The Potential of Speleothems from Western Europe as Recorders of Regional Climate: A Critical Assessment of the SISAL Database
Abstract
:1. Introduction
2. Study Region and Climate
3. Western European Records in SISAL_v1
3.1. Spatio-Temporal Coverage and Regional Potential
3.2. Dating Methods and Chronologies
3.3. Availability of Environmental and Monitoring Data
3.4. Climate Controls on Speleothem Growth
3.5. Controls on δ18Ospel
4. Regional Patterns in δ18Ospel Records Through Time
4.1. Spatial Trends and Comparison to Observations
4.2. Last Glacial Period
4.3. Holocene Climate Variability
4.4. The Last Two Millennia
5. Improvements to SISAL for Western Europe
6. Future Directions
- Inclusion of missing records, which were not available to us for SISAL_v1 as they had not been archived in the supplementary information or on public repositories, and where no/limited contact with the original authors could be established. This is crucial for the assessment of temporal and spatial coverage of speleothem records in Western Europe and helps defining future target regions and time periods for new studies. This could be a starting point for revisiting sites and speleothems that have shown great sensitivity for climate reconstruction, but where resolution and/or chronological precision could be improved. It could also be of interest for a better definition of short-lived events such as the 8.2 ka event or the 4.2 ka event, and to improve chronological controls of speleothems previously dated with TIMS.
- Addition and use of other types of data. For example, fluid inclusion δ18O measurements on speleothems would provide important direct information on past precipitation δ18O. Similarly, speleothem δ13C data, already included in the database, should be evaluated, as many sites highlight its importance as (qualitative) proxy for soil activity and hydroclimate [44,61,126].
- Inclusion of more information about cave monitoring. The SISAL_v1 database only includes a yes/no/unknown entry for cave monitoring, which is often not sufficient when evaluating the extent of knowledge of modern cave conditions.
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wong, C.I.; Breecker, D.O. Advancements in the use of speleothems as climate archives. Quat. Sci. Rev. 2015, 127, 1–18. [Google Scholar] [CrossRef]
- Henderson, G.M. Caving in to new chronologies. Science 2006, 313, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Atsawawaranunt, K.; Comas-Bru, L.; Mozhdehi, S.A.; Deininger, M.; Harrison, S.P.; Baker, A.; Boyd, M.; Kaushal, N.; Ahmad, S.M.; Ait Brahim, Y.; et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems. Earth Syst. Sci. Data 2018, 10, 1687–1713. [Google Scholar] [CrossRef]
- McDermott, F.; Atkinson, T.C.; Fairchild, I.J.; Baldini, L.M.; Mattey, D.P. A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems. Glob. Planet. Chang. 2011, 79, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Duplessy, J.C.; Labeyrie, J.; Lalou, C.; Nguyen, H.V. Continental climatic variations between 130,000 and 90,000 years BP. Nature 1970, 226, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, S.-E.; Lundberg, J. Speleothems and climate: A special issue of The Holocene. Holocene 1999, 9, 643–647. [Google Scholar] [CrossRef]
- McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Lachniet, M.S. Climatic and environmental controls on speleothem oxygen-isotope values. Quat. Sci. Rev. 2009, 28, 412–432. [Google Scholar] [CrossRef]
- Wanner, H.; Beer, J.; Bütikofer, J.; Crowley, T.J.; Cubasch, U.; Flückiger, J.; Goosse, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Wassenburg, J.A.; Dietrich, S.; Fietzke, J.; Fohlmeister, J.; Jochum, K.P.; Scholz, D.; Richter, D.K.; Sabaoui, A.; Spötl, C.; Lohmann, G.; et al. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation. Nat. Geosci. 2016, 9, 602–605. [Google Scholar] [CrossRef]
- Pérez-Mejías, C.; Moreno, A.; Sancho, C.; Bartolomé, M.; Stoll, H.; Cacho, I.; Cheng, H.; Edwards, R.L. Abrupt climate changes during Termination III in Southern Europe. Proc. Natl. Acad. Sci. USA 2017, 114, 10047–10052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. 2018. Available online: https://nucleus.iaea.org/wiser (accessed on 10 October 2018).
- Genty, D. Palaeoclimate Research in Villars Cave (Dordogne, SW-France). Int. J. Speleol. 2008, 37, 173–191. [Google Scholar] [CrossRef]
- Spötl, C.; Fairchild, I.J.; Tooth, A.F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochim. Cosmochim. Acta 2005, 69, 2451–2468. [Google Scholar] [CrossRef]
- Sundqvist, H.S.; Seibert, J.; Holmgren, K. Understanding conditions behind speleothem formation in Korallgrottan, northwestern Sweden. J. Hydrol. 2007, 347, 13–22. [Google Scholar] [CrossRef]
- Genty, D.; Labuhn, I.; Hoffmann, G.; Danis, P.A.; Mestre, O.; Bourges, F.; Wainer, K.; Massault, M.; Van Exter, S.; Régnier, E.; et al. Rainfall and cave water isotopic relationships in two South-France sites. Geochim. Cosmochim. Acta 2014, 131, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Riechelmann, S.; Schröder-Ritzrau, A.; Spötl, C.; Riechelmann, D.F.C.; Richter, D.K.; Mangini, A.; Frank, N.; Breitenbach, S.F.M.; Immenhauser, A. Sensitivity of Bunker Cave to climatic forcings highlighted through multi-annual monitoring of rain-, soil-, and dripwaters. Chem. Geol. 2017, 449, 194–205. [Google Scholar] [CrossRef]
- Kern, Z.; Demény, A.; Hatvani, I.G. Speleothem records from Eastern Europe & Turkey. Quaternary 2018. submitted. [Google Scholar]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef]
- Comas-Bru, L.; Harrison, S.P.; Deininger, M. SISAL, speleothems and the state-of-the-art. Quaternary 2018. submitted. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Geiger, R. Überarbeitete Neuausgabe von Geiger, R. In Köppen-Geiger/Klima der Erde. (Wandkarte 1:16 Mill); Klett-Perthes: Gotha, Germany, 1961. [Google Scholar]
- Geiger, R. Klassifikation der klimate nach W. Köppen. In Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik; Alte Series; Springer: Berlin, Germany, 1954; Volume 3. [Google Scholar]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. In Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S., Eds.; AGU: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Celle-Jeanton, H.; Travi, Y.; Blavoux, B. Isotopic typology of the precipitation in the Western Mediterrenean region at the three different time scales. Geophys. Res. Lett. 2001, 28, 1215–1218. [Google Scholar] [CrossRef]
- Flaim, G.; Camin, F.; Tonon, A.; Obertegger, U. Stable isotopes of lakes and precipitation along an altitudinal gradient in the Eastern Alps. Biogeochemistry 2013, 116, 187–198. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2009, 78, 28–41. [Google Scholar] [CrossRef]
- Marshall, J.; Kushnir, Y.; Battisti, D.; Chang, P.; Czaja, A.; Dickson, R.; Hurrell, J.; McCartney, M.; Saravanan, R.; Visbeck, M. North Atlantic climate variability: Phenomena, impacts and mechanisms. Int. J. Climatol. 2001, 21, 1863–1898. [Google Scholar] [CrossRef]
- Casty, C.; Wanner, H.; Luterbacher, J.; Esper, J.; Böhm, R. Temperature and precipitation variability in the European Alps since 1500. Int. J. Climatol. 2005, 25, 1855–1880. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.J.; Mattey, D. Climate variability and precipitation isotope relationships in the Mediterranean region. J. Geophys. Res. Atmos. 2012, 117, 1–13. [Google Scholar] [CrossRef]
- Baldini, L.M.; McDermott, F.; Foley, A.M.; Baldini, J.U.L. Spatial variability in the European winter precipitation d18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef]
- Comas-Bru, L.; McDermott, F.; Werner, M. The effect of the East Atlantic pattern on the precipitation δ18O-NAO relationship in Europe. Clim. Dyn. 2016, 47, 2059–2069. [Google Scholar] [CrossRef]
- Deininger, M.; McDermott, F.; Mudelsee, M.; Werner, M.; Frank, N.; Mangini, A. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation. Clim. Dyn. 2017, 49, 595–618. [Google Scholar] [CrossRef]
