Palaeogeographical Reconstruction of Ancient Diolkos Slipway by Using Beachrocks as Proxies, West Corinth Isthmus, Greece
Abstract
:1. Introduction
2. Study Area
2.1. Geological and Geotectonic Setting
2.2. The Ancient Diolkos Slipway
3. Materials and Methods
3.1. Fieldwork and Laboratory Analysis
3.2. Luminescence Dating
3.3. Relative Sea Level Reconstruction
4. Results
4.1. Beachrock Distribution
4.2. Cement Morphology and Mineralogy
4.3. Sea Level Past Positions
5. Discussion
6. Conclusions
- Before the 6th century B.C., a beachrock was lying on the intertidal zone covering the area and reaching at least 65 m from today’s coastline.
- Diolkos construction occurred and the beachrock stopped its development until the destruction of Corinth in 146 B.C.
- A subsidence occurred totaling 35 ± 16 cm, and Diolkos along with beachrock A were submerged.
- Sediment accumulation occurred after Nero’s intervention at 67 A.D., forming a new beachrock in the intertidal zone in 120 ± 14 A.D.
- After 120 ± 14 A.D., the beachrock continued its development up until 1569 ± 57 A.D.
- After 1569 ± 57 A.D., the beachrock developed another 5 m width until the present-day coastline. The area uplifted by 12 cm owing to one or more co-seismic events.
- The beachrock development stopped when the Corinth canal construction started in 1882.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Khan, N.S.; Ashe, E.; Shaw, T.A.; Vacchi, M.; Walker, J.; Peltier, W.R.; Kopp, R.E.; Horton, B.P. Holocene Relative Sea-Level Changes from Near-, Intermediate-, and Far-Field Locations. Curr. Clim. Chang. Rep. 2015, 1, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T.; Stocchi, P.; Gómez-Pujol, L.; Harris, D.L.; Casella, E.; O’Leary, M.J.; Hearty, P.J. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world. Earth-Sci. Rev. 2016, 159, 404–427. [Google Scholar] [CrossRef] [Green Version]
- Engelhart, S.E.; Horton, B.P.; Douglas, B.C.; Peltier, W.R.; Törnqvist, T.E. Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology 2009, 37, 1115–1118. [Google Scholar] [CrossRef] [Green Version]
- Stattegger, K.; Tjallingii, R.; Saito, Y.; Michelli, M.; Trung Thanh, N.; Wetzel, A. Mid to late Holocene sea-level reconstruction of Southeast Vietnam using beachrock and beach-ridge deposits. Glob. Planet. Change 2013, 110, 214–222. [Google Scholar] [CrossRef]
- Tsanakas, K.; Karymbalis, E.; Cundy, A.; Gaki-Papanastassiou, K.; Papanastasiou, D.; Drinia, H.; Koskeridou, E.; Maroukian, H. Late Holocene geomorphic evolution of the Livadi coastal plain, Gulf of Argostoli, Cephalonia Island, Western Greece. Geogr. Fis. Din. Quat. 2019, 42, 43–60. [Google Scholar] [CrossRef]
- Melis, R.T.; Di Rita, F.; French, C.; Marriner, N.; Montis, F.; Serreli, G.; Sulas, F.; Vacchi, M. 8000 years of coastal changes on a western Mediterranean island: A multiproxy approach from the Posada plain of Sardinia. Mar. Geol. 2018, 403, 93–108. [Google Scholar] [CrossRef]
- Caporizzo, C.; Gracia, F.J.; Aucelli, P.P.C.; Barbero, L.; Martín-Puertas, C.; Lagóstena, L.; Ruiz, J.A.; Alonso, C.; Mattei, G.; Galán-Ruffoni, I.; et al. Late-Holocene evolution of the Northern Bay of Cádiz from geomorphological, stratigraphic and archaeological data. Quat. Int. 2021, 602, 92–109. [Google Scholar] [CrossRef]
