Paleolimnology and Natural Versus Anthropogenic Influx During the Late Holocene from Vembanad Wetland, Ramsar Site, Kerala, India
Abstract
:1. Introduction
2. Regional Setting
2.1. Study Area
2.2. Climate
2.3. Flora
3. Materials and Methods
3.1. Field Work, Coring, Sampling Method and Lithological Details
3.2. Radiocarbon (14C) Dating and Chronology
3.3. Diatoms
3.4. Palynofacies
3.5. Grain Size
3.6. Statistical Analysis
4. Results
4.1. Description of Diatom Diagram
4.2. Palynofacies Analysis
4.3. Grain Size Analysis
4.4. Principal Component Analysis (PCA)
4.4.1. Palynofacies and Grain Size
4.4.2. Diatom and Grain Size
5. Synthesis of the Proxy Record (Palynofacies, Diatoms, and Grain Size Analysis) for Paleolimnology and Natural Versus Anthropogenic Influx
6. Conclusions
- This period (ca. 500 BCE to 350 BCE) reflects a diverse aquatic ecosystem influenced by alternating freshwater and marine conditions, pointing to variable monsoon intensity. Increased sand content and environmentally sensitive diatoms indicate significant terrestrial runoff and suggest early human impacts on the wetland.
- The time span ca. 350 BCE to 50 CE shows continuously high sand levels, highlighting strong monsoon-driven runoff and elevated marine influence, likely due to rising sea levels. The presence of anthropogenically linked diatom species suggests growing human interaction with the wetland.
- In the period from ca. 50 CE to 400 CE, the region is initially marked by decreased sand and increased mud, this period shows a shift to lower-energy conditions, possibly due to a weakened SWM because of the variations in solar insolation during the Holocene. Later, sand content rises again, signaling intensified monsoons and higher terrestrial input, alongside dinocysts that reflect increased coastal productivity fueled by nutrient-rich runoff.
- During the aforementioned period close to historic port towns like Muziris, Vembanad was strategically placed within trade routes connecting Kerala to distant regions, including the Roman Empire, Arabia, and Southeast Asia. Archeological discoveries, including Roman coins, amphora fragments, pottery, and semi-precious stones, highlight these extensive trade connections and cultural exchanges.
- Additionally, Iron Age artifacts such as tools, pottery, and beads reveal early technological advancements and settlement patterns around Vembanad, offering insights into the area’s evolving material culture and social organization, reflecting its historical significance in trade and community during the deposition period.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayewski, P.A.; Rohling, E.E.; Curt Stager, J.; Karl’en, W.; Maasch, K.A.; David Meeker, L.; Meyerson, E.A.; Gasse, F.; van Kreveld, S.; Holmgren, K.; et al. Holocene climate variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Wanner, H.; Beer, J.; Bütikofer, J.; Crowley, T.J.; Cubasch, U.; Flückiger, J.; Goosse, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- O’Brien, S.R.; Mayewski, P.A.; Meeker, L.D.; Meese, D.A.; Twickler, M.S.; Whitlow, S.I. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 1995, 270, 1962–1964. [Google Scholar] [CrossRef]
- Dawson, A.G.; Hickey, K.; Mayewski, P.A.; Nesje, A. Greenland (GISP2) ice core and historical indicators of complex North Atlantic climate changes during the fourteenth century. Holocene 2007, 17, 427–434. [Google Scholar] [CrossRef]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; DeMenocal, P.; Priore, P.; Cullen, H.; Hajdas, I.; Bonani, G. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Bianchi, G.G.; McCave, I.N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 1999, 397, 515–517. [Google Scholar] [CrossRef]