- Langebroek, P.M.; Werner, M.; Lohmann, G. Climate information imprinted in oxygen-isotopic composition of precipitation in Europe. Earth Planet. Sci. Lett. 2011, 311, 144–154. [Google Scholar] [CrossRef]
- Field, R.D. Observed and modeled controls on precipitation δ18O over Europe: From local temperature to the Northern Annular Mode. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Moore, G.W.K.; Pickart, R.S.; Renfrew, I.A. Complexities in the climate of the subpolar North Atlantic: A case study from the winter of 2007. Q. J. R. Meteorol. Soc. 2011, 137, 757–767. [Google Scholar] [CrossRef]
- Moore, G.W.K.; Renfrew, I.A.; Pickart, R.S. Multidecadal mobility of the North Atlantic Oscillation. J. Clim. 2013, 26, 2453–2466. [Google Scholar] [CrossRef]
- Comas-Bru, L.; McDermott, F. Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship. Q. J. R. Meteorol. Soc. 2014, 140, 354–363. [Google Scholar] [CrossRef]
- Martin-Vide, J.; Lopez-Bustins, J.-A. The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int. J. Climatol. 2006, 26, 1455–1475. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Zanchetta, G.; Hellstrom, J.C.; Fallick, A.E.; Zhao, J.X.; Isola, I.; Bruschi, G. Palaeoclimatic implications of the growth history and stable isotope (d18O and d13C) geochemistry of a Middle to Late Pleistocene stalagmite from central-western Italy. Earth Planet. Sci. Lett. 2004, 227, 215–229. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Zanchetta, G.; Hellstrom, J.C.; Fallick, A.E.; Zhao, J.X. Stalagmite evidence for the onset of the Last Interglacial in southern Europe at 129 +/−1 ka. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Mattey, D.; Lowry, D.; Duffet, J.; Fisher, R.; Hodge, E.; Frisia, S. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth Planet. Sci. Lett. 2008, 269, 80–95. [Google Scholar] [CrossRef]
- Scholz, D.; Frisia, S.; Borsato, A.; Spötl, C.; Fohlmeister, J.; Mudelsee, M.; Miorandi, R.; Mangini, A. Holocene climate variability in north-eastern Italy: Potential influence of the NAO and solar activity recorded by speleothem data. Clim. Past 2012, 8, 1367–1383. [Google Scholar] [CrossRef]
- Linge, H.; Lauritzen, S.-E.; Lundberg, J. Stable isotope stratigraphy of a late Last Interglacial speleothem from Rana, Northern Norway. Quat. Res. 2001, 56, 155–164. [Google Scholar] [CrossRef]
- Berstad, I.M.; Lundberg, J.; Lauritzen, S.E.; Linge, H. Comparison of the climate during marine isotope stage 9 and 11 inferred from a speleothem isotope record from northern Norway. Quat. Res. 2002, 58, 361–371. [Google Scholar] [CrossRef]
- Lauritzen, S.-E.; Lundberg, J. Isotope Stage 11, the “Super-Interglacial”, from a north Norwegian speleothem. In Studies of Cave Sediments; Springer: Boston, MA, USA, 2004; pp. 257–272. [Google Scholar]
- Scroxton, N.; Gagan, M.K.; Dunbar, G.B.; Ayliffe, L.K.; Hantoro, W.S.; Shen, C.C.; Hellstrom, J.C.; Zhao, J.X.; Cheng, H.; Edwards, R.L.; et al. Natural attrition and growth frequency variations of stalagmites in southwest Sulawesi over the past 530,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 441, 823–833. [Google Scholar] [CrossRef]
- Fischer, H.; Meissner, K.J.; Mix, A.C.; Abram, N.J.; Austermann, J.; Brovkin, V.; Capron, E.; Colombaroli, D.; Daniau, A.L.; Dyez, K.A.; et al. Palaeoclimate constraints on the impact of 2°C anthropogenic warming and beyond. Nat. Geosci. 2018, 11, 474–485. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 2005, 20, 1–17. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Zanchetta, G.; Hellstrom, J.C.; Fallick, A.E.; McDonald, J.; Cartwright, I. Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial. Geology 2007, 35, 77–80. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Hellstrom, J.C.; Zanchetta, G.; Fallick, A.E.; Sanchez Goni, M.F.; Couchoud, I.; McDonald, J.; Maas, R.; Lohmann, G.; Isola, I. Evidence for obliquity forcing of Glacial Termination II. Science 2009, 325, 1527–1531. [Google Scholar] [CrossRef]
- Daëron, M.; Guo, W.; Eiler, J.; Genty, D.; Blamart, D.; Boch, R.; Drysdale, R.; Maire, R.; Wainer, K.; Zanchetta, G. 13C18O clumping in speleothems: Observations from natural caves and precipitation experiments. Geochim. Cosmochim. Acta 2011, 75, 3303–3317. [Google Scholar]
- Zanchetta, G.; Drysdale, R.N.; Hellstrom, J.C.; Fallick, A.E.; Isola, I.; Gagan, M.K.; Pareschi, M.T. Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quat. Sci. Rev. 2007, 26, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Jackson, A.S.; McDermott, F.; Mangini, A. Late Holocene climate oscillations and solar fluctuations from speleothem STAL-AH-1, Sauerland, Germany: A numerical perspective. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Niggemann, S.; Mangini, A.; Mudelsee, M.; Richter, D.K.; Wurth, G. Sub-Milankovitch climatic cycles in Holocene stalagmites from Sauerland, Germany. Earth Planet. Sci. Lett. 2003, 216, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Niggemann, S.; Mangini, A.; Richter, D.K.; Wurth, G. A paleoclimate record of the last 17,600 years in stalagmites from the B7 cave, Sauerland, Germany. Quat. Sci. Rev. 2013, 22, 555–567. [Google Scholar] [CrossRef]
- Boch, R.; Cheng, H.; Spötl, C.; Edwards, R.L.; Wang, X.; Häuselmann, P. NALPS: A precisely dated European climate record 120-60 ka. Clim. Past 2011, 7, 1247–1259. [Google Scholar] [CrossRef]
- Couchoud, I.; Genty, D.; Hoffmann, D.; Drysdale, R.; Blamart, D. Millennial-scale climate variability during the Last Interglacial recorded in a speleothem from south-western France. Quat. Sci. Rev. 2009, 28, 3263–3274. [Google Scholar] [CrossRef]
- Baldini, J.U.L. Morphologic and dimensional linkage between recently deposited speleothems and drip water from Browns Folly Mine, Wiltshire, England. J. Cave Karst Stud. 2001, 63, 83–90. [Google Scholar]
- Baldini, J.U.L.; McDermott, F.; Baker, A.; Baldini, L.M.; Mattey, D.P.; Railsback, L.B. Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England. Earth Planet. Sci. Lett. 2005, 240, 486–494. [Google Scholar] [CrossRef]
- Drysdale, R.; Zanchetta, G.; Hellstrom, J.; Maas, R.; Fallick, A.; Pickett, M.; Cartwright, I.; Piccini, L. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology 2006, 34, 101–104. [Google Scholar] [CrossRef]
- Zanchetta, G.; Regattieri, E.; Isola, I.; Drysdale, R.N.; Bini, M.; Baneschi, I.; Hellstrom, J.C. The so-called “4.2 event” in the central mediterranean and its climatic teleconnections. Alp. Mediterr. Quat. 2016, 29, 5–17. [Google Scholar]
- Drysdale, R.N. Unpublished dataset. 2018. [Google Scholar]
- Columbu, A.; Drysdale, R.; Capron, E.; Woodhead, J.; De Waele, J.; Sanna, L.; Hellstrom, J.; Bajo, P. Early last glacial intra-interstadial climate variability recorded in a Sardinian speleothem. Quat. Sci. Rev. 2017, 169, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Fohlmeister, J.; Schröder-Ritzrau, A.; Scholz, D.; Spötl, C.; Riechelmann, D.F.C.; Mudelsee, M.; Wackerbarth, A.; Gerdes, A.; Riechelmann, S.; Immenhauser, A.; et al. Bunker cave stalagmites: An archive for central European Holocene climate variability. Clim. Past 2012, 8, 1751–1764. [Google Scholar] [CrossRef]
- Genty, D.; Blamart, D.; Ghaleb, B.; Plagnes, V.; Causse, C.; Bakalowicz, M.; Zouari, K.; Chkir, N.; Hellstrom, J.; Wainer, K.; et al. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles-comparison with Chinese and South Hemisphere stalagmites. Quat. Sci. Rev. 2006, 25, 2118–2142. [Google Scholar] [CrossRef]
- Plagnes, V.; Causse, C.; Genty, D.; Paterne, M.; Blamart, D. A discontinuous climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (south of France). Earth Planet. Sci. Lett. 2002, 201, 87–103. [Google Scholar] [CrossRef]
- McDermott, F.; Frisia, S.; Huang, Y.; Longinelli, A.; Spiro, B.; Heaton, T.H.E.; Hawkesworth, C.J.; Borsato, A.; Keppens, E.; Fairchild, I.J.; et al. Holocene climate variability in Europe: Evidence from d18O, textural and extension-rate variations in three speleothems. Quat. Sci. Rev. 1999, 18, 1021–1038. [Google Scholar] [CrossRef]
