Fine-Tuning of Sub-Annual Resolution Spectral Index Time Series from Eifel Maar Sediments, Western Germany, to the NGRIP δ18O Chronology, 26–60 ka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coring Site
2.2. Hyperspectral Imaging (HSI) and Pigment Calibration
3. Results
4. Discussion
4.1. Advantages and Disadvantages of the Hyperspectral Imaging (HSI) Method for Lake Productivity Reconstruction
4.2. Comparison of Paleoenvironmental Condition in the Eifel, Germany, with the NGRIP Oxygen Isotope Record
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wernli, H.; Pfahl, S. Grundlage des Klimas und extremer Wettersituationen. In Wetter, Klima, Menschheitsentwicklung. Von der Eiszeit bis ins 21. Jahrhundert; Sirocko, F., Ed.; Theiss: Stuttgart, Germany, 2009; pp. 44–52. [Google Scholar]
- Büchel, G. Vulkanologische Karte der West-und Hocheifel; Landesvermessungsamt Rheinland-Pfalz: Koblenz, Germany, 1994. [Google Scholar]
- Förster, M.W.; Sirocko, F. Volcanic activity in the Eifel during the last 500,000 years: The ELSA-Tephra-Stack. Glob. Planet. Chang. 2016, 142, 100–107. [Google Scholar] [CrossRef]
- Förster, M.W.; Zemlitskaya, A.; Otter, L.; Buhre, S.; Sirocko, F. Late Pleistocene Eifel eruptions: Insights from clinopyroxene and glass geochemistry of tephra layers from Eifel Laminated Sediment Archive sediment cores. J. Quat. Sci. 2019, 35, 186–198. [Google Scholar] [CrossRef]
- Fernández Arias, S.; Förster, M.; Sirocko, F. Rieden tephra layers in the Dottinger Maar lake sediments: Implications for the dating of the Holsteinian interglacial and Elsterian glacial. Glob. Planet. Chang. 2023, 227, 104–143. [Google Scholar] [CrossRef]
- Sirocko, F.; Dietrich, S.; Veres, D.; Grootes, P.; Schaber-Mohr, K.; Seelos, K.; Nadeau, M.-J.; Kromer, B.; Rothacker, L.; Röhner, M.; et al. Multi-Proxy-Dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany. Quat. Sci. Rev. 2013, 62, 56–72. [Google Scholar] [CrossRef]
- Sirocko, F.; Knapp, H.; Dreher, F.; Förster, M.W.; Albert, J.; Brunck, H.; Veres, D.; Dietrich, S.; Zech, M.; Hambach, U.; et al. The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years. Glob. Planet Chang. 2016, 142, 108–135. [Google Scholar] [CrossRef]
- Sirocko, F.; Martínez-García, A.; Mudelsee, M.; Albert, J.; Britzius, S.; Christl, M.; Diehl, D.; Diensberg, B.; Friedrich, R.; Fuhrmann, F.; et al. Multidecadal climate variability in central Europe over the past 60,000 years. Nat. Geosci. 2021, 14, 651–658. [Google Scholar] [CrossRef]
- Hepp, J.; Wüthrich, L.; Bromm, T.; Bliedtner, M.; Schäfer, I.K.; Glaser, B.; Rozanski, K.; Sirocko, F.; Zech, R.; Zech, M. How dry was the Younger Dryas? Evidence from a coupled δ2H–δ18O biomarker paleohygrometer applied to the Gemündener Mar sediments, Western Eifel, Germany. Clim. Past 2019, 15, 713–733. [Google Scholar] [CrossRef]
- Garcia, M.L.; Birlo, S.; Zolitschka, B. Paleoenvironmental changes of the last 16,000 years based on diatom and geoschemical stratigraphies from the varved sediment of Holzmaar (West-Eifel Volcanic Field, Germany). Quat. Sci. Rev. 2022, 293, 107691. [Google Scholar] [CrossRef]
- Britzius, S.; Sirocko, F. Vegetation Dynamics and Megaherbivore Presence of MIS 3 Stadials and Interstadials 10-8 Obtained from a Sediment Core from Auel Infilled Maar, Eifel, Germany. Quaternary 2023, 6, 44. [Google Scholar] [CrossRef]