- Seeliger, M.; Pint, A.; Frenzel, P.; Marriner, N.; Spada, G.; Vacchi, M.; Başaran, S.; Dan, A.; Seeger, F.; Seeger, K.; et al. Mid- to late-Holocene sea-level evolution of the northeastern Aegean sea. Holocene 2021, 31, 1621–1634. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Velegrakis, A.F.; Plomaritis, T.A. Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth-Sci. Rev. 2007, 85, 23–46. [Google Scholar] [CrossRef]
- Mauz, B.; Vacchi, M.; Green, A.; Hoffmann, G.; Cooper, A. Beachrock: A tool for reconstructing relative sea level in the far-field. Mar. Geol. 2015, 362, 1–16. [Google Scholar] [CrossRef]
- Danjo, T.; Kawasaki, S. Characteristics of Beachrocks: A Review. Geotech. Geol. Eng. 2014, 32, 215–246. [Google Scholar] [CrossRef]
- Karkani, A.; Evelpidou, N.; Vacchi, M.; Morhange, C.; Tsukamoto, S.; Frechen, M.; Maroukian, H. Tracking shoreline evolution in central Cyclades (Greece) using beachrocks. Mar. Geol. 2017, 388, 25–37. [Google Scholar] [CrossRef]
- Tucker, M.E.; Bathurst, R.G.C. Carbonate Diagenesis; Blackwell Publishing Ltd.: Oxford, UK, 1990. [Google Scholar]
- Gischler, E. Beachrock and Intertidal Precipitates. In Geochemical Sediments and Landscapes; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2008; pp. 365–390. ISBN 9781405125192. [Google Scholar]
- Alexandersson, T. Intragranular Growth of Marine Aragonite and Mg-Calcite: Evidence of Precipitation from Supersaturated Seawater. J. Sediment. Res. 1972, 42, 441–460. [Google Scholar] [CrossRef]
- Scholle, P.A.; Bebout, D.G.; Moore, C.H. Carbonate Depositional Environments; Scholle, P.A., Bebout, D.G., Moore, C.H., Eds.; The American Association of Petroleum Geologists: Tulsa, Oklahoma, 1983; ISBN 0891813101. [Google Scholar]
- Kelletat, D. Beachrock as Sea-Level Indicator? Remarks from a Geomorphological Point of View. J. Coast. Res. 2006, 226, 1558–1564. [Google Scholar] [CrossRef]
- Desruelles, S.; Fouache, É.; Ciner, A.; Dalongeville, R.; Pavlopoulos, K.; Kosun, E.; Coquinot, Y.; Potdevin, J.-L. Beachrocks and sea level changes since Middle Holocene: Comparison between the insular group of Mykonos–Delos–Rhenia (Cyclades, Greece) and the southern coast of Turkey. Glob. Planet. Change 2009, 66, 19–33. [Google Scholar] [CrossRef]
- Evelpidou, N.; Kampolis, I.; Pirazzoli, P.A.; Vassilopoulos, A. Global sea-level rise and the disappearance of tidal notches. Glob. Planet. Change 2012, 92–93, 248–256. [Google Scholar] [CrossRef]
- Vacchi, M.; Rovere, A.; Zouros, N.; Desruelles, S.; Caron, V.; Firpo, M. Spatial distribution of sea-level markers on Lesvos Island (NE Aegean Sea): Evidence of differential relative sea-level changes and the neotectonic implications. Geomorphology 2012, 159–160, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Falkenroth, M.; Schneider, B.; Hoffmann, G. Beachrock as sea-level indicator—A case study at the coastline of Oman (Indian Ocean). Quat. Sci. Rev. 2019, 206, 81–98. [Google Scholar] [CrossRef]
- Alexandrakis, G.; Petrakis, S.; Kampanis, N.A. Integrating geomorphological data, geochronology and archaeological evidence for coastal landscape reconstruction, the case of Ammoudara Beach, Crete. Water 2021, 13, 1269. [Google Scholar] [CrossRef]
- Alexandersson, T. Recent littoral and sublittoral high-mg calcite lithification in the mediterranean. Sedimentology 1969, 12, 47–61. [Google Scholar] [CrossRef]
