Comparison of Climate Model Simulations of the Younger Dryas Cold Event
Abstract
:1. Introduction
- -
- What is the range in temperature and precipitation response in the five models?
- -
- What robust features of the YD climate can be distinguished?
- -
- What aspects of the YD climate represent the largest uncertainties?
2. Methods
2.1. Models
2.1.1. GISS Model
2.1.2. ECHAM4 Model
2.1.3. CCSM3 Model
2.1.4. LOVECLIM Model
2.2. Experimental Design
2.2.1. GISS Experiments
2.2.2. ECHAM4 Experiments
2.2.3. CCSM3 Experiment
2.2.4. LOVECLIM Experiments
3. Results and Discussion
3.1. Temperature
3.2. Precipitation
3.3. Comparison with Proxy-Based Evidence
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Peteet, D.M. Global Younger Dryas? Quat. Int. 1995, 28, 93–104. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Baker, P.A.; Bartlein, P.J.; Brewer, S.; Brook, E.; Carlson, A.E.; Cheng, H.; Kaufman, D.S.; Liu, Z.; et al. Global climate evolution during the last deglaciation. Proc. Natl. Acad. Sci. USA 2012, 109, E1134–E1142. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.E. The Younger Dryas climate event. In The Encyclopedia of Quaternary Science; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 3, pp. 126–134. [Google Scholar]
- Shakun, J.D.; Carlson, A.E. A global perspective on Last Glacial Maximum to Holocene climate change. Quat. Sci. Rev. 2010, 29, 1801–1816. [Google Scholar] [CrossRef]
- Harvey, L.D. Modelling the younger dryas. Quat. Sci. Rev. 1989, 8, 137–149. [Google Scholar] [CrossRef]
- Mikolajewicz, U.; Crowley, T.J.; Schiller, A.; Voss, R. Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature 1997, 387, 384–387. [Google Scholar] [CrossRef]
- Manabe, S.; Stouffer, R.J. Coupled ocean-atmosphere model response to freshwater input: Comparison to Younger Dryas Event. Paleoceanography 1997, 12, 321–336. [Google Scholar] [CrossRef]
- Peteet, D.M. Late glacial climate variability and General Circulation Model (GCM) experiments: An overview. In Interhemispheric Climate Linkages; Markgraf, V., Ed.; Academic Press: Cambridge, MA, USA, 2001; pp. 417–432. [Google Scholar]
- Schenk, F.; Väliranta, M.; Muschitiello, F.; Tarasov, L.; Heikkilä, M.; Björck, S.; Brandefelt, J.; Johansson, A.V.; Näslund, J.-O.; Wohlfarth, B. Warm summers during the Younger Dryas cold reversal. Nat. Commun. 2018, 9, 1634. [Google Scholar] [CrossRef] [Green Version]
- Rind, D.; Peteet, D.; Broecker, W.; McIntyre, A.; Ruddiman, W. The impact of cold North Atlantic sea surface temperatures on climate: Implications for the Younger Dryas cooling (11–10 k). Clim. Dyn. 1986, 1, 3–33. [Google Scholar] [CrossRef]
- Renssen, H.; Lautenschlager, M.; Schuurmans, C.J.E. The atmospheric winter circulation during the Younger Dryas stadial in the Atlantic/European sector. Clim. Dyn. 1996, 12, 813–824. [Google Scholar] [CrossRef]
- Menviel, L.; Timmermann, A.; Timm, O.E.; Mouchet, A. Deconstructing the Last Glacial termination: The role of millennial and orbital-scale forcings. Quat. Sci. Rev. 2011, 30, 1155–1172. [Google Scholar] [CrossRef]
- He, F. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM3. Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2011; p. 185. [Google Scholar]
- Renssen, H.; Mairesse, A.; Goosse, H.; Mathiot, P.; Heiri, O.; Roche, D.M.; Nisancioglu, K.H.; Valdes, P.J. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 2015, 8, 946–949. [Google Scholar] [CrossRef]
- Renssen, H.; Goosse, H.; Roche, D.M.; Seppä, H. The global hydroclimate response during the Younger Dryas event. Quat. Sci. Rev. 2018, 193, 84–97. [Google Scholar] [CrossRef]