- Seelos, K.; Sirocko, F.; Dietrich, S. A continuous high-resolution dust record for the reconstruction of wind systems in central Europe (Eifel, Western Germany) over the past 133 ka. Geophys. Res. Lett. 2009, 36, L20712. [Google Scholar] [CrossRef]
- Sirocko, F.; Seelos, K.; Schaber, K.; Rein, B.; Dreher, F.; Diehl, M.; Lehne, R.; Jäger, K.; Krbetschek, M.; Degering, D. A late Eemian aridity pulse in central Europe during the last glacial interception. Nature 2005, 436, 833–836. [Google Scholar] [CrossRef]
- Sirocko, F.; Albert, J.; Britzius, S.; Dreher, F.; Martínez-García, A.; Dosseto, A.; Burger, J.; Terberger, T.; Haug, G. Thresholds for the presence of Glacial megafauna in central Europe during the last 60,000 years. Sci. Rep. 2022, 12, 20055. [Google Scholar] [CrossRef]
- Fuhrmann, F.; Diensberg, B.; Gong, X.; Lohmann, G.; Sirocko, F. Aridity synthesis for eight selected key regions of the global climate system during the last 60 000 years. Clim. Past 2020, 16, 2221–2238. [Google Scholar] [CrossRef]
- Albert, J.; Sirocko, F. Evidence for an extreme cooling event prior to the Laschamp geomagnetic excursion in Eifel maar sediments. Quaternary 2023, 6, 14. [Google Scholar] [CrossRef]
- Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 2002, 419, 207–214. [Google Scholar] [CrossRef]
- Böhm, E.; Lippold, J.; Gutjahr, M.; Frank, M.; Blaser, P.; Antz, A.; Fohlmeister, J.; Frank, N.; Anderson, M.B.; Deininger, M. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 2015, 517, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Sadatzki, H.; Dokken, T.M.; Berben, S.M.P.; Muschitiello, F.; Stein, R.; Fahl, K.; Menviel, L.; Timmermann, A.; Jansen, E. Sea ice variability in the southern Norwegian sea during glacial Dansgaard–Oeschger climate cycles. Sci. Adv. 2019, 5, eaau6174. [Google Scholar] [CrossRef] [PubMed]
- Meyers, P.A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213–250. [Google Scholar] [CrossRef]
- Meyers, P.A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes. Org. Geochem. 2003, 34, 261–289. [Google Scholar] [CrossRef]
- Gudasz, C.; Bastivken, D.; Steger, K.; Premke, K.; Sobek, S.; Tranvik, L.J. Temperature-controlled organic carbon mineralization in lake sediments. Nature 2010, 466, 478–481. [Google Scholar] [CrossRef]
- Rein, B.; Sirocko, F. In-situ reflectance spectroscopy—Analysing techniques for high resolution pigment 300 logging sin sediment cores. Int. J. Earth Sci. 2002, 91, 950–954. [Google Scholar] [CrossRef]
- Rothwell, R.G.; Rack, F.R. New techniques in sediment core analysis: An introduction. Geol. Soc. Lond. Spéc. Publ. 2006, 267, 1–29. [Google Scholar] [CrossRef]
- Butz, C.; Grosjean, M.; Fischer, D.; Wunderle, S.; Tylmann, W.; Rein, B. Hyperspectral imaging spectroscopy: A promising method for the biogeochemical analysis of lake sediments. J. Appl. Remote Sens. 2015, 9, 96031. [Google Scholar] [CrossRef]
- Zander, P.D.; Wienhues, G.; Grosjean, M. Scanning Hyperspectral Imaging for In Situ Biogeochemical Analysis of Lake Sediment Cores: Review of Recent Developments. J. Imaging 2022, 8, 58. [Google Scholar] [CrossRef]
