Fluvial Morphology in Different Permafrost Environments—A Review
Abstract
:1. Introduction
2. Overview of Hydrodynamic Drainage and Environmental Conditions in Modern Permafrost Catchments
2.1. The Zone of Continuous Permafrost
2.2. The Zone of Discontinuous Permafrost
3. Morphology and Sedimentology of Channel Systems in Modern and Ancient Permafrost Areas
3.1. High-Energetic Systems
3.2. Channels of Moderate-to-Low Energy
4. Overland Processes on the Interfluves during Pleistocene Times
5. Discussion and Synthesis: The Fluvial System in Conditions from Continuous to Degraded or Disappearing Permafrost
Funding
Acknowledgments
Conflicts of Interest
References
- Vandenberghe, J.; Woo, M.K. Modern and ancient periglacial river types. Progr. Phys. Geogr. 2002, 26, 479–506. [Google Scholar] [CrossRef]
- Woo, M.K. Permafrost Hydrology; Springer: Berlin/Heidelberg, Germany, 2012; 564p. [Google Scholar]
- Church, M. Pattern of instability in a wandering gravel bed channel. In Modern and Ancient Alluvial Systems; Collinson, J.D., Lewin, J., Eds.; International Association of Sedimentologists, Special Publication: Brussels, Belgium, 1983; Volume 6, pp. 169–180. [Google Scholar]
- Clark, M.J. Periglacial hydrology. In Advances in Periglacial Geomorphology; Clark, M.J., Ed.; John Wiley and Sons Ltd.: Chichester, UK, 1988; pp. 415–462. [Google Scholar]
- Vandenberghe, J. A typology of Pleistocene cold-based rivers. Quat. Int. 2001, 79, 111–121. [Google Scholar] [CrossRef]
- Van Huissteden, J.; Vandenberghe, J.; Gibbard, P.L.; Lewin, J. Periglacial rivers. In The Encyclopedia of Quaternary Science, 3rd ed.; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Czudek, T. Kryopedimente–wichtige Reliefformen der rezenten und pleistozänen permafrostgebiete. Peterm. Geogr. Mitt. 1988, 132, 161–173. [Google Scholar]
- French, H.M. The Periglacial Environment, 4th ed.; Wiley: Chichester, UK, 2014. [Google Scholar]
- Woo, M.K. Permafrost hydrology in North America. Atmosphere-Ocean 1986, 24, 201–234. [Google Scholar] [CrossRef]
- Woo, M.K.; Marsh, P.; Steer, P. Basin water balance in a continuous permafrost environment. In Proceedings of the 4th International Conference Permafrost, Fairbanks, AL, USA, 18–22 July 1983; National Academy Press: Washington, DC, USA, 1983; pp. 1407–1411. [Google Scholar]
- Bird, J.B. The Physiography of Arctic Canada; Johns Hopkins Press: Baltimore, MD, USA, 1967. [Google Scholar]
- McCann, S.B.; Howarth, P.J.; Cogley, J.G. Fluvial processes in a periglacial environment. Trans. Inst. Br. Geogr. 1971, 55, 69–82. [Google Scholar]
- Church, M. Hydrology and permafrost with reference to northern North America. In Proceedings of the Workshop Seminar on Permafrost, CNC/IHD, Calgary, Alberta, 26–28 February 1974; Canadian National Committee for the International Hydrological Decade: Ottawa, ON, Canada, 1974; pp. 7–20. [Google Scholar]
- Mackay, D.K.; Løken, O.H. Arctic hydrology. In Arctic and Alpine Environments; Ives, J.D., Barry, R.G., Eds.; Methuen & Co., Ltd.: London, UK, 1974; pp. 111–132. [Google Scholar]
- Woo, M.K.; Pomeroy, J. Snow and runoff: Processes, sensitivity and vulnerability. In Changing Cold Environments, a Canadian Perspective; French, H.M., Slaymaker, O., Eds.; John Wiley and Sons: Chichester, UK, 2012; pp. 105–125. [Google Scholar]
- Woo, M.K.; Winter, T.C. The role of permafrost and seasonal frost in the hydrology of northern wetlands in North America. J Hydrol. 1993, 141, 5–31. [Google Scholar] [CrossRef]
- French, H.M.; Egginton, P. Thermokarst development, Banks Island, Western Canadian Arctic. In Permafrost, Proceedings of North American Contribution to the 2nd International Conference on Permafrost, Yakutsk, Russia, 12–20 July 1973; USSR, Publication 2115; National Academy of Sciences: Washington, DC, USA, 1973; pp. 203–212. [Google Scholar]
- Czudek, T.; Demek, J. Pleistocene cryopedimentation in Czechoslovakia. Acta Geogr. Lodz. 1970, 24, 101–108. [Google Scholar] [CrossRef]
- Goulding, H.L.; Prowse, T.D.; Beltaos, S. Spatial and temporal patterns of break-up and ice-jam flooding in the Mackenzie Delta, NWT. Hydrol. Process. 2009, 23, 2654–2670. [Google Scholar] [CrossRef]