- Genty, D.; Plagnes, V.; Causse, C.; Cattani, O.; Stievenard, M.; Falourd, S.; Blamart, D.; Ouahdi, R.; Van-Exter, S. Fossil water in large stalagmite voids as a tool for paleoprecipitation stable isotope composition reconstitution and paleotemperature calculation. Chem. Geol. 2002, 184, 83–95. [Google Scholar] [CrossRef]
- Railsback, L.B.; Liang, F.; Vidal Romaní, J.R.; Grandal-d’Anglade, A.; Vaqueiro Rodríguez, M.; Santos Fidalgo, L.; Fernández Mosquera, D.; Cheng, H.; Edwards, R.L. Petrographic and isotopic evidence for Holocene long-term climate change and shorter-term environmental shifts from a stalagmite from the Serra do Courel of northwestern Spain, and implications for climatic history across Europe and the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 305, 172–184. [Google Scholar] [CrossRef]
- Hodge, E.J.; Richards, D.A.; Smart, P.L.; Andreo, B.; Hoffmann, D.L.; Mattey, D.P.; González-Ramón, A. Effective precipitation in southern Spain (∼266 to 46 ka) based on a speleothem stable carbon isotope record. Quat. Res. 2008, 69, 447–457. [Google Scholar] [CrossRef]
- McDermott, F.; Mattey, D.P.; Hawkesworth, C. Centennial-scale holocene climate variability revealed by a high-resolution speleothemd18O record from SW Ireland. Science 2001, 294, 1328–1331. [Google Scholar] [CrossRef]
- Smith, A.C.; Wynn, P.M.; Barker, P.A.; Leng, M.J.; Noble, S.R.; Tych, W. North Atlantic forcing of moisture delivery to Europe throughout the Holocene. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Martín-Chivelet, J.; Muñoz-García, M.B.; Edwards, R.L.; Turrero, M.J.; Ortega, A.I. Land surface temperature changes in Northern Iberia since 4000yrBP, based on δ13C of speleothems. Glob. Planet. Chang. 2011, 77, 1–12. [Google Scholar] [Green Version]
- González-Lemos, S.; Jiménez-Sánchez, M.; Stoll, H.M. Sediment transport during recent cave flooding events and characterization of speleothem archives of past flooding. Geomorphology 2015, 228, 87–100. [Google Scholar]
- Moreno, A.; Pérez-Mejías, C.; Bartolomé, M.; Sancho, C.; Cacho, I.; Stoll, H.; Delgado-Huertas, A.; Hellstrom, J.; Edwards, R.L.; Cheng, H. New speleothem data from Molinos and Ejulve caves reveal Holocene hydrological variability in northeast Iberia. Quat. Res. 2017, 88, 223–233. [Google Scholar] [CrossRef]
- Meyer, M.C.; Spötl, C.; Mangini, A. The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quat. Sci. Rev. 2008, 27, 476–496. [Google Scholar] [CrossRef]
- Ponte, J.M.; Font, E.; Veiga-Pires, C.; Hillaire-Marcel, C.; Ghaleb, B. The effect of speleothem surface slope on the remanent magnetic inclination. J. Geophys. Res. Solid Earth 2017, 122, 4143–4156. [Google Scholar] [CrossRef] [Green Version]
- Frisia, S.; Borsato, A.; Mangini, A.; Spötl, C.; Madonia, G.; Sauro, U. Holocene climate variability in Sicily from a discontinuous stalagmite record and the Mesolithic to Neolithic transition. Quat. Res. 2006, 66, 388–400. [Google Scholar] [CrossRef]
- Madonia, G.; Frisia, S.; Borsato, A.; Macaluso, T.; Mangini, A.; Paladini, M.; Piccini, L.; Miorandi, R.; Spötl, C.; Sauro, U.; et al. La Grotta di Carburangeli – ricostruzione climatica dell’ Olocene per la piana costiera della Sicilia nord-occidentale. Studi Trent. Sci. Nat. Acta Geol. 2003, 80, 153–167. [Google Scholar]
- Stoykova, D.; Shopov, Y.; Sauro, U.; Borsato, A.; Cucchi, F.; Forti, P. High-Resolution Climate Proxy Records for the Last 2000 Years from a Speleothem from Savi Cave, Trieste, NE Italy. Studi Trent. Sci. Nat. Acta Geol. 2003, 80, 169–173. [Google Scholar]
- Genty, D.; Massault, M.; Gilmour, M.; Baker, A.; Verheyden, S.; Kepens, E. Calculations of past dead carbon proportion and variability by the comparison of AMS 14C and TIMS U/Th ages on two Holocene stalagmites. Radiocarbon 1999, 41, 251–270. [Google Scholar] [CrossRef]
- Genty, D.; Vokal, B.; Obelic, B.; Massault, M. Bomb 14 C time history recorded in two modern stalagmites —Importance for soil organic matter dynamics and bomb 14 C distribution over continents. Earth Planet. Sci. Lett. 1998, 160, 795–809. [Google Scholar] [CrossRef]
- Vansteenberge, S.; Verheyden, S.; Cheng, H.; Edwards, L.R.; Keppens, E.; Claeys, P. Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125-97 ka): Insights from a Belgian speleothem. Clim. Past 2016, 12, 1445–1458. [Google Scholar] [CrossRef]
- Van Rampelbergh, M.; Verheyden, S.; Allan, M.; Quinif, Y.; Cheng, H.; Edwards, L.R.; Keppens, E.; Claeys, P. A 500-year seasonally resolved δ18O and δ13C, layer thickness and calcite aspect record from a speleothem deposited in the Han-sur-Lesse cave, Belgium. Clim. Past 2015, 11, 789–802. [Google Scholar] [CrossRef]
- Moseley, G.E.; Spötl, C.; Svensson, A.; Cheng, H.; Brandstätter, S.; Edwards, R.L. Multi-speleothem record reveals tightly coupled climate between central europe and greenland during marine isotope stage 3. Geology 2014, 42, 1043–1046. [Google Scholar] [CrossRef]
- Moseley, G.E.; Spötl, C.; Cheng, H.; Boch, R.; Min, A.; Edwards, R.L. Termination-II interstadial/stadial climate change recorded in two stalagmites from the north European Alps. Quat. Sci. Rev. 2015, 127, 229–239. [Google Scholar] [CrossRef]
- Wurth, G.; Niggemann, S.; Richter, D.K.; Mangini, A. The Younger Dryas and Holocene climate record of a stalagmite from Hölloch Cave(Bavarian Alps, Germany. J. Quat. Sci. 2004, 19, 291–298. [Google Scholar] [CrossRef]
- Spötl, C.; Mangini, A. U/Th age constraints on the absence of ice in the central Inn Valley (eastern Alps, Austria) during Marine Isotope Stages 5c to 5a. Quat. Res. 2006, 66, 167–175. [Google Scholar] [Green Version]
- Verheyden, S.; Keppens, E.; van Strydonck, M.; Quinif, Y. The 8.2 ka event: its it registered in Belgian speleothems? Speleogenesis Evolution Karst Aquifers 2012, 12. [Google Scholar]
- Domínguez-Villar, D.; Wang, X.; Krklec, K.; Cheng, H.; Edwards, R.L. The control of the tropical North Atlantic on Holocene millennial climate oscillations. Geology 2017, 45, 303–306. [Google Scholar] [CrossRef]
- Boch, R.; Spötl, C.; Kramers, J. High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quat. Sci. Rev. 2009, 28, 2527–2538. [Google Scholar] [CrossRef]
- Boch, R.; Spötl, C.; Frisia, S. Origin and palaeoenvironmental significance of lamination in stalagmites from Katerloch Cave, Austria. Sedimentology 2011, 58, 508–531. [Google Scholar] [CrossRef]
- Boch, R.; Spötl, C. Reconstructing palaeoprecipitation from an active cave flowstone. J. Quat. Sci. 2011, 26, 675–678. [Google Scholar] [CrossRef]
- Spötl, C.; Mangini, A.; Richards, D.A. Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps. Quat. Sci. Rev. 2006, 25, 1127–1136. [Google Scholar]
- Sundqvist, H.S.; Holmgren, K.; Moberg, A.; Spötl, C.; Mangini, A. Stable isotopes in a stalagmite from NW Sweden document environmental changes over the past 4000 years. Boreas 2010, 39, 77–86. [Google Scholar] [CrossRef]
- Sundqvist, H.S.; Holmgren, K.; Lauritzen, S.-E. Stable isotope variations in stalagmites from northwestern Sweden document climate and environmental changes during the early Holocene. Holocene 2007, 17, 259–267. [Google Scholar] [CrossRef]
- Baldini, L.; Mcdermott, F.; Baldini, J.U.L.; Arias, P.; Cueto, M.; Fairchild, I.J.; Hoffmann, D.L.; Mattey, D.P.; Müller, W.; Constantin Nita, D.; Ontanon, R.; Garcia-Monco, C.; Richards, D.A. Regional temperature, atmospheric circulation, and sea-ice variability within the Younger Dryas Event constrained using a speleothem from northern Iberia. Earth Planet. Sci. Lett. 2015, 419, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Comas-Bru, L.; McDermott, F.; Fleitmann, D. A 1,000 Year Annually Resolved Record of Speleothem δ18O from Northern Spain; a potential new proxy for North Atlantic Oscillation (NAO) index reconstruction. In Geophysical Research Abstract; EGU General Assembly: Viena, Austria, April 2012. [Google Scholar]
- Atkinson, T.C.; Hopley, P.J. Speleothems and Palaeoclimates. In Caves and Karst of the Yorkshire Dales; Wiley-Blackwell: Buxton, UK, 2013; pp. 181–186. [Google Scholar]
- Atkinson, T.; Hoffmann, D.L. Unpublished dataset.