- Casford, J.S.L.; Abu-Zied, R.; Rohling, E.; Cooke, S.; Boessenkool, K.P.; Brinkhuis, H.; De Vries, C.; Wefer, G.; Geraga, M.; Papatheodorou, G.; et al. Mediterranean climate variability during the Holocene. Mediterr. Mar. Sci. 2001, 2, 45–55. [Google Scholar] [CrossRef]
- Rohling, E.J.; Hayes, A.; Mayewski, P.A.; Kucera, M. Holocene climate variability in the Eastern Mediterranean, and the end of the Bronze Age. In Forces of Transformation: The End of the Bronze Age in the Mediterranean; Bachhuber, C., Roberts, R.G., Eds.; BANEA Publication Series 1; Oxbow Books: Oxford, UK, 2009; pp. 2–5. [Google Scholar]
- de Menocal, P.; Ortiz, J.; Guilderson, T.; Adkins, J.; Sarnthein, M.; Baker, L.; Yarusinsky, M. Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 2000, 19, 347–361. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G.; Lorenz, S.J.; Kim, J.H.; Schneider, R.R. Holocene climate variability as derived from alkenone sea surface temperature and coupled ocean-atmosphere model experiments. Clim. Dyn. 2004, 23, 215–227. [Google Scholar] [CrossRef]
- Masson, V.; Vimeux, F.; Jouzel, J.; Morgan, V.; Delmotte, M.; Ciais, P.; Hammer, C.; Johnsen, S.; Lipenkov, V.Y.; Mosley-Thompson, E.; et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quat. Res. 2000, 54, 348–358. [Google Scholar] [CrossRef]
- Bárcena, M.A.; Cacho, I.; Abrantes, F.; Sierro, F.J.; Grimalt, J.O.; Flores, J.A. Paleoproductivity variations related to climatic conditions in the Alboran Sea (western Mediterranean) during the last glacial-interglacial transition: The diatom record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 167, 337–357. [Google Scholar] [CrossRef]
- Jones, P.D.; Osborn, T.J.; Briffa, K.R. The evolution of climate over the Last Millennium. Science 2001, 292, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Magny, M. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat. Int. 2004, 113, 65–79. [Google Scholar] [CrossRef]
- Blackford, J.J.; Chambers, F.M. Proxy climate record for the last 1000 years from Irish blanket peat and a possible link to solar variability. Earth Planet. Sci. Lett. 1995, 133, 145–150. [Google Scholar] [CrossRef]
- McDermott, F.; Mattey, D.P.; Hawkesworth, C. Centennial scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 2001, 294, 1328–1331. [Google Scholar] [CrossRef]
- Mangini, A.; Blumbach, P.; Verdes, P.; Spötl, C.; Scholz, D.; Machel, H.; Mahon, S. Combined records from a stalagmite from Barbados and from lake sediments in Haiti reveal variable seasonality in the Caribbean between 6.7 and 3 ka BP. Quat. Sci. Rev. 2007, 26, 1332–1343. [Google Scholar] [CrossRef]
- Willard, D.A.; Bernhardt, C.E.; Korejwo, D.A.; Meyers, S.R. Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems: Pollen based climatic reconstruction. Glob. Planet. Chang. 2005, 47, 17–35. [Google Scholar] [CrossRef]
- Jalut, G.; Dedoubat, J.J.; Fontugne, M.; Otto, T. Holocene circum-Mediterranean vegetation changes: Climate forcing and human impact. Quat. Int. 2009, 200, 4–18. [Google Scholar] [CrossRef]
- Esper, J.; Cook, E.R.; Schweingruber, F.H. Low frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 2002, 295, 2250–2253. [Google Scholar] [CrossRef] [PubMed]
