Diatoms in Paleoenvironmental Studies of Peatlands
Abstract
:1. Introduction
2. Diatoms in Peatland Ecosystems
3. Diatom Preservation in Peat
4. Diatoms Paleoenvironmental Studies in Peatlands
4.1. Diatoms as Indicators of Human Impact on Peatlands
4.2. Diatoms as Indicators of Long-Term Change in Peatlands
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. European Commission Interpretation Manual of European Union Habitats, Vers. EUR28; European Commission, DG Environment: Brussel, Belgium, 2013. [Google Scholar]
- Pontevedra-Pombal, X.; Castro, D.; Carballeira, R.; Souto, M.; López-Sáez, J.A.; Pérez-Díaz, S.; Fraga, M.I.; Valcárcel, M.; García-Rodeja, E. Iberian acid peatlands: Types, origin and general trends of development. Mires Peat 2017, 19, 1–19. [Google Scholar]
- Joosten, H. Mires in Europe: A preliminary status report. Int. Mire Conserv. Group Memb. Newslett. 1997, 3, 10–13. [Google Scholar]
- Heras-Pérez, P.; Infante-Sánchez, M.; Pontevedra-Pombal, X.; Nóvoa-Muñoz, J.C. Part II, Country chapters: Spain. In Mires and Peatlands of Europe; Joosten, H., Tanneberger, F., Moen, A., Eds.; Schweizerbart Science Publishers: Sttutgart, Germany, 2017; pp. 639–656. [Google Scholar]
- Mäkila, M.; Saarnisto, M. Carbon accumulation in boreal peatlands during the holocene—Impcts of climate variations. In Peatlands and Climate Change; Strack, M., Ed.; International Peat Society: Jyväskylä, Finland, 2008; pp. 24–43. [Google Scholar]
- Yu, Z.C.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 2010, 37, L13402. [Google Scholar] [CrossRef]
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef] [Green Version]
- Loisel, J.; Yu, Z.; Beilman, D.W.; Camill, P.; Alm, J.; Amesbury, M.J.; Anderson, D.; Andersson, S.; Bochicchio, C.; Barber, K.; et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 2014, 24, 1028–1042. [Google Scholar] [CrossRef]
- Dargie, G.C.; Lewis, S.L.; Lawson, I.T.; Mitchard, E.T.A.; Page, S.E.; Bocko, Y.E.; Ifo, S.A. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 2017, 542, 86–90. [Google Scholar] [CrossRef]
- Leifeld, J.; Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 2018, 9, 1071. [Google Scholar] [CrossRef] [Green Version]
- Similä, M.; Aapala, K.; Penttinen, J. Ecological Restoration in Drained Peatlands—Best Practices from Finland; Metsähallitus Natural Heritage Services: Helsinki, Finland, 2014; pp. 1–87. [Google Scholar]
- Abdalla, M.; Hastings, A.; Truu, J.; Espenberg, M.; Mander, U.; Smith, P. Emissions of methane from northern peatlands: A review of management impacts and implications for future management options. Ecol. Evol. 2016, 6, 7080–7102. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.; Blain, D.; Couwenberg, J.; Evans, C.D.; Murdiyarso, D.; Page, S.E.; Renou-Wilson, F.; Rieley, J.O.; Sirin, O.; Strack, M.; et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 2016, 17, 4. [Google Scholar]
- Pontevedra-Pombal, X.; Castro, D.; Souto, M.; Fraga, I.; Blake, W.H.; Blaauw, M.; López-Sáez, J.A.; Pérez-Díaz, S.; Valcárcel, M.; García-Rodeja, E. 10,000 years of climate control over carbon accumulation in an Iberian bog (southwestern Europe). Geosci. Front. 2019, 10, 1521–1533. [Google Scholar] [CrossRef]
- Minayeva, Y.Y.; Bragg, O.M.; Sirin, A.A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat 2017, 19, 1–36. [Google Scholar]
- Martínez-Cortizas, A.; Pontevedra-Pombal, X.; García-Rodeja, E. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 1999, 284, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Charman, D. Peatlands and Environmental Change; John Wiley and Sons: Chichester, UK, 2002; p. 312. [Google Scholar]