- Linge, H.; Baker, A.; Andersson, C.; Lauritzen, S.E. Variability in luminescent lamination and initial230Th/232Th activity ratios in a late Holocene stalagmite from northern Norway. Quat. Geochronol. 2009, 4, 181–192. [Google Scholar] [CrossRef]
- Luetscher, M.; Hoffmann, D.L.; Frisia, S.; Spötl, C. Holocene glacier history from alpine speleothems, Milchbach cave, Switzerland. Earth Planet. Sci. Lett. 2011, 302, 95–106. [Google Scholar] [CrossRef]
- Munoz, A.; Bartolome, M.; Munoz, A.; Sancho, C.; Moreno, A.; Hellstrom, J.C.; Osácar, Mª.C.; Cacho, I. Solar influence and hydrological variability during the Holocene from a speleothem annual record (Molinos Cave, NE Spain). Terra Nova 2015, 27, 300–311. [Google Scholar] [CrossRef] [Green Version]
- Mattey, D.P.; Fairchild, I.A.N.J.; Atkinson, T.I.M.C.; Latin, J.; Ainsworth, M.; Durell, R. Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar. In Tufas and Speleothems: Unravelling the Microbial and Physical Controls; Pedley, H.M., Rogerson, M., Eds.; Geological Society of London: London, UK, 2010; pp. 323–344. [Google Scholar]
- Linge, H.; Lauritzen, S.E.; Andersson, C.; Hansen, J.K.; Skoglund, R.O.; Sundqvist, H.S. Stable isotope records for the last 10 000 years from Okshola cave (Fauske, northern Norway) and regional comparisons. Clim. Past 2009, 5, 667–682. [Google Scholar] [CrossRef] [Green Version]
- Verheyden, S.; Keppens, E.; Quinif, Y.; Cheng, H.; Edwards, L. Late-glacial and Holocene climate reconstruction as inferred from a stalagmite—Grotte du Pere Noel, Han-sur-Lesse, Belgium. Geologica Belgica 2014, 17, 83–89. [Google Scholar]
- Moreno, A.; Stoll, H.; Jiménez-Sánchez, M.; Cacho, I.; Valero-Garcés, B.; Ito, E.; Edwards, R.L. A speleothem record of glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Glob. Planet. Chang. 2010, 71, 218–231. [Google Scholar] [CrossRef]
- Rudzka, D.; McDermott, F.; Baldini, L.M.; Fleitmann, D.; Moreno, A.; Stoll, H. The coupled d13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems; insights into soil and cave processes at climatic transitions. Geochim. Cosmochim. Acta 2011, 75, 4321–4339. [Google Scholar] [CrossRef]
- Daley, T.J.; Thomas, E.R.; Holmes, J.A.; Street-Perrott, F.A.; Chapman, M.R.; Tindall, J.C.; Valdes, P.J.; Loader, N.J.; Marshall, J.D.; Wolff, E.W.; et al. The 8200yr BP cold event in stable isotope records from the North Atlantic region. Glob. Planet. Chang. 2011, 79, 288–302. [Google Scholar] [CrossRef]
- Häuselmann, A.D.; Fleitmann, D.; Cheng, H.; Tabersky, D.; Günther, D.; Edwards, R.L. Timing and nature of the penultimate deglaciation in a high alpine stalagmite from Switzerland. Quat. Sci. Rev. 2015, 126, 264–275. [Google Scholar]
- Bartolomé, M.; Moreno, A.; Sancho, C.; Stoll, H.M.; Cacho, I.; Spötl, C.; Belmonte, Á.; Edwards, R.L.; Cheng, H.; Hellstrom, J.C. Hydrological change in Southern Europe responding to increasing North Atlantic overturning during Greenland Stadial 1. Proc. Natl. Acad. Sci. USA 2015, 112, 6568–6572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luetscher, M.; Boch, R.; Sodemann, H.; Spötl, C.; Cheng, H.; Edwards, R.L.; Frisia, S.; Hof, F.; Müller, W. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 2015, 6, 6344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berstad, I. Uranseriedatering og Stabilisotopanalyse av Speleothe- mer fra Søylegrotta, Mo i Rana; University of Bergen: Bergen, Norway, 1998. [Google Scholar]
- Fohlmeister, J.; Vollweiler, N.; Spötl, C.; Mangini, A. COMNISPA II: Update of a mid-European isotope climate record, 11 ka to present. Holocene 2012. [Google Scholar] [CrossRef]
- Spötl, C.; Scholz, D.; Mangini, A. A terrestrial U/Th-dated stable isotope record of the Penultimate Interglacial. Earth Planet. Sci. Lett. 2008, 276, 283–292. [Google Scholar] [CrossRef]
- Cliff, R.A.; Spötl, C.; Mangini, A. U-Pb dating of speleothems from Spannagel Cave, Austrian Alps: A high resolution comparison with U-series ages. Quat. Geochronol. 2010, 5, 452–458. [Google Scholar] [CrossRef]
- Spötl, C.; Mangini, A. Speleothems and paleoglaciers. Earth Planet. Sci. Lett. 2007, 254, 323–331. [Google Scholar] [CrossRef]
- Holzkämper, S.; Mangini, A.; Spötl, C.; Mudelsee, M. Timing and progression of the Last Interglacial derived from a high alpine stalagmite. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Mangini, A.; Spötl, C.; Verdes, P. Reconstruction of temperature in the Central Alps during the past 2000 yr from a d18O stalagmite record. Earth Planet. Sci. Lett. 2005, 235, 741–751. [Google Scholar] [CrossRef]
- Spötl, C.; Mangini, A.; Frank, N.; Eichstädter, R.; Burns, S.J. Start of the last interglacial period at 135 ka: Evidence from a high Alpine speleothem. Geology 2002, 30, 815–818. [Google Scholar] [CrossRef]
- Baker, A.; Wilson, R.; Fairchild, I.J.; Franke, J.; Spötl, C.; Mattey, D.; Trouet, V.; Fuller, L. High resolution δ18O and δ13C records from an annually laminated Scottish stalagmite and relationship with last millennium climate. Glob. Planet. Chang. 2011, 79, 303–311. [Google Scholar] [CrossRef]
- Baker, A.; Bradley, C.; Phipps, S.J.; Fischer, M.; Fairchild, I.J.; Fuller, L.; Spaptl, C.; Azcurra, C. Millennial-length forward models and pseudoproxies of stalagmite δ18O: An example from NW Scotland. Clim. Past 2012, 8, 1153–1167. [Google Scholar] [CrossRef]
- Genty, D. Unpublished dataset.