- Moberg, A.; Sonechkin, D.M.; Holmgren, K.; Datsenko, N.M.; Karlen, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 2005, 433, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Crowley, T.J. Causes of Climate Change Over the Past 1000 Years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef]
- Bradley, R.S. Climate Forcing During the Holocene. PAGES News 2003, 11, 18–19. [Google Scholar] [CrossRef]
- Atwood, A.R.; Wu, E.; Frierson, D.M.W.; Battisti, D.S.; Sachs, J.P. Quantifying Climate Forcings and Feedbacks over the Last Millennium in the CMIP5–PMIP3 Models. J. Clim. 2016, 29, 1161–1178. [Google Scholar] [CrossRef]
- Walker, M.; Gibbard, P.; Head, M.J.; Berkelhammer, M.; Björck, S.; Cheng, H.; Cwynar, L.C.; Fisher, D.; Gkinis, V.; Long, A.; et al. Formal subdivision of the Holocene series/epoch: A summary. J. Geol. Soc. India 2019, 93, 135–141. [Google Scholar] [CrossRef]
- Palmer, H.M.; Vriesman, V.P.; Livsey, C.M.; Fish, C.R.; Hill, T.M. Holocene climate and oceanography of the coastal Western United States and California Current System. Clim. Past 2023, 19, 199–232. [Google Scholar] [CrossRef]
- Hughes, M.K.; Diaz, H.F. Was there a “Medieval Warm Period”, and if so, where and when? Clim. Chang. 1994, 26, 109–142. [Google Scholar] [CrossRef]
- Crowley, T.J.; Lowery, T.S. How warm was the Medieval Warm Period? AMBIO J. Hum. Environ. 2000, 29, 51–54. [Google Scholar] [CrossRef]
- Broecker, W.S. Was the Medieval Warm Period global? Science 2001, 291, 1497–1499. [Google Scholar] [CrossRef]
- Nieto-Moreno, V.; Martinez-Ruiz, F.; Giralt, S.; Jiménez-Espejo, F.; Gallego-Torres, D.; Rodrigo-Gámiz, M.; Garcia-Orellana, J.; Ortega-Huertas, M.; de Lange, G.J. Tracking climate variability in the western Mediterranean during the Late Holocene: A multiproxy approach. Clim. Past 2011, 7, 1395–1414. [Google Scholar] [CrossRef]
- Büntgen, U.; Myglan, V.S.; Ljungqvist, F.C.; McCormick, M.; Di Cosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–236. [Google Scholar] [CrossRef]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Georges Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Seppä, H.; Bjune, A.E.; Telford, R.J.; Birks, H.J.B.; Veski, S. Last nine-thousand years of temperature variability in Northern Europe. Clim. Past 2009, 5, 523–535. [Google Scholar] [CrossRef]
- Wang, T.; Surge, D.; Mithen, S. Seasonal temperature variability of the Neoglacial (3300–2500 BP) and Roman Warm Period (2500–1600 BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgate), Northwest Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 317–318, 104–113. [Google Scholar] [CrossRef]
- Goudeau, M.-L.S.; Grauel, A.-L.; Tessarolo, C.; Leider, A.; Chen, L.; Bernasconi, S.M.; Versteegh, G.J.M.; Zonneveld, K.A.F.; Boer, W.; Alonso-Hernandez, C.M.; et al. The Glacial-Interglacial transition and Holocene environmental changes in sediments from the Gulf of Taranto, central Mediterranean. Mar. Geol. 2014, 348, 88–102. [Google Scholar] [CrossRef]
- Gauld, J.; Fletcher, W.J.; Gońi, M.F.S.; Naughton, F.; Seppä, H. Meghalayan Stage (Late Holocene, 4.2 ka—Present). In European Glacial Landscapes: The Holocene; Palacios, D., Hughes, P.D., Jomelli, V., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2023; pp. 105–126. [Google Scholar]
- Waltgenbach, S.; Riechelmann, D.F.C.; Spötl, C.; Jochum, K.P.; Fohlmeister, J.; Schröder-Ritzrau, A.; Scholz, D. Climate variability in central Europe during the last 2500 years reconstructed from four high-resolution multi-proxy speleothem records. Geosciences 2021, 11, 166. [Google Scholar] [CrossRef]