- Neumeier, U. Experimental modelling of beachrock cementation under microbial influence. Sediment. Geol. 1999, 126, 35–46. [Google Scholar] [CrossRef]
- Psomiadis, D.; Tsourlos, P.; Albanakis, K. Electrical resistivity tomography mapping of beachrocks: Application to the island of Thassos (N. Greece). Environ. Earth Sci. 2009, 59, 233–240. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.; Lampropoulou, P.; Fakiris, E.; Sardelianos, D.; Papatheodorou, G. Synergistic Use of UAV and USV Data and Petrographic Analyses for the Investigation of Beachrock Formations: A Case Study from Syros Island, Aegean Sea, Greece. Minerals 2018, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- Hopley, D. Beachrock as a sea-level indicator. In Sea-Level Research; van der Plassche, O., Ed.; Springer: Dordrecht, The Netherlands, 1986; pp. 157–173. [Google Scholar]
- Evelpidou, N. Geomorphology and Sea Level. In Encyclopedia of Coastal Science; Finkl, C., Makowski, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 885–894. ISBN 9783319486574. [Google Scholar]
- Polidorou, M.; Saitis, G.; Evelpidou, N. Beachrock development as an indicator of paleogeographic evolution, the case of Akrotiri Peninsula, Cyprus. Z. Geomorphol. 2021, 63, 3–17. [Google Scholar] [CrossRef]
- Erginal, A.E.; Kıyak, N.G.; Öztürk, B. Investigation of Beachrock Using Microanalyses and OSL Dating: A Case Study from Bozcaada Island, Turkey. J. Coast. Res. 2010, 262, 350–358. [Google Scholar] [CrossRef]
- Ozturk, M.Z.; Erginal, A.E.; Kiyak, N.G.; Ozturk, T. Cement fabrics and optical luminescence ages of beachrock, North Cyprus: Implications for Holocene sea-level changes. Quat. Int. 2016, 401, 132–140. [Google Scholar] [CrossRef]
- Tatumi, S.H.; Kowate, E.A.; Gozzi, G.; Kassab, L.R.P.; Suguio, K.; Barreto, A.M.F.; Bezerra, F. Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study. J. Lumin. 2003, 102–103, 562–565. [Google Scholar] [CrossRef]
- Barreto, A.M.F.; Bezerra, F.H.R.; Suguio, K.; Tatumi, S.H.; Yee, M.; Paiva, R.P.; Munita, C.S. Late Pleistocene marine terrace deposits in northeastern Brazil: Sea-level change and tectonic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 179, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.J. Luminescence Dating of Beachrock in the Southeast Coast of India—Potential for Holocene Shoreline Reconstruction. J. Coast. Res. 2009, 251, 1–7. [Google Scholar] [CrossRef]
- Papanikolaou, D. Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides. Tectonophysics 2013, 595–596, 1–24. [Google Scholar] [CrossRef]
- Higgins, M.D.; Higgins, R.A. A geological companion to Greece and the Aegean. Choice Rev. 1993, 34–3874. [Google Scholar] [CrossRef]
- Papanikolaou, D.J.; Royden, L.H. Disruption of the Hellenic arc: Late Miocene extensional detachment faults and steep Pliocene-Quaternary normal faults—Or what happened at Corinth? Tectonics 2007, 26, TC5003. [Google Scholar] [CrossRef]
- Hellenic Navy Hydrographic Service. Hellenic Navy Hydrographic Service; Hellenic Navy Hydrographic Service: Athens, Greece, 2015. [Google Scholar]
- Verdelis, N. Continuation of Diolkos excavation. Archaeol. Newsp. 1956, 95, 1–3. [Google Scholar]
- Verdelis, N. Diolkos excavation. In Practicals of the Archaeological Society of Athens; Archaeological Society at Athens 1960; Archaeological Society of Athens: Athens, Greece, 1960; Volume 160, pp. 136–143. [Google Scholar]