- Butz, C.; Grosjean, M.; Poraj-Górska, A.; Enters, D.; Tylmann, W. Sedimentary Bacteriopheophytin a as an indicator of meromixis in varved lake sediments of Lake Jaczno, north-east Poland, CE 1891–2010. Glob. Planet. Chang. 2016, 144, 109–118. [Google Scholar] [CrossRef]
- Butz, C.; Grosjean, M.; Goslar, T.; Tylmann, W. Hyperspectral imaging of sedimentary bacterial pigments: A 1700-year history of meromixis from varved Lake Jaczno, northeast Poland. J. Paleolimnol. 2017, 58, 57–72. [Google Scholar] [CrossRef]
- Schneider, T.; Rimer, D.; Butz, C.; Grosjean, M. A high-resolution pigment and productivity record from the varved Ponte Tresa basin (Lake Lugano, Switzerland) since 1919: Insight from an approach that combines hyperspectral imaging and high-performance liquid chromatography. J. Paleolimnol. 2018, 60, 381–398. [Google Scholar] [CrossRef]
- Jacq, K.; Giguet-Covex, C.; Sabatier, P.; Perrette, Y.; Fanget, B.; Coquin, D.; Debret, M.; Arnaud, F. High-resolution grain size distribution of sediment core with hyperspectral imaging. Sediment. Geol. 2019, 393–394, 105536. [Google Scholar] [CrossRef]
- Rapuc, W.; Jacq, K.; Develle-Vincent, A.-L.; Sabatier, P.; Fanget, B.; Perrette, Y.; Coquin, D.; Debret, M.; Wilhelm, B.; Arnaud, F. XRF and hyperspectral analyses as an automatic way to detect flood events in sediment cores. Sediment. Geol. 2020, 409, 105776. [Google Scholar] [CrossRef]
- North Greenland Ice Core Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 2004, 431, 147–151. [Google Scholar] [CrossRef]
- Svensson, A.; Andersen, K.K.; Bigler, M.; Clausen, H.B.; Dahl-Jensen, D.; Davies, S.M.; Johnsen, S.J.; Muscheler, R.; Parrenin, F.; Rasmussen, S.O.; et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 2008, 4, 47–57. [Google Scholar] [CrossRef]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greeland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef]
- Ampel, L.; Wohlfarth, B.; Risberg, J.; Veres, D. Paleolimnological response to millennial and centennial scale climate variability during MIS 3 and 2 as suggested by the diatom record in Les Echets. Quat. Sci. Rev. 2008, 27, 1493–1504. [Google Scholar] [CrossRef]
- Wohlfarth, B.; Veres, D.; Ampel, L.; Lacourse, T.; Blaauw, M.; Preusser, F.; Andrieu-Ponel, V.; Keravis, D.; Lallier-Vergès, E.; Björck, S.; et al. Rapid ecosystem response to abrupt climate changes during the last glacial period in Western Europe, 40-16 ka. Geology 2008, 36, 407–410. [Google Scholar] [CrossRef]
- Reinig, F.; Wacker, L.; Jöris, O.; Oppenheimer, C.; Guidobaldi, G.; Nievergelt, D.; Adolphi, F.; Cherubini, P.; Engels, S.; Esper, J.; et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 2021, 595, 66–69. [Google Scholar] [CrossRef]
- Sirocko, F.; Krebsbach, F.; Albert, J.; Britzius, S.; Schenk, F.; Förster, M.W. Relation between the central European climate change and the Eifel volcanism during the last 130,000 years: The ELSA-23 Tephra Stack. Quaternary 2024, 7, 21. [Google Scholar] [CrossRef]
- Amann, B.; Lobsiger, S.; Fischer, D.; Tylmann, W.; Bonk, A.; Filipiak, J.; Grosjean, M. Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, AD 1907–2008. Glob. Planet Chang. 2014, 123, 86–96. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanze 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Zander, P.D.; Böhl, D.; Sirocko, F.; Auderset, A.; Haug, G.; Martínez-García, A. Reconstruction of warm season temperatures in central Europe during the past 60,000 years from lacustrine GDGTs. Clim. Past 2024, 20, 841–864. [Google Scholar] [CrossRef]