- van Geel, B.; Raspopov, O.M.; Renssen, H.; van der Plicht, J.; Dergachev, V.A.; Meijer, H.A.J. The role of solar forcing upon climate change. Quat. Sci. Rev. 1999, 18, 331–338. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Palmer, J.G. Does the El Niño-Southern Oscillation control the interhemispheric radiocarbon offset? Quat. Res. 2007, 67, 174–180. [Google Scholar] [CrossRef]
- Trouet, V.; Esper, J.; Graham, N.E.; Baker, A.; Scourse, J.D.; Frank, D.C. Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 2009, 324, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Singhvi, A.K.; Kale, V.S. IGBP-WCRP-SCOPE-Report Series: 4. New Delhi. In Paleoclimate Studies in India: Last Ice Age to the Present; Indian National Science Academy: Delhi, India, 2010. [Google Scholar]
- de Menocal, P.B. Cultural responses to climate change during the late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Staubwasser, M.; Sirocko, F.; Grootes, P.M.; Segl, M. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys. Res. Lett. 2003, 30, 1425. [Google Scholar] [CrossRef]
- Gupta, A.K.; Anderson, D.M.; Overpeck, J.T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 2003, 421, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Azharuddin, S.; Govil, P.; Singh, A.D.; Mishra, R.; Agrawal, S.; Tiwari, A.K.; Kumar, K. Monsoon-influenced variations in productivity and lithogenic flux along offshore Saurashtra, NE Arabian Sea during the Holocene and Younger Dryas: A multi-proxy approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 483, 136–146. [Google Scholar] [CrossRef]
- Morrill, C.; Overpeck, J.T.; Cole, J.E. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 2003, 13, 465–476. [Google Scholar] [CrossRef]
- Quamar, M.F.; Bera, S.K. Pollen records of vegetation dynamics, climate change and ISM variability since the LGM from Chhattisgarh State, central India. Rev. Palaeobot. Palynol. 2020, 278, 104159. [Google Scholar] [CrossRef]
- Quamar, M.F. Late Holocene vegetation dynamics and monsoonal climatic changes in Jammu, India. Acta Palaeobot. 2022, 62, 36–49. [Google Scholar] [CrossRef]
- Magny, M.; Galop, D.; Bellintani, P.; Desmet, M.; Didier, J.; Haas, J.N.; Martinelli, N.; Pedrotti, A.; Scandolari, R.; Stock, A.; et al. Late-Holocene climatic variability south of the Alps as recorded by lake-level fluctuations at Lake Ledro, Trentino, Italy. Holocene 2009, 19, 575–589. [Google Scholar] [CrossRef]
- Helama, S.; Oinonen, M. Exact dating of the Meghalayan lower boundary based on high-latitude tree-ring isotope chronology. Quat. Sci. Rev. 2019, 214, 178–184. [Google Scholar] [CrossRef]
- Kobashi, T.; Menviel, L.; Jeltsch-Thömmes, A.; Vinther, B.M.; Box, J.E.; Muscheler, R.; Nakaegawa, T.; Pfister, P.L.; Döring, M.; Leuenberger, M.; et al. Volcanic influence on centennial to millennial Holocene Greenland temperature change. Sci. Rep. 2017, 7, 1441. [Google Scholar] [CrossRef]
- Helama, S.; Jones, P.D.; Briffa, K.R. Dark Ages Cold Period: A literature review and directions for future research. Holocene 2017, 27, 1600–1606. [Google Scholar] [CrossRef]
- Sharma, C.; Chauhan, M.S. Late Holocene vegetation and climate of Kupup (Sikkim), Eastern Himalaya, India. J. Palaeontol. Soc. India 2001, 46, 51–58. [Google Scholar] [CrossRef]
- Dixit, Y.; Hodell, D.A.; Petrie, C.A. Abrupt weakening of the summer monsoon in northwest India ∼4100 yr ago. Geology 2014, 42, 339–342. [Google Scholar] [CrossRef]