- Members, C. Climatic Changes of the Last 18,000 Years: Observations and Model Simulations. Science 1988, 241, 1043–1052. [Google Scholar] [CrossRef]
- Kutzbach, J.E.; Guetter, P.J.; Behling, P.J.; Selin, R. Simulated climatic changes: Results of the COHMAP climate-model experiments. In Global Climates since the Last Glacial Maximum; Wright, H.E., Jr., Kutzbach, J.E., Webb, T., III, Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J., Eds.; University Minnesota Press: Minneapolis, MN, USA, 1993; pp. 24–93. [Google Scholar]
- Kohfeld, K.E.; Harrison, S.P. How well can we simulate past climates? Evaluating the models using global palaenvironmental datasets. Quat. Sci. Rev. 2000, 19, 321–346. [Google Scholar] [CrossRef]
- Braconnot, P.; Otto-Bliesner, B.; Harrison, S.; Joussaume, S.; Peterchmitt, J.-Y.; Abe-Ouchi, A.; Crucifix, M.; Driesschaert, E.; Fichefet, T.; Hewitt, C.D.; et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Clim. Past 2007, 3, 261–277. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Otto-Bliesner, B.L.; He, F.; Brady, E.C.; Tomás, R.; Clark, P.U.; Carlson, A.E.; Lynch-Stieglitz, J.; Curry, W.; Brook, E.; et al. Transient Simulation of Last Deglaciation with a New Mechanism for Bolling-Allerod Warming. Science 2009, 325, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Renssen, H.; Seppä, H.; Heiri, O.; Roche, D.M.; Goosse, H.; Fichefet, T. The spatial and temporal complexity of the Holocene thermal maximum. Nat. Geosci. 2009, 2, 411–414. [Google Scholar] [CrossRef]
- Zhang, Y.; Renssen, H.; Seppä, H.; Valdes, P.J. Holocene temperature trends in the extratropical Northern Hemisphere based on inter-model comparisons. J. Quat. Sci. 2018, 33, 464–476. [Google Scholar] [CrossRef] [Green Version]
- Goosse, H.; Crespin, E.; De Montety, A.; Mann, M.E.; Renssen, H.; Timmermann, A. Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef]
- Widmann, M.; Goosse, H.; Van Der Schrier, G.; Schnur, R.; Barkmeijer, J. Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Clim. Past 2010, 5, 2115–2156. [Google Scholar] [CrossRef]
- Mairesse, A.; Goosse, H.; Mathiot, P.; Wanner, H.; Dubinkina, S. Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: A mid-Holocene case study. Clim. Past 2013, 9, 2741–2757. [Google Scholar] [CrossRef] [Green Version]
- Mathiot, P.; Goosse, H.; Crosta, X.; Stenni, B.; Braida, M.; Renssen, H.; Van Meerbeeck, C.J.; Masson-Delmotte, V.; Mairesse, A.; Dubinkina, S. Using data assimilation to investigate the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP. Clim. Past 2013, 9, 887–901. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, M.; Braconnot, P.; Harrison, S.P.; Haywood, A.M.; Jungclaus, J.H.; Otto-Bliesner, B.L.; Peterschmitt, J.-Y.; Abe-Ouchi, A.; Albani, S.; Bartlein, P.J.; et al. The PMIP4 contribution to CMIP6—Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 2018, 11, 1033–1057. [Google Scholar] [CrossRef]
- Ivanovic, R.F.; Gregoire, L.G.; Kageyama, M.; Roche, D.M.; Valdes, P.J.; Burke, A.; Drummond, R.; Peltier, W.R.; Tarasov, L. Transient climate simulations of the deglaciation 21–9 thousand years before present (version 1)—PMIP4 Core experiment design and boundary conditions. Geosci. Model Dev. 2016, 9, 2563–2587. [Google Scholar] [CrossRef] [Green Version]
- Renssen, H.; Isarin, R. The two major warming phases of the last deglaciation at ∼14.7 and ∼11.5 ka cal BP in Europe: Climate reconstructions and AGCM experiments. Glob. Planet. Chang. 2001, 30, 117–153. [Google Scholar] [CrossRef]
