Prolonged Response of River Terrace Flooding to Climate Change
Abstract
:1. Introduction
2. Study Sites
3. Basic Sedimentary Data
3.1. Ledu and Ping’an Key Sites (Huangshui River, Yellow River Basin)
3.2. Jinxing and Nearby Sites along the Hanjiang River (Yangtze River Basin)
Other Terraces in the Hanzhong Basin
3.3. Silong Site (Yellow River Basin)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leopold, L.B.; Wolman, L.G.; Miller, J. Fluvial Processes in Geomorphology; W.H. Freeman: San Francisco, CA, USA, 1964. [Google Scholar]
- Schirmer, W. Valley bottoms in the late Quaternary. Z. Geomorphol. 1995, 100, 27–51. [Google Scholar]
- Miall, A.D. Fluvial Depositional Systems; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Swan, A.; Hartley, A.J.; Owen, A.; Howell, J. Reconstruction of a sandy point-bar deposit: Implications for fluvial facies analysis. In Fluvial Meanders and Their Sedimentary Products in the Rock Record; Ghinassi, M., Colombera, L., Mountney, N.P., Reesink, A.J.H., Bateman, M., Eds.; Spec Publ 48 Int Ass Sedimentol; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 445–474. [Google Scholar]
- Vandenberghe, J. River terraces as a response to climatic forcing: Formation processes, sedimentary characteristics and sites for human occupation. Quat. Int. 2015, 370, 3–11. [Google Scholar] [CrossRef]
- Wang, X.; Vandenberghe, J.; Yi, S.; Van Balen, R.; Lu, H. Climate-dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: An example from the NE Tibetan Plateau. Glob. Planet. Change 2015, 133, 318–329. [Google Scholar] [CrossRef]
- Sklar, L.; Dietrich, W.E. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply. Geophys. Monogr.-Am. Geophys. Union 1998, 107, 237–260. [Google Scholar]
- Sklar, L.S.; Dietrich, W.E. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 2004, 40, 1–21. [Google Scholar] [CrossRef]
- Vandenberghe, J. Timescales, climate and river development. Quat. Sci. Rev. 1995, 14, 631–638. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Allen, P. A revised model for terrace formation and its significance for the early middle Pleistocene terrace aggradations of north-east Essex, England. In The Early Middle Pleistocene in Europe; Turner, C., Ed.; Balkema: Rotterdam, The Netherlands, 1996; pp. 121–134. [Google Scholar]
- Bridgland, D.R.; Westaway, R. Quaternary fluvial archives and landscape evolution: A global synthesis. Proc. Geol. Assoc. 2014, 125, 600–629. [Google Scholar] [CrossRef]
- Munack, H.; Blöthe, J.H.; Fülöp, R.H.; Codilean, A.T.; Fink, D.; Korup, O. Recycling of Pleistocene valley fills dominates 135 ka of sediment flux, upper Indus River. Quat. Sci. Rev. 2016, 149, 122–134. [Google Scholar] [CrossRef]
- Mather, A.E.; Stokes, M.; Whitfield, E. River terraces and alluvial fans: The case for an integrated Quaternary fluvial archive. Quat. Sci. Rev. 2017, 166, 74–90. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu-Zeng, J.; Scherler, D.; Yin, A.; Wang, W.; Tang, M.Y.; Li, Z.F. Spatiotemporal variation of late Quaternary river incision rates in southeast Tibet constrained by dating fluvial terraces. Lithosphere 2018, 10, 662–675. [Google Scholar] [CrossRef]
- Huang, W.; Yang, X.; Jobe, J.A.T.; Li, S.; Yang, H.; Zhang, L. Alluvial plains formation in response to 100 ka glacial-interglacial cycles since the Middle Pleistocene in the southern Tian Shan, NW China. Geomorphology 2019, 341, 86–101. [Google Scholar] [CrossRef]
- Barros, L.F.P.; Junior, A.P.M. Late quaternary landscape evolution in the Atlantic Plateau (Brazilian highlands): Tectonic and climatic implications of fluvial archives. Earth-Sci. Rev. 2020, 207, 1032281. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Yi, S.; Miao, X.; Vandenberghe, J.; Li, Y.; Lu, H. Late Quaternary aggradation and incision in the headwaters of the Yangtze River, eastern Tibetan Plateau, China. GSA Bull. 2022, 134, 371–388. [Google Scholar] [CrossRef]
- Tao, Y.; Xiong, J.; Zhang, H.; Chang, H.; Li, L. Climate-driven formation of fluvial terraces across the Tibetan Plateau since 200 ka: A review. Quat. Sci. Rev. 2020, 237, 106303. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Chen, J.; Soltanian, M.R.; Dai, Z.; WoldeGabriel, G. Mass-Wasting-Inferred Dramatic Variability of 130,000-Year Indian Summer Monsoon Intensity from Deposits in the Southeast Tibetan Plateau. Geophys. Res. Lett. 2022, 49, e2021GL097301. [Google Scholar] [CrossRef]
- Hancock, G.S.; Anderson, R.S. Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. GSA Bull. 2002, 114, 1131–1142. [Google Scholar] [CrossRef]