- Reedyk, S.; Woo, M.K.; Prowse, T.D. Contribution of icing ablation to streamflow in a discontinuous permafrost area. Can. J. Earth Sci. 1995, 32, 13–20. [Google Scholar] [CrossRef]
- Woo, M.K. Consequences of climatic change for hydrology in permafrost zones. J. Cold Reg. Eng. 1990, 4-1, 15–20. [Google Scholar] [CrossRef]
- Carey, S.K.; Woo, M.K. The role of soil pipes as a slope runoff mechanism, subarctic Yukon, Canada. J. Hydrol. 2000, 233, 206–222. [Google Scholar] [CrossRef]
- Mitchell, R.J.; Nelson, F.E.; Nyland, K.E. Little tools, big job: The periglacial conveyor system in cryoplanated uplands. Permafr. Periglac. Process. 2013, 34, 384–398. [Google Scholar] [CrossRef]
- Fortier, D.; Allard, M.; Shur, Y. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago. Permafr. Periglac. Process. 2007, 18, 229–244. [Google Scholar] [CrossRef]
- Barsch, D.; Gude, M.; Mausbacher, R.; Schukraft, G.; Schulte, A.; Strauch, D. Slush stream phenomena-Process and impact. Zeitschr. Geomorph. 1993, 92, 39–53. [Google Scholar]
- Gude, M.; Scherer, D. Snowmelt and slush torrents-preliminary report from a field campaign in Kärkevagge, Swedish Lappland. Geogr. Ann. 1995, 77A, 199–206. [Google Scholar]
- Nyland, K.; Vandenberghe, J.; Nelson, F. Cryoplanation terraces and cryopediments. In The Encyclopedia of Quaternary Science, 3rd ed.; Elias, S.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Vandenberghe, J.; French, H.M.; Jin, H.; Wang, X.; Yi, S.; He, R. The extent of permafrost during the Last Permafrost Maximum (LPM) on the Ordos Plateau, north China. Quat. Sci. Rev. 2019, 214, 87–97. [Google Scholar] [CrossRef]
- Woo, M.K.; Sauriol, J. Effects of snow jams on fluvial activities in the High Arctic. Phys. Geogr. 1981, 13, 83–98. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Westaway, R. Quaternary fluvial archives and landscape evolution: A global synthesis. Proc. Geol. Assoc. 2014, 125, 600–629. [Google Scholar] [CrossRef]
- Bryant, I.D. The utilization of arctic river analogue studies in the interpretation of periglacial river sediments from southern Britain. In Background to Paleohydrology; Gregory, K.J., Ed.; Wiley and Sons: Chichester, UK, 1983; pp. 413–431. [Google Scholar]
- Miall, A.D. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology; Springer: Berlin/Heidelberg, Germany, 1996; 582p. [Google Scholar]
- Kasse, C.; Vandenberghe, J.; Van Huissteden, J.; Bohncke, S.J.P.; Bos, J.A.A. Sensitivity of Weichselian fluvial systems to climate change (Nochten mine, eastern Germany). Quat. Sci. Rev. 2003, 22, 2141–2156. [Google Scholar] [CrossRef]
- Walker, J.; Arnborg, L.; Peippo, J. Riverbank erosion in the Colville delta, Alaska. Geogr. Ann. 1987, 69A, 61–70. [Google Scholar] [CrossRef]
- Costard, F.; Gautier, E.; Brunstein, D.; Hammadi, J.; Fedorov, A.; Yang, D.; Dupeyrat, L. Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia, Geophys. Res. Lett. 2007, 34, L14501. [Google Scholar] [CrossRef]
- Costard, F.; Gautier, E.; Fedorov, A.; Konstantinov, P.; Dupeyrat, L. An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia). Permafr. Periglac. Process. 2014, 25, 162–171. [Google Scholar] [CrossRef]
- Woo, M.K.; Young, K. Hydrology of a small drainage basin with polar oasis environment, Fosheim Peninsula, Ellesmere Island, Canada. Permafr. Periglac. Process. 1997, 8, 257–277. [Google Scholar] [CrossRef]
- Huisink, M.; De Moor, J.J.W.; Kasse, C.; Virtanen, T. Factors influencing periglacial fluvial morphology in the northern European Russian tundra and taiga. Earth Surf. Process. Landf. 2002, 27, 1223–1235. [Google Scholar] [CrossRef]
- Gautier, E.; Dépret Th Cavero, J.; Costard, F.; Firmoux, C.; Fedorov, A.; Kostantinov, P.; Jammet, M.; Brunstein, D. Five-year dynamics of the Lena River islands (Russia): Spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Sci. Total Environ. 2021, 783, 148020. [Google Scholar] [CrossRef]
- Woo, M.K. Wetland runoff regime in northern Canada. In Proceedings of the Fifth International Conference, Trondheim, Norway, 2–5 August 1988; Tapir Publishers: Trondheim, Norway, 1988; Volume 1, pp. 644–648. [Google Scholar]