- Genty, D.; Blamart, D.; Ouahdi, R.; Gilmour, M.; Baker, A.; Jouzel, J.; Van-Exter, S. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 2003, 421, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Genty, D.; Combourieu-Nebout, N.; Peyron, O.; Blamart, D.; Wainer, K.; Mansuri, F.; Ghaleb, B.; Isabello, L.; Dormoy, I.; von Grafenstein, U.; et al. Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quat. Sci. Rev. 2010, 29, 2799–2820. [Google Scholar] [CrossRef]
- Wainer, K.; Genty, D.; Blamart, D.; Hoffmann, D.; Couchoud, I. A new stage 3 millennial climatic variability record from a SW France speleothem. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 271, 130–139. [Google Scholar] [CrossRef]
- Wainer, K.; Genty, D.; Blamart, D.; Daëron, M.; Bar-Matthews, M.; Vonhof, H.; Dublyansky, Y.; Pons-Branchu, E.; Thomas, L.; van Calsteren, P.; et al. Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large δ18O shift between MIS6 and MIS5. Quat. Sci. Rev. 2011, 30, 130–146. [Google Scholar] [CrossRef]
- Labuhn, I.; Genty, D.; Vonhof, H.; Bourdin, C.; Blamart, D.; Douville, E.; Ruan, J.; Cheng, H.; Edwards, R.L.; Pons-Branchu, E.; et al. A high-resolution fluid inclusion δ18O record from a stalagmite in SW France: Modern calibration and comparison with multiple proxies. Quat. Sci. Rev. 2015, 110, 152–165. [Google Scholar] [CrossRef]
- Cheng, H.; Lawrence Edwards, R.; Shen, C.C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Wang, Y.; Kong, X.; Spötl, C.; et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 2013, 371–372, 82–91. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Hoff, J.; Gallup, C.D.; Richards, D.A.; Asmerom, Y. The half-lives of uranium-234 and thorium-230. Chem. Geol. 2000, 169, 17–33. [Google Scholar] [CrossRef]
- Edwards, R.L.; Chen, J.H.; Wasserburg, G.J. U-238-U-234-Th-230-Th-232 systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett. 1987, 81, 175–192. [Google Scholar] [CrossRef]
- Baker, A.; Hellstrom, J.C.; Kelly, B.F.J.; Mariethoz, G.; Trouet, V. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Hua, Q.; McDonald, J.; Redwood, D.; Drysdale, R.; Lee, S.; Fallon, S.; Hellstrom, J. Robust chronological reconstruction for young speleothems using radiocarbon. Quat. Geochronol. 2012, 14, 67–80. [Google Scholar] [CrossRef]
- Shen, C.-C.; Lin, K.; Duan, W.; Jiang, X.; Partin, J.W.; Edwards, R.L.; Cheng, H.; Tan, M. Testing the annual nature of speleothem banding. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Villar, D.; Baker, A.; Fairchild, I.J.; Edwards, R.L. A method to anchor floating chronologies in annually laminated speleothems with U-Th dates. Quat. Geochronol. 2012, 14, 57–66. [Google Scholar] [CrossRef]
- Scholz, D.; Hoffmann, D.L. StalAge—An algorithm designed for construction of speleothem age models. Quat. Geochronol. 2011, 6, 369–382. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 2008, 27, 42–60. [Google Scholar] [CrossRef] [Green Version]
- Bajo, P.; Hellstrom, J.; Frisia, S.; Drysdale, R.; Black, J.; Woodhead, J.; Borsato, A.; Zanchetta, G.; Wallace, M.W.; Regattieri, E.; et al. “Cryptic” diagenesis and its implications for speleothem geochronologies. Quat. Sci. Rev. 2016, 148, 17–28. [Google Scholar] [CrossRef]
- Railsback, L.B.; Dabous, A.A.; Osmond, J.K.; Fleisher, C.J. Petrographic and geochemical screening of speleothems for U-series dating: An example from recrystallized speleothems from Wadi Sannur Cavern, Egypt. J. Cave Karst Stud. 2002, 64, 108–116. [Google Scholar]
- De Waele, J.; D’Angeli, I.M.; Bontognali, T.; Tuccimei, P.; Scholz, D.; Jochum, K.P.; Columbu, A.; Bernasconi, S.M.; Fornós, J.J.; Grau González, E.R.; et al. Speleothems in a north Cuban cave register sea level changes and Pleistocene uplift rates. Earth Surf. Process. Landf. 2018, 43, 2313–2326. [Google Scholar] [CrossRef]
- Scholz, D.; Tolzmann, J.; Hoffmann, D.L.; Jochum, K.P.; Spötl, C.; Riechelmann, D.F.C. Diagenesis of speleothems and its effect on the accuracy of 230Th/U-ages. Chem. Geol. 2014, 387, 74–86. [Google Scholar] [CrossRef]
- Scholz, D.; Hoffmann, D.L.; Hellstrom, J.; Bronk Ramsey, C. A comparison of different methods for speleothem age modelling. Quat. Geochronol. 2012, 14, 94–104. [Google Scholar] [CrossRef]
- van der Meulen, J.P.; Brandsma, T. Thermometer screen intercomparison in De Bilt (The Netherlands), Part I: Understanding the weather-dependent temperature differences. Int. J. Climatol. 2008, 28, 371–387. [Google Scholar] [CrossRef]
- Parker, D.E.; Legg, T.P.; Folland, C.K. A new daily central England temperature series, 1772–1991. Int. J. Climatol. 1992, 12, 317–342. [Google Scholar] [CrossRef]
- Moberg, A.; Bergström, H.; Ruiz Krigsman, J.; Svanered, O. Daily air temperature and pressure series for Stockholm (1756–1998). Clim. Chang. 2002, 53, 171–212. [Google Scholar] [CrossRef]
- Fuller, L.; Baker, A.; Fairchild, I.J.; Spötl, C.; Marca-Bell, A.; Rowe, P.; Dennis, P.F. Isotope hydrology of dripwaters in a Scottish cave and implications for stalagmite palaeoclimate research. Hydrol. Earth Syst. Sci. 2008, 12, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Mischel, S.A.; Scholz, D.; Spötl, C. δ18O values of cave drip water: A promising proxy for the reconstruction of the North Atlantic Oscillation? Clim. Dyn. 2015, 45, 3035–3050. [Google Scholar] [CrossRef]
- Perez-Mejias, C.; Moreno, A.; Sancho, C.; Bartolome, M.; Stoll, H.M.; Osacar, M.C.; Cacho, I.; Delgado-Huertas, A. Transference of isotopic signal from rainfall to dripwaters and farmed calcite in Mediterranean semi-arid karst. Geochim. Cosmochim. Acta 2018, 243, 66–98. [Google Scholar] [CrossRef]
- Tan, M.; Baker, A.; Genty, D.; Smith, C.; Esper, J.; Cai, B. Applications of stalagmite laminae to paleoclimate reconstructions: Comparison with dendrochronology/climatology. Quat. Sci. Rev. 2006, 25, 2103–2117. [Google Scholar] [CrossRef]
- Vaks, A.; Gutareva, O.S.; Breitenbach, S.F.M.; Avirmed, E.; Mason, A.J.; Thomas, A.L.; Osinzev, A.V.; Kononov, A.M.; Henderson, G.M. Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science 2013, 340, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Columbu, A.; Chiarini, V.; De Waele, J.; Spötl, C.; Luetscher, M.; Hellstrom, J. Last glaciation 70 kyrs-long stalagmite palaeoclimate record from Southern Italy: Implication for Mediterranean climate during glacial shifts. In Proceedings of the Proceedings of SGI Conference 2018, Catania, Italy, 12–14 September 2018. [Google Scholar]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Moreno, A.; Sancho, C.; Bartolomé, M.; Oliva-Urcia, B.; Delgado-Huertas, A.; Estrela, M.J.; Corell, D.; López-Moreno, J.I.; Cacho, I. Climate controls on rainfall isotopes and their effects on cave drip water and speleothem growth: The case of Molinos cave (Teruel, NE Spain). Clim. Dyn. 2014, 43, 221–241. [Google Scholar] [CrossRef]
- Dumitru, O.A.; Onac, B.P.; Polyak, V.J.; Wynn, J.G.; Asmerom, Y.; Fornós, J.J. Climate variability in the western Mediterranean between 121 and 67 ka derived from a Mallorcan speleothem record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 506, 128–138. [Google Scholar] [CrossRef]
- Laîné, A.; Kageyama, M.; Salas-Mélia, D.; Voldoire, A.; Rivièlre, G.; Ramstein, G.; Planton, S.; Tyteca, S.; Peterschmitt, J.Y. Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: Energetic study, seasonal cycle, precipitation. Clim. Dyn. 2009, 32, 593–614. [Google Scholar] [CrossRef]
- van Breukelen, M.R.; Vonhof, H.B.; Hellstrom, J.C.; Wester, W.C.G.; Kroon, D. Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet. Sci. Lett. 2008, 275, 54–60. [Google Scholar] [CrossRef]
- Affolter, S.; Häuselmann, A.D.; Fleitmann, D.; Häuselmann, P.; Leuenberger, M. Triple isotope (δD, δ17O, δ18O) study on precipitation, drip water and speleothem fluid inclusions for a Western Central European cave (NW Switzerland). Quat. Sci. Rev. 2015, 127, 73–89. [Google Scholar] [CrossRef]
- Affolter, S.; Fleitmann, D.; Leuenberger, M. New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS). Clim. Past 2014, 10, 1291–1304. [Google Scholar] [CrossRef] [Green Version]
- Dassié, E.P.; Genty, D.; Noret, A.; Mangenot, X.; Massault, M.; Lebas, N.; Duhamel, M.; Bonifacie, M.; Gasparrini, M.; Minster, B.; et al. A Newly Designed Analytical Line to Examine Fluid Inclusion Isotopic Compositions in a Variety of Carbonate Samples. Geochem. Geophys. Geosyst. 2018. [Google Scholar] [CrossRef]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39, 1–13. [Google Scholar] [CrossRef]
- Bowen, G.J. Waterisotopes Database. 2018. Available online: www.waterisotopes.org. (accessed on 14 June 2018).