- Hansen, J.; Russell, G.; Rind, D.; Stone, P.; Lacis, A.; Lebedeff, S.; Ruedy, R.; Travis, L. Efficient Three-Dimensional Global Models for Climate Studies: Models I and II. Mon. Weather Rev. 1983, 3, 609–662. [Google Scholar] [CrossRef]
- Roeckner, E.; Arpe, K.; Bengtsson, L.; Christoph, M.; Claussen, M.; Dümenil, L.; Esch, M.; Giorgetta, M.; Schlese, U.; Schulzweida, U. The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. In Max-Planck-Institute for Meteorology Report 218; Max-Planck_Institute for Meteorology: Hamburg, Germany, 1996; p. 90. [Google Scholar]
- Collins, W.D.; Bitz, C.M.; Blackmon, M.L.; Bonan, G.B.; Bretherton, C.S.; Carton, J.A.; Chang, P.; Doney, S.C.; Hack, J.J.; Henderson, T.B.; et al. The Community Climate System Model Version 3 (CCSM3). J. Clim. 2006, 19, 2122–2143. [Google Scholar] [CrossRef]
- Goosse, H.; Brovkin, V.; Fichefet, T.; Haarsma, R.; Huybrechts, P.; Jongma, J.; Mouchet, A.; Selten, F.; Barriat, P.-Y.; Campin, J.-M.; et al. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci. Model Dev. 2010, 3, 603–633. [Google Scholar] [CrossRef] [Green Version]
- Alley, R.B. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev. 2000, 19, 213–226. [Google Scholar] [CrossRef]
- Mangerud, J.; Andersen, S.T.; Berglund, B.E.; Donner, J.J. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 1974, 3, 109–126. [Google Scholar] [CrossRef]
- CLIMAP Project. Seasonal Reconstruction of the Earth’s Surface at the Last Glacial Maximum; Geological Society of America: Boulder, CO, USA, 1981. [Google Scholar]
- Renssen, H. The global response to Younger Dryas boundary conditions in an AGCM simulation. Clim. Dyn. 1997, 13, 587–599. [Google Scholar] [CrossRef]
- Sarnthein, M.; Jansen, E.; Weinelt, M.; Arnold, M.; Duplessy, J.C.; Erlenkeuser, H.; Flatøy, A.; Johannessen, G.; Johannessen, T.; Jung, S.; et al. Variations in Atlantic surface ocean paleoceanography, 50°–80°N: A time-slice record of the last 30 000 years. Paleoceanography 1995, 10, 1063–1094. [Google Scholar] [CrossRef] [Green Version]
- Schiller, A.; Mikolajewicz, U.; Voss, R. The stability of the thermohaline circulation in a coupled ocean-atmosphere circulation model. Clim. Dyn. 1997, 13, 325–347. [Google Scholar] [CrossRef] [Green Version]
- Heiri, O.; Brooks, S.J.; Renssen, H.; Bedford, A.; Hazekamp, M.; Ilyashuk, B.P.; Jeffers, E.S.; Lang, B.; Kirilova, E.; Kuiper, S.; et al. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat. Commun. 2014, 5, 4914. [Google Scholar] [CrossRef]
- Dubinkina, S.; Goosse, H.; Sallaz-Damaz, Y.; Crespin, E.; Crucifix, M. Testing a particle filter to reconstruct climate changes over the past centuries. Int. J. Bifurc. Chaos 2011, 21, 3611–3618. [Google Scholar] [CrossRef]
- Schulzweida, U. Climate Data Operator—CDO User Guide; Max-Planck-Institute for Meteorology: Hamburg, Germany, 2019; p. 216. [Google Scholar]
- Crowley, T.J. North Atlantic Deep Water cools the southern hemisphere. Paleoceanography 1992, 7, 489–497. [Google Scholar] [CrossRef]
- Broecker, W.S. Paleocean circulation during the Last Deglaciation: A bipolar seesaw? Paleoceanography 1998, 13, 119–121. [Google Scholar] [CrossRef]
- Stocker, T.F. The Seesaw Effect. Science 1998, 282, 61–62. [Google Scholar] [CrossRef]
- Seidov, D.; Maslin, M. Atlantic ocean heat piracy and the bipolar climate see-saw during Heinrich and Dansgaard-Oeschger events. J. Quat. Sci. 2001, 16, 321–328. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Yin, J.; Gregory, J.; Dixon, K.; Spelman, M.J.; Hurlin, W.; Weaver, A.J.; Eby, M.; Flato, G.M.; Hasumi, H.; et al. Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes. J. Clim. 2006, 19, 1365–1387. [Google Scholar] [CrossRef] [Green Version]