- Koutsouba, D.; Nakas, G. Diolkos: A significant engineering structure of Antiquity. In Proceedings of the Corinthia and the Northeast Peloponnesus, Loutraki, Greece, 26–29 March 2009. [Google Scholar]
- Morhange, C.; Pirazzoli, P.A.; Evelpidou, N.; Marriner, N. Late Holocene Tectonic Uplift and the Silting Up of Lechaion, the Western Harbor of Ancient Corinth, Greece. Geoarchaeology 2012, 27, 278–283. [Google Scholar] [CrossRef]
- Maroukian, H.; Gaki-Papanastassiou, K.; Papanastassiou, D. Coastal changes in Corinthia, Greece. In RES MARITIMAE: Cyprus and the Eastern Mediterranean from Prehistory to Late Antiquity; Swiny, S., Hohlfelder, R.L., WyldeSwiny, H., Eds.; Scholars Press: Atlanta, GA, USA, 1994; pp. 217–226. [Google Scholar]
- Saitis, G.; Koutsopoulou, E.; Karkani, A.; Anastasatou, M.; Stamatakis, M.; Gatou, M.-A.; Evelpidou, N. A multi-analytical study of beachrock formation in Naxos and Paros Islands, Aegean Sea, Greece and their palaeoenvironmental significance. Z. Geomorphol. 2021, 63, 19–32. [Google Scholar] [CrossRef]
- Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Sci. Rev. 2016, 155, 172–197. [Google Scholar] [CrossRef] [Green Version]
- Vacchi, M.; Ghilardi, M.; Spada, G.; Currás, A.; Robresco, S. New insights into the sea-level evolution in Corsica (NW Mediterranean) since the late Neolithic. J. Archaeol. Sci. Rep. 2017, 12, 782–793. [Google Scholar] [CrossRef]
- Shennan, I.; Horton, B. Holocene land- and sea-level changes in Great Britain. J. Quat. Sci. 2002, 17, 511–526. [Google Scholar] [CrossRef]
- Dean, S.; Horton, B.P.; Evelpidou, N.; Cahill, N.; Spada, G.; Sivan, D. Can we detect centennial sea-level variations over the last three thousand years in Israeli archaeological records? Quat. Sci. Rev. 2019, 210, 125–135. [Google Scholar] [CrossRef]
- Evelpidou, N.; Pirazzoli, P.; Vassilopoulos, A.; Spada, G.; Ruggieri, G.; Tomasin, A. Late Holocene Sea Level Reconstructions Based on Observations of Roman Fish Tanks, Tyrrhenian Coast of Italy. Geoarchaeology 2012, 27, 259–277. [Google Scholar] [CrossRef]
- Evelpidou, N.; Melini, D.; Pirazzoli, P.A.; Vassilopoulos, A. Evidence of repeated late Holocene rapid subsidence in the SE Cyclades (Greece) deduced from submerged notches. Int. J. Earth Sci. 2014, 103, 381–395. [Google Scholar] [CrossRef]
- Boulton, S.J.; Stewart, I.S. Holocene coastal notches in the Mediterranean region: Indicators of palaeoseismic clustering? Geomorphology 2015, 237, 29–37. [Google Scholar] [CrossRef]
- Sisma-Ventura, G.; Sivan, D.; Shtienberg, G.; Bialik, O.M.; Filin, S.; Greenbaum, N. Last interglacial sea level high-stand deduced from well-preserved abrasive notches exposed on the Galilee coast of northern Israel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 470, 1–10. [Google Scholar] [CrossRef]
- Damien, A.; Kosmas, P.; Éric, F. Holocene relative sea-level variations and archeological implications, Abu Dhabi western region, United Arab Emirates. Arab. J. Geosci. 2020, 13, 1–16. [Google Scholar] [CrossRef]
- Vacchi, M.; Russo Ermolli, E.; Morhange, C.; Ruello, M.R.; Di Donato, V.; Di Vito, M.A.; Giampaola, D.; Carsana, V.; Liuzza, V.; Cinque, A.; et al. Millennial variability of rates of sea-level rise in the ancient harbour of Naples (Italy, western Mediterranean Sea). Quat. Res. 2020, 93, 284–298. [Google Scholar] [CrossRef]
