] [CrossRef]
- Viveen, W.; Braucher, R.; Bourlès, D.; Schoorl, J.M.; Veldkamp, A.; Van Balen, R.T.; Wallinga, J.; Fernandez-Mosquera, D.; Vidal-Romani, J.R.; Sanjurjo-Sanchez, J. A 0.65 Ma chronology and incision rate assessment of the NW Iberian Miño River terraces based on 10Be and luminescence dating. Glob. Planet. Chang. 2012, 94–95, 82–100. [Google Scholar] [CrossRef]
- Viveen, W.; Schoorl, J.M.; Veldkamp, A.; van Balen, R.T.; Desprat, S.; Vidal-Romani, J.R. Reconstructing the interacting effects of base level, climate, and tectonic uplift in the lower Miño River terrace record: A gradient modelling evaluation. Geomorphology 2013, 186, 96–118. [Google Scholar] [CrossRef]
- Cunha, P.P.; Martins, A.A.; Buylaert, J.-P.; Murray, A.S.; Raposo, L.; Mozzi, P.; Stokes, M. New data on the chronology of the Vale do Forno sedimentary sequence (Lower Tejo River terrace staircase) and its relevance as fluvial archive of the Middle Pleistocene in western Iberia. Quat. Sci. Rev. 2017, 166, 204–226. [Google Scholar] [CrossRef]
- Raposo, L.; Santonja, M. The earliest occupation of Europe: The Iberian Peninsula. In The Earliest Occupation of Europe; Roebroeks, W., van Kolfschoten, T., Eds.; University of Leiden Press: Leiden, The Netherlands, 1995; pp. 7–25. [Google Scholar]
- Mozzi, P.; Azevedo, T.; Nunes, E.; Raposo, L. Middle terrace deposits of the Tagus River in Alpiarça. Portugal, in relation to early human occupation. Quat. Res. 2000, 54, 359–371. [Google Scholar] [CrossRef]
- Santonja, M.; Pérez-González, A. Mid-Pleistocene Acheulian industrial complex in the Iberian Peninsula. Quat. Int. 2010, 223–224, 154–161. [Google Scholar] [CrossRef]
- Santonja, M.; Pérez-González, A.; Panera, J.; Rubio-Jara, S.; Méndez-Quintas, E. The coexistence of Acheulean and Ancient Middle Palaeolithic technocomplexes in the Middle Pleistocene of the Iberian Peninsula. Quat. Int. 2016, 411, 367–377. [Google Scholar] [CrossRef]
- Stokes, M.; Mather, A.E. Response of Plio–Pleistocene alluvial systems to tectonically induced base-level changes, Vera Basin, SE Spain. J. Geol. Soc. 2000, 157, 303–316. [Google Scholar] [CrossRef]
- Westaway, R. Geomorphological consequences of weak lower continental crust, and its significance for studies of uplift, landscape evolution, and the interpretation of river terrace sequences. Neth. J. Geosci. 2002, 81, 283–304. [Google Scholar] [CrossRef]
- Tyráček, J.; Westaway, R.; Bridgland, D. River terraces of the Vltava and Labe (Elbe) system, Czech Republic, and their implications for the uplift history of the Bohemian Massif. Proc. Geol. Assoc. 2004, 115, 101–124. [Google Scholar] [CrossRef]
- Kukla, G.J. Saalian Supercycle, Mindel/Riss Interglacial and Milankovitch’s Dating. Quat. Sci. Rev. 2005, 24, 1573–1583. [Google Scholar] [CrossRef]
- Penck, A.; Brückner, E. Die Alpen im Eiszeitalter; Verlag Tauchnitz: Leipzig, Germany, 1901–1909; 3 Volumes; 1396p. [Google Scholar]
- Šibrava, V. Correlations of European glaciations and their relation to the deep sea record. Quat. Sci. Rev. 1986, 5, 433–442. [Google Scholar] [CrossRef]
- Gascoyne, M.; Schwarcz, H.P. Carbonate and sulphate precipitates. In Uranium Series Diseqilibrium: Applications to Environmental Problems; Ivanovitch, M., Harmon, R.S., Eds.; Clarendon Press: Oxford, UK, 1982; pp. 268–301. [Google Scholar]