- McManus, J.F.; Francois, R.; Gherardi, J.-M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, A.M.; Goldstein, S.L.; Hemming, S.R.; Fairbanks, R.G. Intensification and variability of ocean thermohaline circulation through the last deglaciation. Earth Planet. Sci. Lett. 2004, 225, 205–220. [Google Scholar] [CrossRef]
- Stanford, J.D.; Rohling, E.J.; Hunter, S.; Roberts, A.P.; Rasmussen, S.O.; McManus, J.; Fairbanks, R.G.; Bard, E. Timing of meltwater pulse 1a and climate responses to meltwater injections. Paleoceanography 2006, 21, 4103. [Google Scholar] [CrossRef]
- Barker, S.; Knorr, G.; Mleneck-Vautravers, M.J.; Diz, P.; Skinner, L.C. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nat. Geosci. 2010, 3, 567–571. [Google Scholar] [CrossRef]
- Sachs, J.P.; Affolter, M.; Mann, R. Glacial Surface Temperatures of the Southeast Atlantic Ocean. Science 2001, 293, 2077–2079. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; Lamy, F.; Hebbeln, D. A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography 2005, 20. [Google Scholar] [CrossRef] [Green Version]
- Pahnke, K.; Sachs, J.P. Sea surface temperatures of southern midlatitudes 0-160 kyr B.P. Paleoceanography 2006, 21, 21. [Google Scholar] [CrossRef]
- Barrows, T.T.; Lehman, S.J.; Fifield, L.K.; De Deckker, P. Absence of Cooling in New Zealand and the Adjacent Ocean During the Younger Dryas Chronozone. Science 2007, 318, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Lamy, F.; Kaiser, J.; Arz, H.; Hebbeln, D.; Ninnemann, U.; Timm, O.; Timmermann, A.; Toggweiler, J. Modulation of the bipolar seesaw in the Southeast Pacific during Termination 1. Earth Planet. Sci. Lett. 2007, 259, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Stenni, B.; Buiron, D.; Frezzotti, M.; Albani, S.; Barbante, C.; Bard, E.; Barnola, J.M.; Baroni, M.; Baumgartner, M.; Bonazza, M.; et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nat. Geosci. 2010, 4, 46–49. [Google Scholar] [CrossRef]
- Kokorowski, H.; Anderson, P.; Mock, C.; Lozhkin, A. A re-evaluation and spatial analysis of evidence for a Younger Dryas climatic reversal in Beringia. Quat. Sci. Rev. 2008, 27, 1710–1722. [Google Scholar] [CrossRef]
- Mangerud, J.; Landvik, J.Y. Younger Dryas cirque glaciers in western Spitsbergen: Smaller than during the Little Ice Age. Boreas 2007, 36, 278–285. [Google Scholar] [CrossRef]
- Isarin, R.F.B.; Renssen, H.; Vandenberghe, J. The impact of the North Atlantic Ocean on the Younger Dryas climate in northwestern and central Europe. J. Quat. Sci. 1998, 13, 447–453. [Google Scholar] [CrossRef]
- Denton, G.H.; Alley, R.B.; Comer, G.C.; Broecker, W.S. The role of seasonality in abrupt climate change. Quat. Sci. Rev. 2005, 24, 1159–1182. [Google Scholar] [CrossRef]
- Isarin, R.F.; Bohncke, S.J. Mean July Temperatures during the Younger Dryas in Northwestern and Central Europe as Inferred from Climate Indicator Plant Species. Quat. Res. 1999, 51, 158–173. [Google Scholar] [CrossRef]
- Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quat. Sci. Rev. 2000, 19, 189–211. [Google Scholar] [CrossRef]
- Genty, D.; Blamart, D.; Ghaleb, B.; Plagnes, V.; Causse, C.; Bakalowicz, M.; Zouari, K.; Chkir, N.; Hellstrom, J.; Wainer, K. Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles—Comparison with Chinese and South Hemisphere stalagmites. Quat. Sci. Rev. 2006, 25, 2118–2142. [Google Scholar] [CrossRef]
- Foerster, V.E.; Junginger, A.; Langkamp, O.; Gebru, T.; Asrat, A.; Umer, M.; Lamb, H.F.; Wennrich, V.; Rethemeyer, J.; Nowaczyk, N.; et al. Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years. Quat. Int. 2012, 274, 25–37. [Google Scholar] [CrossRef]