- Wackerbarth, A.; Langebroek, P.M.; Werner, M.; Lohmann, G.; Riechelmann, S.; Borsato, A.; Mangini, A. Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves. Clim. Past 2012, 8, 1781–1799. [Google Scholar] [CrossRef] [Green Version]
- Wirth, S.B.; Glur, L.; Gilli, A.; Anselmetti, F.S. Holocene flood frequency across the Central Alps—Solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quat. Sci. Rev. 2013, 80, 112–128. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Wolff, E.W.; Chappellaz, J.; Blunier, T.; Rasmussen, S.O.; Svensson, A. Millennial-scale variability during the last glacial: The ice core record. Quat. Sci. Rev. 2010, 29, 2828–2838. [Google Scholar] [CrossRef]
- NGRIP Project Members High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 2004, 431, 147–151. [CrossRef] [PubMed]
- Svensson, A.; Andersen, K.K.; Bigler, M.; Clausen, H.B.; Dahl-Jensen, D.; Davies, S.M.; Johnsen, S.J.; Muscheler, R.; Parrenin, F.; Rasmussen, S.O.; et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past 2008, 4, 47–57. [Google Scholar] [CrossRef]
- Rehfeld, K.; Münch, T.; Ho, S.L.; Laepple, T. Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene. Nature 2018, 554, 356–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohling, E.J.; Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 2005, 434, 975–979. [Google Scholar] [CrossRef]
- Sigl, M.; Winstrup, M.; Mcconnell, J.R.; Welten, K.C.; Plunkett, G.; Ludlow, F.; Büntgen, U.; Caffee, M.; Chellman, N.; Dahl-Jensen, D.; et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 2015, 523, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Steinhilber, F.; Beer, J.; Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Köhler, P.; Nehrbass-Ahles, C.; Schmitt, J.; Stocker, T.F.; Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth Syst. Sci. Data 2017, 9, 363–387. [Google Scholar] [CrossRef]
- PAGES 2k Consortium Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339–346. [CrossRef]
- Mann, M.E.; Zhang, Z.; Rutherford, S.; Bradley, R.S.; Hughes, M.K.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Büntgen, U.; Myglan, V.S.; Ljungqvist, F.C.; Mccormick, M.; Di Cosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Edwards, R.L.; Sinha, A.; Spötl, C.; Yi, L.; Chen, S.; Kelly, M.; Kathayat, G.; Wang, X.; Li, X.; et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 2016, 534, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Stoll, H.; Perez, C.; Cacho, I.; Moreno, A.; Iglesias, M.; Edwards, R.L. Chronlogy for deglaciation during Termination II from stalagmites in NW Spain. In Proceedings of the Geophysical Research Abstracts—EGU2018, Vienna, Austria, 7–12 April 2018. [Google Scholar]
site_name | site_id | Country | Latitude (N) | Longitude (E) | entity_name | entity_id | Min. Year (BP) | Max. Year (BP) | Reference |
---|---|---|---|---|---|---|---|---|---|
Antro del Corchia | 145 | Italy | 43.98 | 10.22 | CC-1_2004 | 313 | 125,432.63 | 393,407.69 | [41] |
Antro del Corchia | 145 | Italy | 43.98 | 10.22 | CC-5_2005 | 314 | 88,347 | 170,549.44 | [42] |
Antro del Corchia | 145 | Italy | 43.98 | 10.22 | CC-28 | 315 | 95,191.16 | 117,497.82 | [51] |
Antro del Corchia | 145 | Italy | 43.98 | 10.22 | CC-1_2009 | 316 | 127,997 | 148,970 | [52] |
Antro del Corchia | 145 | Italy | 43.98 | 10.22 | CC-5_2009 | 317 | 117,965 | 156,957 | [52] |
Antro del Corchia | 145 | Italy | 43.98 | 10.22 | CC-7 | 318 | 121,333 | 126,805 | [52] |
Antro del Corchia | 145 | Italy | 43.98 | 10.22 | COR-1 | [53] | |||
Antro del Corchia | 145 | Italy | 43.98 | 10.22 | CC-26 | 750 | 11,260 | [54] | |
Atta | Germany | 50.80 | 7.44 | STAL-AH-1 | 1763 | 2723 | [55] | ||
Atta | Germany | 50.80 | 7.44 | AH-1 | 860 | 8430 | [56] | ||
B7 | Germany | 51.37 | 7.65 | STAL-B7-1 | 6196 | 12,405 | [57] | ||
B7 | Germany | 51.37 | 7.65 | STAL-B7-5 | 5850 | 8810 | [57] | ||
B7 | Germany | 51.37 | 7.65 | STAL-B7-7 | 540 | 17,230 | [57] | ||
Baschg | 15 | Austria | 47.25 | 9.67 | BA-1b | 70 | 75,492.44 | 80,896.94 | [58] |
Baschg | 15 | Austria | 47.25 | 9.67 | BA-1 | 71 | 80,982.06 | 89,489 | [58] |
Baschg | 15 | Austria | 47.25 | 9.67 | BA-2 | 72 | 88,609.98 | 89,723.31 | [58] |
Beatus | Switzerland | 46.38 | 7.49 | EXC-3 | 100,940 | 110,000 | [58] | ||
Beatus | Switzerland | 46.38 | 7.49 | EXC-4 | 77,450 | 107,080 | [58] | ||
Bourgeois Delaunay | 73 | France | 45.67 | 0.51 | BDinf | 162 | 121,339 | 128,151 | [59] |
Brown’s Folly mine | 96 | England | 51.38 | −2.37 | Boss | 192 | −47 | 32 | [60,61] |
Brown’s Folly mine | 96 | England | 51.38 | −2.37 | BFM-9 | 193 | −47 | 21 | [60,61] |
Brown’s Folly mine | 96 | England | 51.38 | −2.37 | F2 | 194 | −46 | 13 | [60,61] |
Buca della Renella | 133 | Italy | 44.08 | 10.21 | RL4_2006 | 282 | 1215.56 | 6928.36 | [62] |
Buca della Renella | 133 | Italy | 44.08 | 10.21 | RL4_2016 | 283 | 1150.37 | 7262 | [63] |
Buca della Renella | 133 | Italy | 44.08 | 10.21 | RL4_2018 | 381 | 1024.11 | 7277.24 | [64] |
Bue Marino | 97 | Italy | 40.25 | 9.62 | BMS1 | 195 | 110,207 | 112,881 | [65] |
Bunker | 117 | Germany | 51.37 | 7.66 | Bu1 | 240 | 137 | 6644.9 | [66] |
Bunker | 117 | Germany | 51.37 | 7.66 | Bu2 | 241 | 7497.6 | 10,723.5 | [66] |
Bunker | 117 | Germany | 51.37 | 7.66 | Bu4 | 242 | −57.3 | 8162.8 | [66] |
Bunker | 117 | Germany | 51.37 | 7.66 | Bu6 | 243 | 8749 | 10,258.2 | [66] |
Bunker | 117 | Germany | 51.37 | 7.66 | BuStack | 244 | −57.4 | 10,723.5 | [66] |