- Ruszkiczay-Rüdiger, Z.; Fodor, L.; Bada, G.; Leél-Össy, S.; Horváth, E.; Dunai, T.J. Quantification of Quaternary vertical movements in the central Pannonian Basin: A review of chronologic data along the Danube River, Hungary. Tectonophysics 2005, 410, 157–172. [Google Scholar] [CrossRef]
- Zuchiewicz, W. Pozycja stratygraficzna tarasów Dunajca w Karpatach Zachodnich. Przegląd Geologiczny 1992, 40, 436–444, (In Polish with English summary). [Google Scholar]
- Zuchiewicz, W. Quaternary tectonics of the Outer West Carpathians, Poland. Tectonophysics 1998, 297, 121–132. [Google Scholar] [CrossRef]
- Matoshko, A.V.; Gozhik, P.F.; Ivchenko, A.S. The fluvial archive of the Middle and Lower Dnieper (a review). Neth. J. Geosci. 2002, 81, 339–355. [Google Scholar] [CrossRef]
- Starkel, L. Climatically controlled terraces in uplifting mountain areas. Quat. Sci. Rev. 2003, 22, 2189–2198. [Google Scholar] [CrossRef]
- Olszak, J. Evolution of fluvial terraces in response to climate change and tectonic uplift during the Pleistocene: Evidence from Kamienica and Ochotnica River valleys (Polish Outer Carpathians). Geomorphology 2011, 129, 71–78. [Google Scholar] [CrossRef]
- Karner, D.B.; Marra, F. Correlation of fluviodeltaic aggradational sections with glacial climate history: A revision of the Pleistocene stratigraphy of Rome. Geol. Soc. Am. Bull. 1998, 110, 748–758. [Google Scholar] [CrossRef]
- Westaway, R. Late Cenozoic extension in southwest Bulgaria: A synthesis. In Tectonic Development of the Eastern Mediterranean Region; Robertson, A.H.F., Mountrakis, D., Eds.; Special Publication 260; Geological Society: London, UK, 2006; pp. 557–590. [Google Scholar]
- Zagorchev, I. Late Cenozoic development of the Strouma and Mesta fluviolacustrine systems, SW Bulgaria. Quat. Sci. Rev. 2007, 26, 2783–2800. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Westaway, R.; Abou Romieh, M.; Candy, I.; Daoud, M.; Demir, T.; Galiatsatos, N.; Schreve, D.C.; Seyrek, A.; Shaw, A.; et al. The River Orontes in Syria and Turkey: Downstream variation of fluvial archives in different crustal blocks. Geomorphology 2012, 165–166, 25–49. [Google Scholar] [CrossRef]
- Seyrek, A.; Demir, T.; Westaway, R.; Guillou, H.; Scaillet, S.; White, T.S.; Bridgland, D.R. The kinematics of central-southern Turkey and northwest Syria revisited. Tectonophysics 2014, 618, 35–66. [Google Scholar] [CrossRef] [Green Version]
- Aktaş, G.; Robertson, A.H.F. The Maden Complex, SE Turkey: Evolution of a Neotethyan active margin. In The Geological Evolution of the Eastern Mediterranean; Dixon, J.E., Robertson, A.H.F., Eds.; Special Publications; Geological Society of London: London, UK, 1984; Volume 17, pp. 375–402. [Google Scholar]
- Allen, M.B.; Armstrong, H.A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 265, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Veldkamp, A.; Van Dijke, J.J. Simulating internal and external controls on fluvial terrace stratigraphy: A qualitative comparison with the Maas record. Geomorphology 2000, 33, 225–236. [Google Scholar] [CrossRef]
- Adams, J. Contemporary uplift and erosion of the Southern Alps, New Zealand: Summary. Geol. Soc. Am. Bull. 1980, 91, 2–4. [Google Scholar] [CrossRef]