- Nanson, G.C.; Knighton, A.D. Anabranching rivers: Their cause, character, and classification. Earth Surf. Process. Landf. 1996, 21, 217–239. [Google Scholar] [CrossRef]
- Smith, D.G. Anastomosed Fluvial Deposits: Modern Examples from Western Canada; Spec Publ Ass Sedimentol: Ghent, Belgium, 1983; Volume 6, pp. 155–168. [Google Scholar]
- Kasse, C.; Vandenberghe, J.; Bohncke, S. Climatic change and fluvial dynamics of the Maas during the Late Weichselian and Early Holocene. In European River Activity and Climatic Change during the Lateglacial and Early Holocene; Frenzel, B., Vandenberghe, J., Kasse, C., Bohncke, S., Gläser, B., Eds.; Paläoklimaforschung: New York, NY, USA, 1995; Volume 14, pp. 123–150. [Google Scholar]
- Van Huissteden, J. Tundra rivers of the Last Glacial: Sedimentation and geomorphological processes during the Middle Pleniglacial (Eastern Netherlands). Meded. Rijks Geol. Dienst 1990, 44, 1–138. [Google Scholar]
- Kasse, K.; Bohncke, S.; Vandenberghe, J. Fluvial periglacial environments, climate and vegetation during the Middle Weichselian in the northern Netherlands with special reference to the Hengelo Interstadial. Meded. Rijks Geol. Dienst 1995, 52, 387–414. [Google Scholar]
- Van Huissteden, J.; Vandenberghe, J. Changing fluvial style of periglacial lowland rivers during the Weichselian Pleniglacial in the eastern Netherlands. Zeitschr. Geomorphol. 1988, 71, 131–146. [Google Scholar]
- Mol, J. Fluvial response to Weichselian climate changes in the Niederlausitz (Germany). J. Quat. Sci. 1997, 12, 43–60. [Google Scholar] [CrossRef]
- Huisink, M. Changing river styles in response to Weichselian climate changes in the Vecht valley, eastern Netherlands. Sediment. Geol. 2000, 133, 115–134. [Google Scholar] [CrossRef]
- Sidorchuk, A.Y.; Panin, A.V.; Borisova, O.K. Climate-induced changes in surface run-off on the north-Eurasian plains during the Late Glacial and Holocene. Water Resour. 2008, 35, 386–396. [Google Scholar] [CrossRef]
- Sidorchuk, A.; Panin, A.; Borisova, O. Morphology of river channels and surface runoff in the Volga River basin (East European Plain) during the Late Glacial period. Geomorphology 2009, 113, 137–157. [Google Scholar] [CrossRef]
- Panin, A.V.; Matlakhova, E. Fluvial chronology in the East European Plain over the last 20 ka and its palaeohydrological implications. Catena 2015, 130, 46–61. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Beyens, L.; Paris, P.; Kasse, C.; Gouman, M. Paleomorphological and -botanical evolution of small lowland valleys (Mark valley). Catena 1984, 11, 229–238. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Sidorchuk, A. Large palaeomeanders in Europe: Distribution, formation process, age, environments and significance. In Palaeohydrology-Traces, Tracks and Trails of Extreme Events, Geography of the Physical Environment; Herget, J., Fontana, A., Eds.; Springer Nature: Basel, Switzerland, 2020; pp. 169–186. [Google Scholar]
- Panin, A.; Borisova, O.; Belyaev, V.; Belyaev, Y.; Eremenko, E.; Fuzeina, Y.; Sheremetskaya, E.; Sidorchuk, A. Evolution of the Upper Reaches of Fluvial Systems within the Area of the East European Plain Glaciated during MIS 6. Quaternary 2022, 5, 13. [Google Scholar] [CrossRef]
- Bertran, P.; Frouin, M.; Mercier, N.; Naessens, F.; Prodeo, F.; Queffelec, A.; Sirieix, C.; Sitzia, L. Architecture of the lower terraces and evolution of the Dordogne River at Bergerac (south-west France) during the last glacial–interglacial cycle. J. Quat. Sci. 2013, 28, 605–616. [Google Scholar] [CrossRef]
- Turner, F.; Tolksdorf, J.F.; Viehberg, F.; Schwalb, A.; Kaiser, K.; Bittmann, F.; von Bramann, U.; Pott, R.; Staesche, U.; Breest, K.; et al. Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes. Quat. Sci. Rev. 2013, 60, 91–109. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Czudek, T. Pleistocene cryopediments on variable terrain. Permafr. Periglac. Process. 2008, 19, 71–83. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Kasse, K. Cryopedimentation on soft-sediment subsoils. Würzburger Geogr. Arb. 1993, 87, 283–297. [Google Scholar]