Chauvet | 77 | France | 44.23 | 4.26 | Chau-stm6 | 166 | 11,415 | 34,183 | [67] |
Clamouse | 108 | France | 43.71 | 3.55 | Cla4 | 211 | 74,460 | 187,405 | [68] |
Clamouse | 108 | France | 43.71 | 3.55 | CL26 | 212 | 142.33 | 11,178.79 | [69] |
Clamouse | 108 | France | 43.71 | 3.55 | Cla-stm5 | 432,000 | 611,000 | [70] | |
Cova da Arcoia | 143 | Spain | 42.61 | −7.09 | ESP03 | 310 | 340 | 9440 | [71] |
Cova de Cala Falco | Spain | 39.5 | 3.3 | CCF-03-03-01 | 48,000 | 112,000 | [72] | ||
Crag | 98 | Ireland | 52.25 | −9.43 | CC3 | 196 | −47 | 10,132 | [69,73] |
Cueva de Asiul | 119 | Spain | 43.32 | −3.59 | ASR | 248 | 488.61 | 12,160.96 | [74] |
Cueva de Asiul | 119 | Spain | 43.32 | −3.59 | ASM | 249 | −62 | 7776.64 | [74] |
Cueva del Cobre | Spain | 42.98 | −4.37 | C11 | 77 | 2614 | [75] | ||
Cueva Mayor | Spain | 42.37 | −3.51 | SLX1 | 62 | 1513 | [75] | ||
Cueva Rosa | Spain | 43.43 | −5.13 | Romeo | 5294 | 8097 | [76] | ||
Ejulve | 120 | Spain | 40.45 | −0.35 | ARTEMISA | 251 | 218,975.67 | 257,426.49 | [11] |
Ejulve | 120 | Spain | 40.45 | −0.35 | HOR | 250 | 2708.44 | 6071.82 | [77] |
Entrische Kirche | 121 | Austria | 47.16 | 13.15 | TKS | 252 | 113,389.5 | 126,889.04 | [78] |
Entrische Kirche | 121 | Austria | 47.16 | 13.15 | ENT-10 | 114,000 | 127,000 | [78] | |
Excentrica | 40 | Portugal | 37.10 | −7.77 | GEX-SPA | 116 | 5329.36 | 6565.22 | [79] |
Gitana | Spain | 37.44 | −2.02 | GC-01-05-02 | 58,000 | 274,000 | [72] | ||
Grotta di Carburangeli | 129 | Italy | 38.17 | 13.16 | CR1 | 277 | 947.73 | 8373.72 | [80,81] |
Grotta di Ernesto | 131 | Italy | 45.97 | 11.65 | ER76 | 279 | 2511.48 | 7969.05 | [44] |
Grotta Savi | Italy | 45.61 | 13.88 | SV-1 | 1325 | 16,799 | [82] | ||
Hamarnes | Norway | 66.42 | 14.02 | Ham-85.2 | 4510 | 123,000 | [45] | ||
Han-sur-Lesse | 16 | Belgium | 50.12 | 5.19 | Han-stm1 | 73 | 4778 | 10,949 | [83] |
Han-sur-Lesse | 16 | Belgium | 50.12 | 5.19 | Han-stm5b | 74 | −44 | 16 | [84] |
Han-sur-Lesse | 16 | Belgium | 50.12 | 5.19 | Han-9 | 75 | 106,499.65 | 125,343.05 | [85] |
Han-sur-Lesse | 16 | Belgium | 50.12 | 5.19 | Proserpine | −51 | 471 | [86] | |
Hölloch im Mahdtal | 115 | Austria | 47.38 | 10.15 | HOL-7 | 230 | 40,105 | 48,664 | [87] |
Hölloch im Mahdtal | 115 | Austria | 47.38 | 10.15 | HOL-16 | 231 | 36,701 | 63,546 | [87] |
Hölloch im Mahdtal | 115 | Austria | 47.38 | 10.15 | HOL-17 | 232 | 35,832 | 64,934 | [87] |
Hölloch im Mahdtal | 115 | Austria | 47.38 | 10.15 | HOL-18 | 233 | 52,509 | 57,283 | [87] |
Hölloch im Mahdtal | 115 | Austria | 47.38 | 10.15 | HOL-16-17 | 234 | 35,705 | 37,578 | [87] |
Hölloch im Mahdtal | 115 | Austria | 47.38 | 10.15 | HOL-comp | 235 | 49,063 | 64,498 | [87] |
Hölloch im Mahdtal | 115 | Austria | 47.38 | 10.15 | HOL-10 | 236 | 110,844 | 131,765 | [88] |
Hölloch im Mahdtal | 115 | Austria | 47.38 | 10.15 | Stal-Hoel-1 | 1380 | 12,690 | [89] | |
Hötting Breccia | Austria | 47.28 | 11.39 | HOT-1 | 73,900 | 98,700 | [90] | ||
Hötting Breccia | Austria | 47.28 | 11.39 | HOT-2 | 70,300 | 73,800 | [90] | ||
Hotton | Belgium | 50.25 | 5.45 | 2750 | 11,150 | [91] | |||
Kaite | Spain | 42.94 | −3.57 | comp. | 394 | 9569 | [92] | ||
Kaite | Spain | 42.94 | −3.57 | LV5 | 393 | 3885 | [75] | ||
Katerloch | 100 | Austria | 47.08 | 15.55 | K3 | 200 | 7786.62 | 10,027.08 | [93] |
Katerloch | 100 | Austria | 47.08 | 15.55 | K-2 | [94] | |||
Katerloch | 100 | Austria | 47.08 | 15.55 | K-4 | [94] | |||
Katerloch | 100 | Austria | 47.08 | 15.55 | K-5 | [94] | |||
Katerloch | 100 | Austria | 47.08 | 15.55 | K-7 | [94] | |||
Katerloch | 100 | Austria | 47.08 | 15.55 | K-8 | [94] | |||
Katerloch | 100 | Austria | 47.08 | 15.55 | K-RZ6-072007 | [53] | |||
Katerloch | 100 | Austria | 47.08 | 15.55 | K-Top3-Cl | [53] | |||
Katerloch | 100 | Austria | 47.08 | 15.55 | K1 | 199 | 7079.5 | 10,324 | [93] |
Katerloch | 100 | Austria | 47.08 | 15.55 | K-6 | [94] | |||
Klapferloch | 101 | Austria | 46.95 | 10.55 | PFU6 | 201 | −47 | 2943.04 | [95] |
Klapferloch | 101 | Austria | 46.95 | 10.55 | PFU-7 | [95] | |||
Klapferloch | 101 | Austria | 46.95 | 10.55 | PFU-8 | [95] | |||
Klapferloch | 101 | Austria | 46.95 | 10.55 | PFU-9 | [95] | |||
Klaus-Cramer | Austria | 47.26 | 9.52 | KC-1 | 54,560 | 71,940 | [58] | ||
Kleegruben | 132 | Austria | 47.08 | 11.67 | SPA_126 | 280 | 47,396 | 55,966 | [96] |
Kleegruben | 132 | Austria | 47.08 | 11.67 | SPA_49 | 281 | 47,816 | 58,266 | [96] |
Korallgrottan | 102 | Sweden | 64.88 | 14.00 | K11 | 202 | −55 | 3791.88 | [97] |
Korallgrottan | 102 | Sweden | 64.88 | 14.15 | K1 | 6070 | 8629 | [98] | |
La Faurie | France | 45.13 | 1.18 | Fra-stm-6 | [53] | ||||
La Garma | Spain | 43.43 | −3.66 | GAR-01 | 10,142 | 13,757 | [99] | ||
La Garma | Spain | 43.43 | −3.66 | GAR-02 | [100] | ||||
Labyrintgrottan | 46 | Sweden | 66.06 | 14.68 | L4 | 122 | 7347.5 | 9565.1 | [98] |
Lancaster Hole | 8 | England | 54.22 | −2.52 | LH-70s-1 | 50 | 3456.22 | 12,717.56 | [101] |
Lancaster Hole | 8 | England | 54.22 | −2.52 | LH-70s-2 | 51 | 261.86 | 9735.67 | [102] |
Lancaster Hole | 8 | England | 54.22 | −2.52 | LH-70s-3 | 52 | 945.79 | 8462.88 | [102] |
Laphullet | Norway | 66.31 | 14.18 | PL-6 | 380,000 | 502,000 | [47] | ||
Larshullet | 47 | Norway | 66.00 | 14.00 | L03 | 123 | 130 | 3920.52 | [103] |
Milchbach | 123 | Switzerland | 46.62 | 8.08 | MB-2 | 255 | 3248.65 | 6830 | [104] |
Milchbach | 123 | Switzerland | 46.62 | 8.08 | MB-3 | 256 | 1986.95 | 9025.84 | [104] |