- Mauquoy, D.; Van Geel, B. Plant macrofossil methods and studies: Mire and peat macros. In Encyclopedia of Quaternary Science; Elias, S.A., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2007; pp. 2315–2336. [Google Scholar]
- Castro, D.; Souto, M.; Garcia-Rodeja, E.; Pontevedra-Pombal, X.; Fraga, M.I. Climate change records between the mid and late Holocene in a peat bog from Serra do Xistral (SW Europe) using plant macrofossils and peat humification analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 420, 82–95. [Google Scholar] [CrossRef]
- Souto, M.; Castro, D.; Pontevedra-Pombal, X.; Garcia-Rodeja, E.; Fraga, M.I. Characterisation of Holocene plant macrofossils from North Spanish ombrotrofic mires: Vascular plants. Mires Peat 2016, 18, 1–21. [Google Scholar]
- Souto, M.; Castro, D.; Pontevedra-Pombal, X.; Garcia-Rodeja, E.; Fraga, M.I. Characterisation of Holocene plant macrofossils from North Spanish ombrotrofic mires: Bryophytes. Mires Peat 2017, 19, 1–12. [Google Scholar]
- Souto, M.; Castro, D.; García-Rodeja, E.; Pontevedra-Pombal, X. The use of plant macrofossils for Paleoenvironmental reconstructions in Southern European Peatlands. Quaternary 2019, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, E.A.D.; Buttler, A.J. Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France. Ecoscience 1999, 6, 565–576. [Google Scholar] [CrossRef]
- Mitchell, E.A.D. Testate amoebae analysis in ecological and paleoecological studies of wetlands: Past, present and future. Biodivers. Conserv. 2008, 17, 2115–2137. [Google Scholar] [CrossRef] [Green Version]
- Gaiser, E.; Rühland, K. Diatoms as indicators of environmental change in a wetlands and peatlands. In The Diatoms: Applications for the Environmental and Earth Sciences; Smol, J.P., Stoermer, E.F., Eds.; Cambridge University Press: Cambridge, UK, 2010; Chapter 25; pp. 473–496. [Google Scholar]
- Battarbee, R.W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology; Berglund, B.E., Ed.; John Wiley & Sons: Chichester, UK, 1986; pp. 527–570. [Google Scholar]
- Round, F.E.; Crawford, R.M.; Mann, D.G. The Diatoms: Biology and Morphology of the Genera; Cambridge University Press: Cambridge, UK, 1990; p. 760. [Google Scholar]
- Piatek, J. Algae of the peat bog in Modlniczka near Kraków. Pol. Bot. Stud. 2007, 24, 1–74. [Google Scholar]
- Fránková, M.; Bojková, J.; Poulíčková, A.; Hájek, M. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea 2009, 9, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Kulikovskiy, M.S.; Lange-Bertalot, H.; Witkowski, A.; Dorofeyuk, N.I.; Genkal, S.I. Diatom Assemblages from Sphagnum Bogs of the World. I. Nur Bog in Northern Mongolia; Bibliotheca Diatomologica 55; J. Cramer: Stuttgart, Germany, 2010; p. 326. [Google Scholar]
- Chen, X.; Bu, Z.; Stevenson, M.A.; Cao, Y.; Zeng, L.; Qin, B. Variations in diatom communities at genus and species levels in peatlands (central China) linked to microhabitats and environmental factors. Sci. Total Environ. 2016, 568, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Fussey, M.P. Contribution à la flore algologique du Jura. I. La florule algologique de la tourbière de Frasne (Doubs). Rev. Gen. Bot. 1948, 55, 338–359. (In French) [Google Scholar]
- Margalef, R. Comunidades bióticas de las aguas dulces del noroeste de España. Publ. Inst. Biol. Apl. 1955, 21, 137–171. (In Spanish) [Google Scholar]
- Margalef, R. Algas de agua dulce del noroeste de España. Publ. Inst. Biol. Apl. 1956, 22, 43–152. (In Spanish) [Google Scholar]