- Rach, O.; Brauer, A.; Wilkes, H.; Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 2014, 7, 109–112. [Google Scholar] [CrossRef]
- Rach, O.; Kahmen, A.; Brauer, A.; Sachse, D. A dual-biomarker approach for quantification of changes in relative humidity from sedimentary lipid D∕H ratios. Clim. Past 2017, 13, 741–757. [Google Scholar] [CrossRef] [Green Version]
- Muschitiello, F.; Pausata, F.S.R.; Watson, J.E.; Smittenberg, R.; Salih, A.A.M.; Brooks, S.J.; Whitehouse, N.J.; Karlatou-Charalampopoulou, A.; Wohlfarth, B. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 2015, 6, 8939. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.-C.; Dorale, J.A. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Xu, Q.; Chen, J.; Birks, H.J.B.; Liu, J.; Zhang, S.; Jin, L.; Kandasamy, S.; Telford, R.J.; Cao, X.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 2015, 5, 11186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Liu, Q.; Wang, L.; Chu, G.-Q.; Liu, J.-Q. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China. PLoS ONE 2016, 11, e0146261. [Google Scholar] [CrossRef]
- Goldsmith, Y.; Broecker, W.S.; Xu, H.; Polissar, P.J.; Demenocal, P.B.; Porat, N.; Lan, J.; Cheng, P.; Zhou, W.; An, Z. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales. Proc. Natl. Acad. Sci. USA 2017, 114, 1817–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanahan, T.M.; McKay, N.P.; Hughen, K.A.; Overpeck, J.; Otto-Bliesner, B.; Heil, C.W.; King, J.; Scholz, C.A.; Peck, J. The time-transgressive termination of the African Humid Period. Nat. Geosci. 2015, 8, 140–144. [Google Scholar] [CrossRef]
- Polyak, V.J.; Rasmussen, J.B.; Asmerom, Y. Prolonged wet period in the southwestern United States through the Younger Dryas. Geology 2004, 32, 5. [Google Scholar] [CrossRef]
- Grimm, E.C.; Watts, W.A.; Jr., G.L.J.; Hansen, B.C.; Almquist, H.R.; Dieffenbacher-Krall, A.C. Evidence for warm wet Heinrich events in Florida. Quat. Sci. Rev. 2006, 25, 2197–2211. [Google Scholar] [CrossRef]
- Wagner, J.D.M.; Cole, J.E.; Beck, J.W.; Patchett, P.J.; Henderson, G.M.; Barnett, H.R. Moisture variability in the southwestern United States linked to abrupt glacial climate change. Nat. Geosci. 2010, 3, 110–113. [Google Scholar] [CrossRef]
- Voelker, S.L.; Stambaugh, M.C.; Guyette, R.P.; Feng, X.; Grimley, D.A.; Leavitt, S.W.; Panyushkina, I.; Grimm, E.C.; Marsicek, J.P.; Shuman, B.; et al. Deglacial hydroclimate of mid-continental North America. Quat. Res. 2015, 83, 336–344. [Google Scholar] [CrossRef]
- Griffiths, M.L.; Drysdale, R.; Vonhof, H.B.; Gagan, M.K.; Zhao, J.-X.; Ayliffe, L.K.; Hantoro, W.S.; Hellstrom, J.; Cartwright, I.; Frisia, S.; et al. Younger Dryas–Holocene temperature and rainfall history of southern Indonesia from δ18O in speleothem calcite and fluid inclusions. Earth Planet. Sci. Lett. 2010, 295, 30–36. [Google Scholar] [CrossRef]
- Partin, J.; Quinn, T.; Shen, C.-C.; Okumura, Y.; Cardenas, M.B.; Siringan, F.; Banner, J.; Lin, K.; Hu, H.-M.; Taylor, F. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics. Nat. Commun. 2015, 6, 8061. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.A.; Rigsby, C.A.; Seltzer, G.O.; Fritz, S.C.; Lowenstein, T.K.; Bacher, N.P.; Veliz, C. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 2001, 409, 698–701. [Google Scholar] [CrossRef]
- Shi, N.; Dupont, L.; Beug, H.-J.; Schneider, R. Correlation between Vegetation in Southwestern Africa and Oceanic Upwelling in the Past 21,000 Years. Quat. Res. 2000, 54, 72–80. [Google Scholar] [CrossRef]