Milchbach | 123 | Switzerland | 46.62 | 8.08 | MB-6 | 258 | * | * | [104] |
Milchbach | 123 | Switzerland | 46.62 | 8.08 | MB-5 | 257 | 3889.71 | 7245.91 | [104] |
Molinos | 109 | Spain | 40.79 | −0.45 | MO-7 | 217 | 3253 | 6812 | [77,105] |
Molinos | 109 | Spain | 40.79 | −0.45 | MO-1 | 216 | 4727 | 11,334.76 | [77] |
New St Michael’s | 89 | Gibraltar | 36.13 | −5.35 | Gib04a | 182 | −53.6 | 2 | [43,106] |
Okshola | 26 | Norway | 67.00 | 15.00 | FM3 | 95 | −47 | 7515.2 | [107] |
Okshola | 26 | Norway | 67.00 | 15.00 | Oks82 | 96 | 5006 | 10,327.64 | [107] |
Pere Noel | Belgium | 50.13 | 5.16 | PN-stm-95-5 | 1800 | 12,900 | [91,108] | ||
Pindal | 87 | Spain | 43.40 | −4.53 | Candela | 180 | 11,640.32 | 29,339.98 | [109,110] |
Pippikin Pot | 53 | England | 54.21 | −2.51 | YD01 | 129 | 4205.58 | 9478.94 | [101,111] |
Schafsloch | 125 | Switzerland | 47.23 | 9.38 | MF-3 | 260 | 130,050 | 137,390 | [112] |
Schneckenloch | 105 | Austria | 47.43 | 9.87 | SCH-5 | 206 | 115,340 | 134,085 | [88] |
Schneckenloch | 105 | Austria | 47.43 | 9.87 | SCH-7 | 207 | 111,588.73 | 118,314.57 | [58] |
Seso | 106 | Spain | 42.46 | 0.04 | SE09-6 | 208 | 11,616 | 12,995 | [113] |
Sieben Hengste | 55 | Switzerland | 46.75 | 7.81 | 7H | 133 | 14,620 | 29,873 | [114] |
Sieben Hengste | 55 | Switzerland | 46.75 | 7.81 | 7H-3 | 135 | 14,639.45 | 23,536.89 | [114] |
Sieben Hengste | 55 | Switzerland | 46.75 | 7.81 | 7H-2 | 134 | 17,137.17 | 29,940.32 | [114] |
Soylegrotta | 57 | Norway | 66.00 | 14.00 | SG95 | 137 | −43 | 4141.22 | [45] |
Soylegrotta | 57 | Norway | 66.00 | 14.00 | SG92-4 | 4500 | 8000 | [115] | |
Soylegrotta | 57 | Norway | 66.00 | 14.00 | SG-92-2 | 320,000 | 630,000 | [46] | |
Soylegrotta | 57 | Norway | 66.00 | 14.00 | SG93 | 253 | 10,409 | [6] | |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA12 | 138 | 60 | 5043 | [116] |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA70 | 139 | 4549 | 9894 | [116] |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA128 | 140 | 2520 | 6140 | [116] |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA127 | 141 | 2737 | 8449 | [116] |
Spannagel | 58 | Austria | 47.08 | 11.67 | COMNISPA II | 142 | −13 | 9930.6 | [116] |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA133 | 154 | 9636.5 | 10,796.1 | [116] |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA121 | 261 | 187,290 | 242,070 | [117] |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA-4 | 265,700 | 353,900 | [118,119] | |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA-59 | 52,900 | 261,400 | [120] | |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA-12 | 15 | 2040 | [121] | |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA-119 | 220,500 | 226,900 | [119] | |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA-52 | 91,100 | 204,100 | [122] | |
Spannagel | 58 | Austria | 47.08 | 11.67 | SPA-11 | 117,000 | 202,800 | [122] | |
Uamh an Tartair | 21 | Scotland | 58.14 | −4.93 | SU967 | 85 | −35 | 892 | [123] |
Uamh an Tartair | 21 | Scotland | 58.14 | −4.93 | SU032 | 86 | −53 | 271 | [124] |
Villars | 4 | France | 45.43 | 0.78 | Vil-stm6 | 27 | −43 | 8657 | [125] |
Villars | 4 | France | 45.43 | 0.78 | Vil-stm9 | 28 | 31,437.91 | 82,854.5 | [126,127] |
Villars | 4 | France | 45.43 | 0.78 | Vil-stm11 | 29 | 5361 | 15,875 | [67] |
Villars | 4 | France | 45.43 | 0.78 | Vil-stm14 | 30 | 28,892.68 | 52,156.42 | [127,128] |
Villars | 4 | France | 45.43 | 0.78 | Vil-stm27 | 31 | 31,340.9 | 49,663.24 | [126] |
Villars | 4 | France | 45.43 | 0.78 | Vil-car1 | 32 | 1055 | 178,002 | [129] |
Villars | 4 | France | 45.43 | 0.78 | Vil#10B | [53] | |||
Villars | 4 | France | 45.43 | 0.78 | Vil#1A | [53] | |||
Villars | 4 | France | 45.43 | 0.78 | VilGal#1B | [53] | |||
Villars | 4 | France | 45.43 | 0.78 | VilPlq-8 | [53] | |||
Villars | 4 | France | 45.43 | 0.78 | Vil-stm1 | 33 | −38 | 2333 | [130] |
Villars | 4 | France | 45.43 | 0.78 | Vil-stm24 | 102,800 | 113,600 | [70] | |
White Scar | 66 | England | 54.17 | −2.44 | WSC-97-10-5 | 150 | 7347.87 | 11,190.74 | [101,111] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lechleitner, F.A.; Amirnezhad-Mozhdehi, S.; Columbu, A.; Comas-Bru, L.; Labuhn, I.; Pérez-Mejías, C.; Rehfeld, K. The Potential of Speleothems from Western Europe as Recorders of Regional Climate: A Critical Assessment of the SISAL Database. Quaternary 2018, 1, 30. https://doi.org/10.3390/quat1030030
Lechleitner FA, Amirnezhad-Mozhdehi S, Columbu A, Comas-Bru L, Labuhn I, Pérez-Mejías C, Rehfeld K. The Potential of Speleothems from Western Europe as Recorders of Regional Climate: A Critical Assessment of the SISAL Database. Quaternary. 2018; 1(3):30. https://doi.org/10.3390/quat1030030
Chicago/Turabian StyleLechleitner, Franziska A., Sahar Amirnezhad-Mozhdehi, Andrea Columbu, Laia Comas-Bru, Inga Labuhn, Carlos Pérez-Mejías, and Kira Rehfeld. 2018. "The Potential of Speleothems from Western Europe as Recorders of Regional Climate: A Critical Assessment of the SISAL Database" Quaternary 1, no. 3: 30. https://doi.org/10.3390/quat1030030
APA StyleLechleitner, F. A., Amirnezhad-Mozhdehi, S., Columbu, A., Comas-Bru, L., Labuhn, I., Pérez-Mejías, C., & Rehfeld, K. (2018). The Potential of Speleothems from Western Europe as Recorders of Regional Climate: A Critical Assessment of the SISAL Database. Quaternary, 1(3), 30. https://doi.org/10.3390/quat1030030