- Sivan, D.; Widowinski, S.; Lambeck, K.; Galili, E.; Raban, A. Holocene sea-level changes along the Mediterranean coast of Israel, based on archaeological observations and numerical model. Palaeogeogr. Palaeoclim. Palaeoecol. 2001, 167, 101–117. [Google Scholar] [CrossRef]
- Sivan, D.; Lambeck, K.; Toueg, R.; Raban, A.; Porath, Y.; Shirman, B. Ancient coastal wells of Caesarea Maritima, Israel, an indicator for relative sea level changes during the last 2000 years. Earth Planet. Sci. Lett. 2004, 222, 315–330. [Google Scholar] [CrossRef]
- Benjamin, J.; Rovere, A.; Fontana, A.; Furlani, S.; Vacchi, M.; Inglis, R.H.; Galili, E.; Antonioli, F.; Sivan, D.; Miko, S. Late Quaternary sea-level changes and early human societies in the central and eastern Mediterranean Basin: An interdisciplinary review. Q. Int. 2017, 449, 29–57. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, A.; Baziotis, I.; Anagnostou, C.; Evelpidou, N. Beachrocks cement characteristics and conditions of formation. case study platanias beach, chania, greece. Bull. Geol. Soc. Greece 2017, 50, 458. [Google Scholar] [CrossRef] [Green Version]
- Collier, R.E.L.; Leeder, M.R.; Rowe, P.J.; Atkinson, T.C. Rates of tectonic uplift in the Corinth and Megara Basins, central Greece. Tectonics 1992, 11, 1159–1167. [Google Scholar] [CrossRef]
- Dia, A.N.; Cohen, A.S.; O’Nions, R.K.; Jackson, J.A. Rates of uplift investigated through 230Th dating in the Gulf of Corinth (Greece). Chem. Geol. 1997, 138, 171–184. [Google Scholar] [CrossRef]
- Turner, J.A.; Leeder, M.R.; Andrews, J.E.; Rowe, P.J.; van Calsteren, P.V.; Thomas, L. Testing rival tectonic uplift models for the Lechaion Gulf in the Gulf of Corinth rift. J. Geol. Soc. 2010, 167, 1237–1250. [Google Scholar] [CrossRef]
- Papanikolaou, I.D.; Triantaphyllou, M.; Pallikarakis, A.; Migiros, G. Active faulting at the Corinth Canal based on surface observations, borehole data and paleoenvironmental interpretations. Passive rupture during the 1981 earthquake sequence? Geomorphology 2015, 237, 65–78. [Google Scholar] [CrossRef]
- Mariolakos, I.; Stiros, S.C. Quaternary deformation of the Isthmus and Gulf of Corinthos (Greece). Geology 1987, 15, 225–228. [Google Scholar] [CrossRef]
- Papazachos, B.P.; Papazachou, C.B. The Earthquakes of Greece; Ziti Publ.: Thessaloniki, Greece, 1997; p. 304. [Google Scholar]
- Hadler, H.; Koster, B.; Mathes-schmidt, M. Lechaion, the Ancient Harbour of Corinth (Peloponnese, Greece) destroyed by tsunamigenic impact. In Proceedings of the 2nd INQUA-IGCP-567 International Workshop on Active Tectonics, Earthquake Geology, Archaeology and Engineeering, Corinth, Greece, 19–24 September 2011; p. 1755. [Google Scholar]
- Hadler, H.; Vött, A.; Koster, B.; Mathes-Schmidt, M.; Mattern, T.; Ntageretzis, A.K.; Reicherter, K.; Willershäuser, T. Multiple late-Holocene tsunami landfall in the eastern Gulf of Corinth recorded in the palaeotsunami geo-archive at Lechaion, harbour of ancient Corinth (Peloponnese, Greece). Z. Geomorphol. Suppl. Issues 2013, 57, 139–180. [Google Scholar] [CrossRef]
- Lewis, M.J.T. Railways in the Greek and Roman world in Early Railways. In Early Railways. A Selection of Papers from the First International Early Railways Conference; Guy, A., Ed.; Newcomen Society: London, UK, 2001; pp. 8–19. [Google Scholar]