- Church, M. Geomorphic thresholds in riverine landscapes. Freshw. Biol. 2002, 47, 541–557. [Google Scholar] [CrossRef]
- Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J. Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA 2008, 105, 1786–1793. [Google Scholar] [CrossRef] [PubMed]
- McKee, E.D. Original structures in Colorado flood plain deposits of the Grand Canyon. J. Sediment. Petrol. 1938, 8, 77–83. [Google Scholar]
- McKee, E.D. Significance of climbing-ripple structure. US Geol. Surv. Prof. Papers 1966, 550, D94–D103. [Google Scholar]
- Vandenberghe, J.; Wang, X.Y.; Lu, H.Y. Differential impact of small-scaled tectonic movements on fluvial morphology and sedimentology (the Huang Shui catchment, NE Tibet Plateau). Geomorphology 2011, 134, 171–185. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Yi, S.; Vandenberghe, J.; Gibling, M.R.; Lu, H. Episodic sedimentary evolution of an alluvial fan (Huangshui Catchment, NE Tibetan Plateau). Quaternary 2018, 1, 16. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; van Balen, R.T.; Prins, M.A.; Wang, S.; van Buuren, U.; Lu, H. Fluvial terrace formation and early human settlement in the Hanzhong Basin, Qinling Mountain, central China. Glob. Planet. Chang. 2019, 178, 1–14. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Xun, Y.; Wang, X.; Wang, S.; Lu, H. Diverse floodplain deposits of reworked loess in a monsoon climate (Hanzhong Basin, central China). Quat. Res. 2021, 103, 4–20. [Google Scholar] [CrossRef]
- Van Buuren, U.; Prins, M.A.; Wang, X.; Stange, M.; Yang, X.; van Balen, R.T. Fluvial or aeolian? Unravelling the origin of the silty clayey sediment cover of terraces in the Hanzhong Basin (Qinling Mountains, central China). Geomorphology 2020, 367, 107294. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Yi, S.; Vandenberghe, J.; Dai, Y.; Lu, H. Interaction of fluvial and aeolian sedimentation processes and response to climate change since the last glacial in a semi-arid environment along the Yellow River. Quat. Res. 2019, 91, 570–583. [Google Scholar] [CrossRef]
- Tan, L.C.; Cai, Y.J.; Cheng, H.; Edwards, L.R.; Gao, Y.L.; Xu, H.; Zhang, H.W.; An, Z.S. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth Planet Sci. Lett. 2018, 482, 580–590. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, J.; Dong, X.; Pérez-Mejías, C.; Lu, J.; Tian, Y.; Wang, J.; Pan, L.; Zhang, H.; Cheng, H. Precisely constrained 134-ka strong monsoon event in the penultimate deglaciation by an annually laminated speleothem from the Asian monsoon domain. Quat. Res. 2023, 118, 116–125. [Google Scholar] [CrossRef]
- Nanson, G.C.; Croke, J.C. A genetic classification of floodplains. Geomorphology 1992, 4, 459–486. [Google Scholar] [CrossRef]
- Prins, M.A.; Vriend, M.G.A. Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records. Geochem. Geophys. Geosyst. 2007, 8, 1–17. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Sun, Y.; Wang, X.; Abels, H.A.; Liu, X. Grain-size characterization of reworked fine-grained aeolian deposits. Earth Sci. Rev. 2018, 177, 43–52. [Google Scholar] [CrossRef]
- DiBiase, R.A.; Whipple, K.X. The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. J. Geophys. Res. Earth Surf. 2011, 116, 1–17. [Google Scholar] [CrossRef]
- Tofelde, S.; Bufe, A.; Turowski, J.M. Hillslope sediment supply limits alluvial valley width. AGU Adv. 2022, 3, e2021AV000641. [Google Scholar] [CrossRef]
- Ruddiman, W.F. Orbital changes and climate. Quat. Sci. Rev. 2006, 25, 3092–3112. [Google Scholar] [CrossRef]
- Viglione, A.; Chirico, G.B.; Komma, J.; Woods, R.; Borga, M.; Blöschl, G. Quantifying space-time dynamics of flood event types. J. Hydrol. 2010, 394, 213–229. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Broecker, W.S.; Denton, G.H.; Kong, X.; Wang, Y.; Zhang, R.; Wang, X. Ice age terminations. Science 2009, 326, 248–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandenberghe, J.; Wang, X.; Yang, X. Prolonged Response of River Terrace Flooding to Climate Change. Quaternary 2024, 7, 23. https://doi.org/10.3390/quat7020023
Vandenberghe J, Wang X, Yang X. Prolonged Response of River Terrace Flooding to Climate Change. Quaternary. 2024; 7(2):23. https://doi.org/10.3390/quat7020023
Chicago/Turabian StyleVandenberghe, Jef, Xianyan Wang, and Xun Yang. 2024. "Prolonged Response of River Terrace Flooding to Climate Change" Quaternary 7, no. 2: 23. https://doi.org/10.3390/quat7020023
APA StyleVandenberghe, J., Wang, X., & Yang, X. (2024). Prolonged Response of River Terrace Flooding to Climate Change. Quaternary, 7(2), 23. https://doi.org/10.3390/quat7020023