- Batt, G.E.; Braun, J. The tectonic evolution of the Southern Alps, New Zealand: Insights from fully thermally coupled dynamical modelling. Geophys. J. Int. 1999, 136, 403–420. [Google Scholar] [CrossRef]
- House, M.A.; Gurnis, M.; Kamp, P.J.J.; Sutherland, R. Uplift in the Fiordland Region, New Zealand: Implications for Incipient Subduction. Science 2002, 297, 2038–2041. [Google Scholar] [CrossRef] [Green Version]
- Claessens, L.; Veldkamp, A.; ten Broeke, E.M.; Vloemans, H. A Quaternary uplift record for the Auckland region, North Island, New Zealand, based on marine and fluvial terraces. Glob. Planet. Chang. 2009, 68, 383–394. [Google Scholar] [CrossRef]
- Westaway, R. Active crustal deformation beyond the SE margin of the Tibetan Plateau: Constraints from the evolution of fluvial systems. Glob. Planet. Chang. 2009, 68, 395–417. [Google Scholar] [CrossRef]
- Zhao, W.; Morgan, W.J.P. Injection of Indian crust into Tibetan lower crust; a two-dimensional finite element model study. Tectonics 1987, 6, 489–504. [Google Scholar] [CrossRef]
- Westaway, R. Crustal volume balance during the India–Eurasia collision and altitude of the Tibetan plateau: A working hypothesis. J. Geophys. Res. 1995, 100, 15173–15194. [Google Scholar] [CrossRef]
- Molnar, P.; England, P.; Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys. 1993, 31, 357–396. [Google Scholar] [CrossRef]
- Grad, M.; Jensen, S.L.; Keller, G.R.; Guterch, A.; Thybo, H.; Janik, T.; Tiira, T.; Yliniemi, J.; Luosto, U.; Motuza, G.; et al. Crustal structure of the Trans-European suture zone region along POLONAISE’97 seismic profile P4. J. Geophys. Res. 2003, 108, 2511. [Google Scholar] [CrossRef]
- Goes, S.; Spakman, W.; Bijwaard, H. A lower mantle source for Central European volcanism. Science 1999, 286, 1928–1931. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Matoshko, A.; Gozhik, P.; Semenenko, V. Late Cenozoic fluvial development within the coastal plains and shelf of the Sea of Azov and Black Sea basin. Glob. Planet. Chang. 2009, 68, 270–287. [Google Scholar] [CrossRef]
- Shchipansky, A.A.; Bogdanova, S.V. The Sarmatian crustal segment: Precambrian correlation between the Voronezh Massif and the Ukrainian Shield across the Dniepr-Donets Aulacogen. Tectonophysics 1996, 268, 109–125. [Google Scholar] [CrossRef]
- Tarkov, A.P.; Basula, I.V. Inhomogenous structure of the Voronezh Shield lithosphere from explosion seismology data. Phys. Earth Planet. Inter. 1983, 31, 281–292. [Google Scholar] [CrossRef]
- Kutas, R.I. A geothermal model of the Earth’s crust on the territory of the Ukrainian shield. In Terrestrial Heat Flow in Europe; Čermák, V., Rybach, L., Eds.; Springer: Berlin, Germany, 1979; pp. 309–315. [Google Scholar]
- Demir, T.; Westaway, R.; Bridgland, D.; Pringle, M.; Yurtmen, S.; Beck, A.; Rowbotham, G. Ar–Ar dating of Late Cenozoic basaltic volcanism in northern Syria: Implications for the history of incision by the River Euphrates and uplift of the northern Arabian Platform. Tectonics 2007, 26, TC3012. [Google Scholar] [CrossRef]
- Demir, T.; Westaway, R.; Seyrek, A.; Bridgland, D. Terrace staircases of the River Euphrates in southeast Turkey, northern Syria and western Iraq: Evidence for regional surface uplift. Quat. Sci. Rev. 2007, 26, 2844–2863. [Google Scholar] [CrossRef]