- Britzius, S.; Dreher, F.; Maisel, P.; Sirocko, F. Vegetation Patterns during the last 132,000 years from sediment cores from six Eifel maars: The ELSA Stack 24 Pollen. Quaternary 2024, 7, 8. [Google Scholar] [CrossRef]
- Li, C.; Battisti, D.S.; Bitz, C.M. Can North Atlantic sea ice anomalies account for Dansgaard–Oeschger climate signals? J. Clim. 2010, 23, 5457–5475. [Google Scholar] [CrossRef]
- Deplazes, G.; Lückge, A.; Peterson, L.C.; Timmermann, A.; Hamann, Y.; Hughen, K.A.; Röhl, U.; Laj, C.; Cane, M.A.; Sigman, D.M.; et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 2013, 6, 213–217. [Google Scholar] [CrossRef]
- Sánchez Goñi, M.F.; Landais, A.; Cacho, I.; Duprat, J.; Rossignol, L. Contrasting intrainterstadial climatic evolution between high and middle North Atlantic latitudes: A close-up of Greenland Interstadials 8 and 12. Geochem. Geophys. Geosyst. 2009, 10, Q04U04. [Google Scholar] [CrossRef]
- Li, C.; Born, A. Coupled atmosphere–ice–ocean dynamics in Dansgaard–Oeschger events. Quat. Sci. Rev. 2019, 203, 1–20. [Google Scholar] [CrossRef]
- Martrat, B.; Grimalt, J.O.; Shackleton, N.J.; de Abreu, L.; Hutterli, M.A.; Stocker, T.F. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 2007, 317, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Fleitmann, D.; Cheng, H.; Badertscher, S.; Edwards, R.L.; Mudelsee, M.; Göktürk, O.M.; Fankhauser, A.; Pickering, R.; Raible, C.C.; Matter, A.; et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 2009, 36, L19707. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.-C.; Dorale, J.A. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef]
- Riechelmann, D.F.C.; Albert, J.; Britzius, S.; Schenk, F.; Scholz, D.; Jochum, K.P.; Sirocko, F. Speleothem growth during the last glacial cycle in comparison to vegetation changes and organic carbon content documented in an Eifel maar lake (Germany). Quat. Int. 2023, 673, 1–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albert, J.; Zander, P.D.; Grosjean, M.; Sirocko, F. Fine-Tuning of Sub-Annual Resolution Spectral Index Time Series from Eifel Maar Sediments, Western Germany, to the NGRIP δ18O Chronology, 26–60 ka. Quaternary 2024, 7, 33. https://doi.org/10.3390/quat7030033
Albert J, Zander PD, Grosjean M, Sirocko F. Fine-Tuning of Sub-Annual Resolution Spectral Index Time Series from Eifel Maar Sediments, Western Germany, to the NGRIP δ18O Chronology, 26–60 ka. Quaternary. 2024; 7(3):33. https://doi.org/10.3390/quat7030033
Chicago/Turabian StyleAlbert, Johannes, Paul D. Zander, Martin Grosjean, and Frank Sirocko. 2024. "Fine-Tuning of Sub-Annual Resolution Spectral Index Time Series from Eifel Maar Sediments, Western Germany, to the NGRIP δ18O Chronology, 26–60 ka" Quaternary 7, no. 3: 33. https://doi.org/10.3390/quat7030033
APA StyleAlbert, J., Zander, P. D., Grosjean, M., & Sirocko, F. (2024). Fine-Tuning of Sub-Annual Resolution Spectral Index Time Series from Eifel Maar Sediments, Western Germany, to the NGRIP δ18O Chronology, 26–60 ka. Quaternary, 7(3), 33. https://doi.org/10.3390/quat7030033