- Demek, J. Kryopedimenty: Jejich vznik a vývoj (Cryopediments, its origin and development). Scr. Fac. Sci Nat. Univ.—Purkynianae Brun. 1980, 10, 221–231. [Google Scholar]
- Van Huissteden, J.; Vandenberghe, J.; Van der Hammen, T.; Laan, W. Fluvial and aeolian interaction under permafrost conditions: Weichselian Late Pleniglacial, Twente, eastern Netherlands. Catena 2000, 40, 307–321. [Google Scholar] [CrossRef]
- Vandenberghe, D.; Derese, C.; Kasse, C.; Van den haute, P. Late Weichselian (fluvio-)aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): A high-resolution dating study using optically stimulated luminescence. Quat. Sci. Rev. 2013, 68, 96–113. [Google Scholar] [CrossRef]
- Thorn, C.E. The geomorphic role of snow. Ann. Assoc. Am. Geogr. 1978, 68, 414–425. [Google Scholar] [CrossRef]
- Ballantyne, C.K. The hydrologic significance of nivation features in permafrost areas. Geogr. Ann. 1978, 60, 51–54. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Van Huissteden, J. Fluvio-aeolian interaction in a region of continuous permafrost. In Proceedings of the 5th International Conference on Permafrost, Trondheim, Norway, 2–5 August 1998; Tapir Publishers: Trondheim, Norway, 1998; pp. 876–881. [Google Scholar]
- French, H.M.; Harry, D.G. Pediments and cold climate conditions, Barn Mountains, unglaciated northern Yukon, Canada. Geogr. Ann. 1992, 74A, 145–157. [Google Scholar] [CrossRef]
- Lininger, K.B.; Wohl, E. Floodplain dynamics in North American permafrost regions under a warming climate and implications for organic carbon stocks: A review and synthesis. Earth Sci. Rev. 2019, 193, 34–44. [Google Scholar] [CrossRef]
Permafrost Condition | Hydro-Morphological Processes/Forms, Soil, and Vegetation Conditions | ||||
---|---|---|---|---|---|
Valleys | Interfluves | ||||
Precipitation, Drainage | Morphology | Soil, Vegetation Cover | Precipitation/ Drainage | Morphology | |
discontinuous permafrost | -snow accumulation, occas. summer rain -high discharge after snow thaw -icings, snow dams -base flow | variable drainage pattern: from large meandering to anabranching and braided (according to local conditions) | -rather thick active layer -high soil permeability -vegetation: tundra, taiga | -local snow accummulation -intense surface runoff after snow melt → | Removal of thawed sediment in dense network of rills and gullies -> cryopediment formation |
continuous permafrost | high-energetic channel flow at snow-breakup, otherwise weak activity | braided at snow-breakup, otherwise trend to more confined channel pattern | -thin active layer -low soil permeability -vegetation: from bare to tundra/taiga dep. local conditions | -thin snow cover -snow drift -weak runoff → | -aeolian deflation -minor sediment removal |
Chronology | Permafrost Condition | Morpho-Sedimentary Activity | Landforms/Sediments |
---|---|---|---|
<16 ka | No/sporadic permafrost | Aeolian deposition; dry conditions Aeolian deflation | Coversands Desert pavement |
c. 16-(17)18 ka | Discontinuous permafrost | Intense surface runoff | Shallow rills and gullies → cryopedimentation |
c. 25-(17)18 ka | Continuous permafrost (LPM) | Channel peak flow at snow breakup; Stable interfluves | Channel deposits (incl. reworked aeolian deposits) |
| Discontinuous permafrost | Intense surface runoff | Shallow rills and gullies → cryopedimentation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandenberghe, J. Fluvial Morphology in Different Permafrost Environments—A Review. Quaternary 2024, 7, 15. https://doi.org/10.3390/quat7010015
Vandenberghe J. Fluvial Morphology in Different Permafrost Environments—A Review. Quaternary. 2024; 7(1):15. https://doi.org/10.3390/quat7010015
Chicago/Turabian StyleVandenberghe, Jef. 2024. "Fluvial Morphology in Different Permafrost Environments—A Review" Quaternary 7, no. 1: 15. https://doi.org/10.3390/quat7010015
APA StyleVandenberghe, J. (2024). Fluvial Morphology in Different Permafrost Environments—A Review. Quaternary, 7(1), 15. https://doi.org/10.3390/quat7010015