- Demir, T.; Seyrek, A.; Westaway, R.; Bridgland, D.; Beck, A. Late Cenozoic surface uplift revealed by incision by the River Euphrates at Birecik, southeast Turkey. Quat. Int. 2008, 186, 132–163. [Google Scholar] [CrossRef]
- Breeze, P.S.; Drake, N.A.; Groucutt, H.S.; Parton, A.; Jennings, R.P.; White, T.S.; Clark-Balzan, L.; Shipton, C.; Scerri, E.M.L.; Stimpson, C.M.; et al. Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites. Quat. Int. 2015, 382, 98–119. [Google Scholar] [CrossRef]
- Breeze, P.S.; Groucutt, H.S.; Drake, N.A.; White, T.S.; Jennings, R.P.; Petraglia, M.P. Palaeohydrological corridors for hominin dispersals in the Middle East ~250–270,000 years ago. Quat. Sci. Rev. 2016, 144, 155–185. [Google Scholar] [CrossRef]
- Kuzucuoğlu, C.; Fontugne, M.; Mouralis, D. Holocene terraces in the Middle Euphrates valley between halfeti and karkemish (Gaziantep, Turkey). Quaternaire 2004, 15, 195–206. [Google Scholar] [CrossRef]
- Mishra, S.; Rajaguru, S. Quaternary deposits at Bhedaghat, near Jabalpur, Madhya Pradesh. Man Environ. 1993, 18, 7–13. [Google Scholar]
- Mishra, S. Prehistoric and Quaternary studies at Nevasa: The last forty years. Mem. Geol. Soc. India 1995, 32, 324–332. [Google Scholar]
- Mishra, S.; Naik, S.; Adhav, U.; Deo, S.; Rajaguru, S. Studies in the geomorphology, Quaternary palaeoenvironments and archaeology of the Vel River, a tributary of the Bhima in western Maharashtra. Man Environ. 1999, 24, 159–166. [Google Scholar]
- Westaway, R.; Mishra, S.; Deo, S.; Bridgland, D.R. Methods for determination of the age of Pleistocene tephra, derived from eruption of Toba, in central India. J. Earth Syst. Sci. 2011, 120, 503–530. [Google Scholar] [CrossRef]
- Mishra, S.; Venkatesan, T.R.; Rajaguru, S.N.; Somayajulu, B.L.K. Earliest Acheulian industry from Peninsular India. Curr. Anthropol. 1995, 36, 847–851. [Google Scholar] [CrossRef]
- Horn, P.; Müller-Sohnius, D.; Storzer, D.; Zöller, L. K–Ar, fission track, and thermoluminescence ages of Quaternary volcanic tuffs and their bearing on Acheulian artefacts from Bori, Kukdi valley, Pune district, India. Z. Deutschen Geol. Ges. 1993, 144, 327–329. [Google Scholar]
- Shane, P.; Westgate, J.; Williams, M.; Korisettar, R. New geochemical evidence for the youngest Toba tuff in India. Quat. Res. 1995, 44, 200–204. [Google Scholar] [CrossRef]
- Westgate, J.; Shane, P.; Pearce, N.; Perkins, W.; Korisettar, R.; Chesner, C.; Williams, M.; Acharyya, S. All the Toba occurrences across peninsular India belong to 75,000 bp eruption. Quat. Res. 1998, 50, 107–112. [Google Scholar] [CrossRef]
- Koons, P.O. Modeling the topographic evolution of collisional belts. Annu. Rev. Earth Planet. Sci. 1995, 23, 375–408. [Google Scholar] [CrossRef]
- Wang, E.; Burchfiel, B.C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan Shear Zone and the eastern Himalayan syntaxis. Int. Geol. Rev. 1997, 39, 191–219. [Google Scholar] [CrossRef]
- Brookfield, M.E. The evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: Rivers draining southwards. Geomorphology 1998, 2, 285–312. [Google Scholar] [CrossRef]
- Clark, M.K.; Schoenbohm, L.M.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W.; Wang, E.; Chen, L. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 2004, 23, TC1006. [Google Scholar] [CrossRef]