- Dupont, L.; Kim, J.-H.; Schneider, R.; Shi, N. Southwest African climate independent of Atlantic sea surface temperatures during the Younger Dryas. Quat. Res. 2004, 61, 318–324. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Meeker, L.D.; Whitlow, S.; Twickler, M.S.; Morrison, M.C.; Alley, R.B.; Bloomfield, P.; Taylor, K. The Atmosphere during the Younger Dryas. Science 1993, 261, 195–197. [Google Scholar] [CrossRef]
- Monnin, E.; Steig, E.J.; Siegenthaler, U.; Kawamura, K.; Schwander, J.; Stauffer, B.; Stocker, T.F.; Morse, D.L.; Barnola, J.-M.; Bellier, B.; et al. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet. Sci. Lett. 2004, 224, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Schilt, A.; Baumgartner, M.; Schwander, J.; Buiron, D.; Capron, E.; Chappellaz, J.; Loulergue, L.; Schüpbach, S.; Spahni, R.; Fischer, H.; et al. Atmospheric nitrous oxide during the last 140,000years. Earth Planet. Sci. Lett. 2010, 300, 33–43. [Google Scholar] [CrossRef]
- Andres, M.S.; Bernasconi, S.M.; A McKenzie, J.; Röhl, U. Southern Ocean deglacial record supports global Younger Dryas. Earth Planet. Sci. Lett. 2003, 216, 515–524. [Google Scholar] [CrossRef]
Original Reference | Model | Equilibrium or Transient | Model Summary | Experiment Summary |
---|---|---|---|---|
Rind et al. [10] | GISS | equilibrium | AGCM, 9 vertical layers, 8° × 10° lat-lon [30] | Last 3 yrs from two 5-yr simulations: 11 kW representing the BA with 11 k boundary conditions and modern SSTs, 11 kC, representing the YD, as 11 kW, but with glacial SSTs in the North Atlantic north of 25° N |
Renssen & Isarin [29] | ECHAM4 | equilibrium | AGCM, 19 vertical layers, 2.8° × 2.8° lat-lon [31] | Last 10 yrs from two 12-yr simulations: expGI1e, representing the BA, with boundary conditions for Bølling, and expGS1, representing the YD |
Menviel et al. [12] | LOVECLIM1.1 | transient | EMIC, OGCM 3° × 3° lat-lon, 20 layers, atmospheric quasi-geostrophic model, 3 layers and 5.6° × 5.6° lat-lon, VECODE vegetation model [32] | DGNS: transient simulation 21 to 10 ka with time-varying forcings: insolation, ice sheets (every 100 yr), CO2. Other GHG not changed. Freshwater forcing in both NH and SH |
He [13] | CCSM3 | transient | Coupled AOVGCM, CAM 3 atmospheric model with 26 layers and ~3.75° × 3.75° lat-lon horizontal resolution. POP ocean model with 25 layers [33] | ALL: transient simulation 22 ka to 1990 CE, time-varying forcings: insolation, ice sheets (every 500 yr), freshwater forcing in both NH and SH |
Renssen et al. [14] | LOVECLIM1.2 | transient | EMIC, OGCM 3° × 3° lat-lon, 20 layers, atmospheric quasi-geostrophic model, 3 layers and 5.6° × 5.6° lat-lon, VECODE vegetation model [32] | COMBINED: transient simulation starting from 13 ka BA state. Forcings: freshwater forcing in NH, negative radiative forcing, data assimilation (particle filter with 96 ensemble members) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renssen, H. Comparison of Climate Model Simulations of the Younger Dryas Cold Event. Quaternary 2020, 3, 29. https://doi.org/10.3390/quat3040029
Renssen H. Comparison of Climate Model Simulations of the Younger Dryas Cold Event. Quaternary. 2020; 3(4):29. https://doi.org/10.3390/quat3040029
Chicago/Turabian StyleRenssen, Hans. 2020. "Comparison of Climate Model Simulations of the Younger Dryas Cold Event" Quaternary 3, no. 4: 29. https://doi.org/10.3390/quat3040029
APA StyleRenssen, H. (2020). Comparison of Climate Model Simulations of the Younger Dryas Cold Event. Quaternary, 3(4), 29. https://doi.org/10.3390/quat3040029