- Lambeck, K.; Anzidei, M.; Antonioli, F.; Benini, A.; Esposito, A. Sea level in Roman time in the Central Mediterranean and implications for recent change. Earth Planet. Sci. Lett. 2004, 224, 563–575. [Google Scholar] [CrossRef]
- Morhange, C.; Marriner, N. Archeological and biological relative sea-level indicators. Handb. Sea-Level Res. 2015, 146–156. [Google Scholar] [CrossRef]
- Anzidei, M.; Antonioli, F.; Lambeck, K.; Benini, A.; Soussi, M.; Lakhdar, R. New insights on the relative sea level change during Holocene along the coasts of Tunisia and western Libya from archaeological and geomorphological markers. Quat. Int. 2011, 232, 5–12. [Google Scholar] [CrossRef]
- Baika, K. Archaeological indicators of relative sea-level changes in the Attico-Cycladic massif: Preliminary results. Bull. Geol. Soc. Greece 2008, XLII, 33–48. [Google Scholar]
Sample | Cement Type | Cement Thickness | Mineral Composition | SLIP | Indicative Meaning |
---|---|---|---|---|---|
CoDi1 | Thin isopachous micritic HMC. No matrix and no bioclasts | <10 μm | Quartz, Mg-Calcite, Dolomite, Plagioclase, clay minerals | Intertidal, undifferentiated | MHW to MLW |
CoDi2 | Thin isopachous micritic HMC. No matrix and no bioclasts | <10 μm | Quartz, Mg-Calcite, Dolomite, Plagioclase, clay minerals | intertidal, undifferentiated | MHW to MLW |
CoDi3 | Isopachous micritic HMC and. Matrix infilling and Pellet concentrations. | 10–20 μm | Quartz, Mg-Calcite, Dolomite, Plagioclase, clay minerals | Intertidal, undifferentiated | MHW to MLW |
CoDi4 | Isopachous micritic HMc. brown bio-micritic cement. Pellet concentrations. | 10–20 μm | Quartz, Mg-Calcite, Dolomite, Plagioclase, clay minerals | Intertidal, undifferentiated | MHW to MLW |
Site | Sample Number | Elevation (m) | Method | No of Aliquots | Equivalent Dose (Gy) | Age BP (ka) |
---|---|---|---|---|---|---|
CoDiN | DiN1 | 0.17 | Quartz | 12 | 0.230 | 0.381 |
CoDiS | DiS1 | 0.20 | Quartz | 15 | 1190 | 1.83 |
Beachrock ID | Sample No | Height (m) | Age (ka) | Tidal Range (m) | Measurement Error (m) | Indicative Meaning (m) | RWL (m) | RSL (m) | Error (cm) | Notes |
---|---|---|---|---|---|---|---|---|---|---|
CoDiN | DiN1 | 0.17 | 0.381 | 0.26 | 0.02 | 0.26 | 0.13 | 0.04 | 13 | Accepted |
CoDiS | DiS1 | 0.20 | 1.83 | 0.26 | 0.02 | 0.26 | 0.13 | 0.08 | 13 | Accepted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saitis, G.; Karkani, A.; Evelpidou, N.; Maroukian, H. Palaeogeographical Reconstruction of Ancient Diolkos Slipway by Using Beachrocks as Proxies, West Corinth Isthmus, Greece. Quaternary 2022, 5, 7. https://doi.org/10.3390/quat5010007
Saitis G, Karkani A, Evelpidou N, Maroukian H. Palaeogeographical Reconstruction of Ancient Diolkos Slipway by Using Beachrocks as Proxies, West Corinth Isthmus, Greece. Quaternary. 2022; 5(1):7. https://doi.org/10.3390/quat5010007
Chicago/Turabian StyleSaitis, Giannis, Anna Karkani, Niki Evelpidou, and Hampik Maroukian. 2022. "Palaeogeographical Reconstruction of Ancient Diolkos Slipway by Using Beachrocks as Proxies, West Corinth Isthmus, Greece" Quaternary 5, no. 1: 7. https://doi.org/10.3390/quat5010007
APA StyleSaitis, G., Karkani, A., Evelpidou, N., & Maroukian, H. (2022). Palaeogeographical Reconstruction of Ancient Diolkos Slipway by Using Beachrocks as Proxies, West Corinth Isthmus, Greece. Quaternary, 5(1), 7. https://doi.org/10.3390/quat5010007