- Hallet, B.; Molnar, P. Distorted drainage basins as markers of crustal strain east of the Himalaya. J. Geophys. Res. 2001, 106, 13697–13709. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Wu, Z.; Zhao, X.; Li, J.; Xiao, K. Ages and genesis of terrace flights in the middle reaches of the Yarlung Zangbo River, Tibetan Plateau, China. Boreas 2014, 43, 485–504. [Google Scholar] [CrossRef]
- Clift, P.D.; Lee, J.I.; Hildebrand, P.; Shimizu, N.; Layne, G.D.; Blusztajn, J.; Blum, J.D.; Garzanti, E.; Khan, A.A. Nd and Pb isotope variability in the Indus River system: Implications for sediment provenance and crustal heterogeneity in the Western Himalaya. Earth Planet. Sci. Lett. 2002, 200, 91–106. [Google Scholar] [CrossRef]
- Clift, P.D.; Blusztajn, J. Reorganization of the western Himalayan river system after five million years ago. Nature 2005, 438, 1001–1003. [Google Scholar] [CrossRef] [PubMed]
- Stroeven, A.P.; Hättestrand, C.; Heyman, J.; Harbor, J.; Li, Y.K.; Zhou, L.P.; Caffee, M.W.; Alexanderson, H.; Kleman, J.; Ma, H.Z.; et al. Landscape analysis of the Huang He headwaters, NE Tibetan Plateau—Patterns of glacial and fluvial erosion. Geomorphology 2009, 103, 212–226. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Li, J.J.; Zhao, J.D.; Wang, J.; Zheng, J.X. Quaternary glaciations: Extent and chronology in China. In Quaternary Glaciations—Extent and Chronology. A Closer Look; Ehlers, J., Gibbard, P.L., Hughes, P.D., Eds.; Developments in Quaternary Science No. 15; Elsevier: Amsterdam, The Netherlands, 2011; pp. 981–1002. [Google Scholar]
- Cordier, S.; Adamson, K.; Delmas, M.; Calvet, M.; Harmand, D. Of ice and water: Quaternary fluvial response to glacial forcing. Quat. Sci. Rev. 2017, 166, 57–73. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Howard, A.J.; White, M.J.; White, T.S. The Quaternary of the Trent; Oxbow Books: Oxford, UK, 2014; 406p. [Google Scholar]
- Bridgland, D.R.; Howard, A.J.; White, M.J.; White, T.S.; Westaway, R. New insight into the Quaternary evolution of the River Trent, UK. Proc. Geol. Assoc. 2015, 126, 466–479. [Google Scholar] [CrossRef] [Green Version]
- White, T.S.; Bridgland, D.R.; Westaway, R.; Straw, A. Evidence for late Middle Pleistocene glaciation of the British margin of the southern North Sea. J. Quat. Sci. 2017, 32, 261–275. [Google Scholar] [CrossRef]
- Häeselmann, P.; Mihevc, A.; Pruner, P.; Horáček, I.; Čermák, S.; Hercman, H.; Sahy, D.; Fiebig, M.; Zupan Hajna, N.; Bosák, P. Snežna Jama (Slovenia): Interdisciplinary dating of cave sediments and implication for landscape evolution. Geomorphology 2015, 247, 10–24. [Google Scholar] [CrossRef]
- Mihevc, A.; Bavec, M.; Häuselmann, P.; Fiebig, M. Dating of the Udin Boršt conglomerate terrace and implication for tectonic uplift in the northwestern part of the Ljubljana Basin (Slovenia). Acta Carsol. 2015, 44, 169–176. [Google Scholar] [CrossRef]
- Ferk, M.; Gabrovec, M.; Komac, B.; Zorn, M.; Stepišnik, U. Pleistocene glaciation in Mediterranean Slovenia. In Quaternary Glaciation in the Mediterranean Mountains; Hughes, P.D., Woodward, J.C., Eds.; Special Publication 433; Geological Society: London, UK, 2017; pp. 179–191. [Google Scholar]