- de Graaf, F. The microflora and fauna of a quaking bog in the nature reserve “Het Hol” near Kortenhoef in the Netherlands. Hydrobiologia 1957, 9, 210–217. [Google Scholar] [CrossRef]
- Hayward, J. The periodicity of diatoms in Bogs. J. Ecol. 1957, 45, 947–954. [Google Scholar] [CrossRef]
- Wuthrich, M.; Matthey, W. Les diatomées de la tourbière du Cachot (Jura neuchatelois). I. Étude systématique. Bull. Soc. Neuchatel. Sci. Nat. 1977, 100, 45–60. (In French) [Google Scholar]
- Wuthrich, M.; Matthey, W. Les diatomées de la tourbière du Cachot (Jura suisse). II. Association et distribution des espèces caractéristiques. Schweiz. Z. Hydrol. 1978, 40, 87–103. (In French) [Google Scholar]
- Pérez, C.; Castillo, P.M. Dinámica de la comunidad fitoplanctónica de una laguna somera (Padul, Granada). Sci. Gerund. 1990, 16, 99–112. (In Spanish) [Google Scholar]
- Pienitz, R. Analyse des microrestes végétaux: Diatomées. In Écologie des Tourbières du Québec-Labrador; Payette, S., Rochefort, L., Eds.; Les Presses de l’Université Laval: Quebec, QC, Canada, 2001; pp. 311–326. (In French) [Google Scholar]
- Nováková, S. Algal flora of subalpine peat bog pools in the Krkonose Mts. Preslia 2002, 74, 45–56. [Google Scholar]
- Poulickova, A. Distribution of diatoms and bryophytes on linear transects through spring fens. Nova Hedwigia 2004, 78, 411–424. [Google Scholar] [CrossRef]
- Buczkó, K.; Wojtal, A. Moss inhabiting siliceous algae from Hungarian peat bogs. Studia Bot. Hung. 2005, 36, 21–42. [Google Scholar]
- Kulikovskiy, M.S. The species composition and distribution of diatoms in Sphagnum bogs of European Russia: Ecosystems of the Volga upland. Inland Water Biol. 2008, 1, 347–355. [Google Scholar] [CrossRef]
- Kapetanovic, T.; Jahn, R.; Redzic, S.; Caric, M. Diatoms in a poor fen of Bijambare protected landscape, Bosnia and Herzegovina. Nova Hedwigia 2011, 93, 125–151. [Google Scholar] [CrossRef]
- Neustupa, J.; Veselá, J.; Stástný, J. Differential cell size structure of desmids and diatoms in the phytobenthos of peatlands. Hydrobiologia 2013, 709, 159–171. [Google Scholar] [CrossRef]
- Cambra, J. Micro-scale distribution of algae in a Pyrenean peat-bog, Spain. Hidrobiológica 2015, 25, 213–222. [Google Scholar]
- Mogna, M.; Cantonati, M.; Andreucci, F.; Angeli, N.; Berta, G. Diatom communities and vegetation of springs in the south-western Alps. Acta Bot. Croat. 2015, 74, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Vidakovic, D.; Krizmanic, J.; Sovran, S.; Cvijan, M. Diatoms from a peat bog on the Pester Plateau (Southwestern Serbia): New records for diatom flora of Serbia. Arch. Biol. Sci. 2016, 68, 107–116. [Google Scholar] [CrossRef]
- Muntinová, P.T.; Kulichová, J.; Ugland, K.I. Temporal and spatial dynamics of diatom (Bacillariophyceae) communities in a peatland area. Cryptogam. Algol. 2017, 38, 253–266. [Google Scholar] [CrossRef]
- Brugam, R.B.; Swain, P. Diatom indicators of peatland development at Pogonia Bog, Pond Minnesota, USA. Holocene 2000, 10, 453–464. [Google Scholar] [CrossRef]
- Hargan, K.E.; Rühland, K.M.; Paterson, A.M.; Finkelstein, S.A.; Holmquist, J.R.; MacDonald, G.M.; Keller, W.; Smol, J.P. The influence of water-table depth and pH on the spatial distribution of diatom species in peatlands of the Boreal Shield and Hudson Plains, Canada. Botany 2015, 93, 57–74. [Google Scholar] [CrossRef]
- Kingston, J.C. Association and distribution of common diatoms in surface samples from northern Minnesota peatlands. Nova Hedwigia 1982, 73, 333–346. [Google Scholar]