- Westaway, R. Investigation of coupling between surface processes and induced flow in the lower continental crust as a cause of intraplate seismicity. Earth Surf. Process. Landf. 2006, 31, 1480–1509. [Google Scholar] [CrossRef]
- Waltham, A.C.; Simms, M.J.; Farrant, A.J.; Goldie, H.S. Karst and Caves of Great Britain; Geological Conservation Review Series 12; Chapman & Hall: London, UK, 1997; 358p. [Google Scholar]
- Granger, D.E.; Fabel, D.; Palmer, A.N. Pliocene–Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments. Geol. Soc. Am. Bull. 2001, 113, 825–836. [Google Scholar] [CrossRef]
- Westaway, R. Late Cenozoic uplift of the eastern United States revealed by fluvial sequences of the Susquehanna and Ohio systems: Coupling between surface processes and lower-crustal flow. Quat. Sci. Rev. 2007, 26, 2823–2843. [Google Scholar] [CrossRef]
- Westaway, R. Quaternary uplift of northern England. Glob. Planet. Chang. 2009, 68, 257–282. [Google Scholar] [CrossRef]
- Meyer, M.C.; Cliff, R.A.; Spötl, C. Speleothems and mountain uplift. Geology 2011, 39, 447–450. [Google Scholar] [CrossRef]
- Hu, Z.; Pan, B.; Bridgland, D.R.; Vandenberghe, J.; Guo, L.; Fan, Y.; Westaway, R. The linking of the upper-middle and lower reaches of the Yellow River as a result of fluvial entrenchment. Quat. Sci. Rev. 2017, 166, 324–338. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Guo, Z.; Fu, S. Endorheic or exorheic: Differential isostatic effects of Cenozoic sediments on the elevations of the cratonic basins around the Tibetan Plateau. Terra Nova 2015, 27, 21–27. [Google Scholar] [CrossRef]
- Perrineau, A.; Van der Woerd, J.; Gaudemer, Y.; Jing, L.-Z.; Pik, R.; Tapponnier, P.; Thuizat, R.; Zheng, R. Incision rate of the Yellow River in Northeastern Tibet constrained by 10Be and 26Al cosmogenic isotope dating of fluvial terraces: Implications for catchment evolution and plateau building. In EGU General Assembly Conference Abstracts; Special Publication 353; Geological Society: London, UK, 2001; pp. 189–219. [Google Scholar]
- Craddock, H.W.; Kirby, E.; Harkins, W.N.; Zhang, H.; Shi, X.; Liu, J. Rapid fluvial incision along the Yellow River during headward basin integration. Nat. Geosci. 2010, 3, 209–213. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, X.; Pan, B.; Bridgland, D.R.; Vandenberghe, J. The Quaternary of the Upper Yellow River and Its Environs: Field Guide; Quaternary Research Association: London, UK, 2017; 84p. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, T.; Westaway, R.; Bridgland, D. The Influence of Crustal Properties on Patterns of Quaternary Fluvial Stratigraphy in Eurasia. Quaternary 2018, 1, 28. https://doi.org/10.3390/quat1030028
Demir T, Westaway R, Bridgland D. The Influence of Crustal Properties on Patterns of Quaternary Fluvial Stratigraphy in Eurasia. Quaternary. 2018; 1(3):28. https://doi.org/10.3390/quat1030028
Chicago/Turabian StyleDemir, Tuncer, Rob Westaway, and David Bridgland. 2018. "The Influence of Crustal Properties on Patterns of Quaternary Fluvial Stratigraphy in Eurasia" Quaternary 1, no. 3: 28. https://doi.org/10.3390/quat1030028
APA StyleDemir, T., Westaway, R., & Bridgland, D. (2018). The Influence of Crustal Properties on Patterns of Quaternary Fluvial Stratigraphy in Eurasia. Quaternary, 1(3), 28. https://doi.org/10.3390/quat1030028