- Poulíčková, A.; Hájková, P.; Kintrová, K.; Batková, R.; Czudková, M.; Hájek, M. Tracing decadal environmental change in ombrotrophic bogs using diatoms from herbarium collections and transfer functions. Environ. Pollut. 2013, 179, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.M.; Douglas, M.S.V.; Smol, J.P. Siliceous microfossils in a Holocene, High Arctic peat deposit (Nordvesto, northern Greenland). Can. J. Bot. 1994, 72, 208–216. [Google Scholar] [CrossRef]
- Van Dam, H.; Mertens, A.; Sinkeldam, J. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol. 1994, 28, 117–133. [Google Scholar]
- Joosten, H.; Tanneberger, F.; Moen, A. Mires and Peatlands of Europe: Status Distribution and Conservation; Schweizerbart Science Publishers: Stuttgart, Germany, 2017; p. 780. [Google Scholar]
- Patrick, R. Diatoms from Patschke Bog, Texas. In Notulae Naturae of the Academy of Natural Sciences of Philadelphia Number 170; The Academy of Natural Sciences: Philadelphia, PA, USA, 1946. [Google Scholar]
- Lortie, G. Les diatomées fossiles de deux tourbières ombrotrophes du Bas-Saint-Laurent, Québec. Geogr. Phys. Quater. 1983, 37, 159–177. (In French) [Google Scholar] [CrossRef] [Green Version]
- Cubizolle, H.; Georges, V.; Latour, C.; Argant, J.; Serieyssol, K. La turfigenèse à la fin du subboréal et au subatlantique dans les tourbières basses du Massif Central Oriental granitique (France): Une manifestation de l´action humaine? Quaternaire 2004, 15, 343–359. (In French) [Google Scholar] [CrossRef]
- Cubizolle, H.; Serieyssol, K.; Argant, J. Diatom and pollen evidence of Holocene vegetation dynamics and human impact on the Virennes fenland (French Massif Central). Diatom Res. 2005, 20, 257–273. [Google Scholar] [CrossRef]
- Serieyssol, K.; Chatelard, S.; Cubizolle, H. Extraction, preparation and analysis of diatom fossils in mires. Mires Peat 2010, 7, 12. [Google Scholar]
- Foster, D.R.; Fritz, S.C. Mire development, pool formation, and landscape processes of patterned fens in Dalarna, central Sweden. J. Ecol. 1987, 75, 409–437. [Google Scholar] [CrossRef]
- Leira, M.; Bao, R.; Vidal-Romaní, J.R. Postglacial evolution of the Lake of Villaseca (NW Iberian Peninsula) inferred from diatom analysis. Cad. Lab. Xeol. 1997, 22, 81–97. [Google Scholar]
- Leira, M. Diatom preservation in peat sediments. Cad. Lab. Xeol. Laxe 1998, 23, 225–236. [Google Scholar]
- Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 °C. Geochim. Cosmochim. Acta 1988, 52, 1521–1530. [Google Scholar] [CrossRef]
- Bennett, P.C.; Siegel, D.I.; Hill, B.M.; Glaser, P.H. Fate of silicate minerals in a peat bog. Geology 1991, 19, 328–331. [Google Scholar] [CrossRef]
- Wheeler, B.D.; Proctor, C.F. Ecological gradients, subdivisions and terminology of north-west European mires. J. Ecol. 2000, 88, 187–203. [Google Scholar] [CrossRef]
- Hájek, M.; Horsák, M.; Hájková, P.; Díte, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardize fen terminology in ecological studies. Perspect. Plant Ecol. 2006, 8, 97–114. [Google Scholar] [CrossRef]
- Bendell-Young, L. Peatland interstitial water chemistry in relation to that of surface pools along a peatland mineral gradient. Water Air Soil Poll. 2003, 143, 363–375. [Google Scholar] [CrossRef]
- Patrick, S.; Holding, A.J. The effect of bacteria on the solubilization of silica in diatom frustules. J. Appl. Bacteriol. 1985, 59, 7–16. [Google Scholar] [CrossRef]
- Bidle, K.D.; Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 1999, 397, 508–512. [Google Scholar] [CrossRef]
- Bidle, K.D.; Azam, F. Bacterial control of silicon regeneration from diatom detritus: Significance of bacterial ectohydrolases and species identity. Limnol. Oceanogr. 2001, 46, 1606–1623. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Harden, J.W.; Wilmking, M.; Fuller, C.C.; McGuire, A.D.; Chapin, F.S., III. Wetland succession in a permafrost collapse: Interactions between fire and thermokarst. Biogeosciences 2008, 5, 1273–1286. [Google Scholar] [CrossRef] [Green Version]
- Fritz, M.; Wolter, J.; Rudaya, N.; Palagushkina, O.; Nazarova, L.; Obu, J.; Rethemeyer, J.; Lantuit, H.; Wetterich, S. Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada). Quat. Sci. Rev. 2016, 147, 279–297. [Google Scholar] [CrossRef] [Green Version]
- Rühland, K.; Smol, J.P.; Jasinski, J.P.P.; Warner, B.G. Response of diatoms and other siliceous indicators to the developmental history of a peatland in the Tiksi Forest, Siberia, Russia. Arct. Antarct. Alp. Res. 2000, 32, 167–178. [Google Scholar] [CrossRef]
- Ma, L.; Gao, C.; Kattel, G.R.; Yu, X.; Wang, G. Evidence of Holocene water level changes inferred from diatoms and the evolution of the Honghe Peatland on the Sanjiang Plain of Northeast China. Quat. Int. 2018, 476, 82–94. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Kashima, K.; Orkhonselenge, A.; Ganzorig, U. Holocene environmental changes in northern Mongolia inferred from diatom and pollen records of peat sediment. Quat. Int. 2012, 254, 83–91. [Google Scholar] [CrossRef]
- Korhola, A. Paleolimnology and hydroseral development of the Kotasuo bog, Southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fenn. 1990, 155, 1–40. [Google Scholar]
- Korhola, A. Mire induction, ecosystem dynamics and lateral extension on raised bog, southern coastal area of Finland. Fennia 1992, 170, 25–94. [Google Scholar]
- Kokfelt, U.; Struyf, E.; Randsalu, L. Diatoms in peat—Dominant producers in a changing environment? Soil Biol. Biochem. 2009, 41, 1764–1766. [Google Scholar] [CrossRef]
- Diot, M.F.; Baudrimont, R. Zonation paléoclimatique d’une tourbière de Charente: Étude des pollens et des diatomées. C. R. Acad. Sci. 1969, 269, 20–23. (In French) [Google Scholar]
- Cubizolle, H.; Fassion, F.; Argant, J.; Latour-Argant, C.; Galet, P.; Oberlin, C. Mire initiation, climatic change and agricultural expansion over the course of the Late-Holocene in the Massif Central mountain range (France): Causal links and implications for mire conservation. Quat. Int. 2012, 251, 77–96. [Google Scholar] [CrossRef]
- Cubizolle, H.; Haas, J.N.; Bielowski, W.; Dietre, B.; Argant, J.; Latour-Argant, C.; Chatelard, S.; Porteret, J.; Lefèvre, J.P. Palaeo-paludification, environmental change and human impact during the Mid- and Late Holocene in Western Europe: The example of the La Prenarde-Pifoy mire in the French Massif Central. Quaternaire 2013, 24, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Stancheva, R. Diatoms from Holocene sediments of Mt Sredna Gora. I. Phytol. Balc. 2001, 7, 85–101. [Google Scholar]
- Stancheva, R. Diatoms from Holocene sediments of Mt Sredna Gora. II. Phytol. Balc. 2001, 7, 313–326. [Google Scholar]
- Stancheva, R.; Temniskova, D. Paleoecology of Holocene diatoms from Sphagnum peat bogs in the Central Sredna Gora Mountains (Bulgaria). Geol. Carpath. 2004, 55, 65–76. [Google Scholar]
- Gasse, F. Les diatomées Holocènes d’une Tourbière (4040 m) d’une Montagne Ethiopienne: Le Mont Badda. Rev. Algol. 1978, 13, 105–149. (In French) [Google Scholar]
- Tanneberger, F.; Tegetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Moles-Mariné, A.; Jenderedjian, K.; Steiner, G.M.; Essl, F.; Etzold, J.; et al. The Peatland Map of Europe. Mires Peat 2017, 19, 1–17. [Google Scholar]
- Krauskopf, K.B. Dissolution and precipitation of silica at low temperatures. Geochim. Cosmochim. Acta 1956, 10, 1–26. [Google Scholar] [CrossRef]
- Auer, V. Peat-bogs in southeastern Canada. Geol. Surv. Can. 1930, 62, 1–32. [Google Scholar]
- Straub, F. Diatoms and their preservation in the sediments of Lake Neuchâtel (Switzerland) as evidence of past hydrological change. Hydrobiologia 1993, 269, 167–178. [Google Scholar] [CrossRef]
Peatlands | Depth (cm) | Years Cal BP | Location | Geographical Coordinates | Altitude (m.a.s.l.) | Country | References | |
---|---|---|---|---|---|---|---|---|
Latitude (N) | Longitude (W/E) | |||||||
Villaseca fen | 65 | n.d. | Villablino (León, Spain) | 42°57′ | 6°16′ | 1320 | Spain | Leira et al. [64]; Leira [65] |
La Mata fen | n.d. | n.d. | Villablino (León, Spain) | 42°58′ | 6°13′ | 1500 | Spain | Leira et al. [64]; Leira [65] |
Charente | 500 | n.d. | Valley of Boême, near Mothiers-sur-Boëme (Charente, France) | 45°36′–45°31′ | 0°4′–0°12′ | 125–150 | France | Diot and Baudrimont [82] |
Le Verdier mire | 296 | 2231 ± 251 | Saint-Jean-Soleymieux (Loire, France) | 45°49′–45°51′ | 3°45′–3°52′ | 675 | France | Cubizolle et al. [61] |
Virennes fens | 176 | 3518 ± 169 | Puy-de-Dôme (Auvernia, France) | 45°31′–45°32′ | 3°37′–3°40′ | 1080 | France | Cubizolle et al. [61,83] |
La Prenarde-Pifoy mire | 121 | 2485 ± 50 | Saint-Jean-Soleymieux (Loire, France) | 45°30′11” | 3°58′51” | 1125 | France | Cubizolle et al. [84] |
Bogdan-6 | 75 | 11622 ± 956 | Koprivshtitsa (Sofia, Bulgaria), Bogdan, Hisarya (Bogdan, Bulgaria) | 42°36′–42°33′ | 24°26´–24°31′ | ca. 1400 | Bulgaria | Stancheva and Temniskova [87] |
Bogdan-3 | 140 | 9056 ± 848 | Koprivshtitsa (Sofia, Bulgaria), Bogdan, Hisarya (Bogdan, Bulgaria) | 42°36′–42°33′ | 24°26′–24°31′ | 1400 | Bulgaria | Stancheva and Temniskova [87] |
Shiligarka | 60 | 6061 ± 532 | Koprivshtitsa (Sofia, Bulgaria), Bogdan, Hisarya (Bogdan, Bulgaria) | 42°36′–42°33′ | 24°26′–24°31′ | ca. 1400 | Bulgaria | Stancheva and Temniskova [87] |
Stordalen mire | 80 | 1200 | Stordalen mire (Norrbotten, Sweden) | 68°21′ | 19°03′ | ca. 161 | Sweden | Kokfelt et al. [81] |
Kräckelbäcken mires | 400 | 6668 ± 249 | Kräckelbäcken mires (Dalarna, Sweden) | 61°30′ | 14°13′ | ca. 700 | Sweden | Foster and Fritz [63] |
Kotasuo bog | 530 | 2883 ± 366 | Central part of Espoo parish (Uusima, Finland) | 60°15′ | 24°35′ | n.d. | Finland | Korhola [79] |
Punassuo bog | 650 | 3729 ± 327 | Perniö (Teijo) (Punassuo (Southwest Finland, Finland) | 60°13′ | 23°02′ | n.d. | Finland | Korhola [80] |
Munasuo bog | 610 | 2404 ± 374 | Pyhtää (Kymenlaakso, Finland) | 60°34′ | 26°40′ | n.d. | Finland | Korhola [80] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carballeira, R.; Pontevedra-Pombal, X. Diatoms in Paleoenvironmental Studies of Peatlands. Quaternary 2020, 3, 10. https://doi.org/10.3390/quat3020010
Carballeira R, Pontevedra-Pombal X. Diatoms in Paleoenvironmental Studies of Peatlands. Quaternary. 2020; 3(2):10. https://doi.org/10.3390/quat3020010
Chicago/Turabian StyleCarballeira, Rafael, and Xabier Pontevedra-Pombal. 2020. "Diatoms in Paleoenvironmental Studies of Peatlands" Quaternary 3, no. 2: 10. https://doi.org/10.3390/quat3020010
APA StyleCarballeira, R., & Pontevedra-Pombal, X. (2020). Diatoms in Paleoenvironmental Studies of Peatlands. Quaternary, 3(2), 10. https://doi.org/10.3390/quat3020010