- Quamar, M.F.; Ali, S.N.; Nautiyal, C.M.; Bera, S.K. Vegetation and climate reconstruction based on a ~4 ka pollen record from north Chhattisgarh, central India. Palynology 2017, 41, 504–515. [Google Scholar] [CrossRef]
- Kathayat, G.; Cheng, H.; Sinha, A.; Berkelhammer, M.; Zhang, H.; Duan, P.; Li, H.; Li, X.; Ning, Y.; Edwards, R.L. Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India. Clim. Past 2018, 14, 1869–1879. [Google Scholar] [CrossRef]
- Quamar, M.F.; Kar, R.; Thakur, B. Vegetation response to the Indian Summer Monsoon (ISM) rainfall variability during the Late Holocene from the central Indian Core Monsoon Zone. Holocene 2021, 31, 1197–1211. [Google Scholar] [CrossRef]
- Sukumaran, P.; Sant, D.A.; Krishnan, K.; Rangarajan, G.; Basavaiah, N.; Schwenninger, J.L. Multi-Proxy Records of Late Holocene Flood Events from the Lower Reaches of the Narmada River, Western India. Front. Earth Sci. 2021, 9, 634354. [Google Scholar] [CrossRef]
- Behera, D.; Mishra, P.; Sabale, P.; Bhattacharya, S.; Ambili, A. Late Holocene climate variability and its impact on cultural dynamics in central India. Geol. Soc. Spec. Publ. 2022, 515, 217–232. [Google Scholar] [CrossRef]
- Padmalal, D.; Kumaran, K.P.N.; Nair, K.M.; Baijulal, B.; Limaye, R.B.; Vishnu Mohan, S. Evolution of the coastal wetland systems of SW India during the Holocene: Evidence from marine and terrestrial archives of Kollam coast, Kerala. Quat. Int. 2011, 237, 123–139. [Google Scholar] [CrossRef]
- Limaye, R.B.; Kumaran, K.P.N.; Padmalal, D. Mangrove habitat dynamics in response to Holocene sea level and climate changes along south west coast of India. Quat. Int. 2014, 325, 116–125. [Google Scholar] [CrossRef]
- Padmalal, D.; Kumaran, K.P.N.; Limaye, R.B.; Baburaj, B.; Maya, K.; Mohan, S. Effect of Holocene climate and sea level changes on landform evolution and human habitation: Central Kerala, India. Quat. Int. 2014, 325, 162–178. [Google Scholar] [CrossRef]
- Padmalal, D.; Kumaran, K.P.N.; Nair, K.M.; Limaye, R.B.; Vishnu Mohan, S.; Baijulal, B.; Anooja, S. Consequences of sea level and climate changes on the morphodynamics of a tropical coastal lagoon during Holocene: An evolutionary model. Quat. Int. 2014, 333, 156–172. [Google Scholar] [CrossRef]
- Veena, M.P.; Achyuthan, H.; Eastoe, C.; Farooqui, A. Human impact on low-land Vellayani Lake, south India: A record since 3000 yrs BP. Anthropocene 2014, 8, 83–91. [Google Scholar] [CrossRef]
- Srivastava, J.; Farooqui, A. Environmental impact on coastal wetlands since 4 ka in Cauvery Delta: Palynology and thecamoebian study. J. Geol. Soc. India 2014, 84, 459–466. [Google Scholar] [CrossRef]
- Prasad, V.; Farooqui, A.; Sharma, A.; Phartiyal, B.; Chakraborty, S.; Bhandari, S.; Raj, R.; Singh, A. Mid-Late Holocene monsoonal variations from mainland Gujarat, India: A multi-proxy study for evaluating climate culture relationship. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 397, 38–51. [Google Scholar] [CrossRef]
- Farooqui, A.; Ranjana; Nautiyal, C.M. Deltaic land subsidence and sea level fluctuations along the east coast of India since 8 ka: A palynological study. Holocene 2016, 26, 1426–1437. [Google Scholar] [CrossRef]
- Srivastava, J.; Farooqui, A. Holocene climate and relative sea level changes in Cauvery river delta, India based on pollen and sedimentary records. J. Palaeontol. Soc. India 2017, 62, 193–204. [Google Scholar] [CrossRef]
- Thakur, B.; Seth, P.; Sharma, A.; Pokharia, A.K.; Spate, M.; Farooqui, S. Linking past cultural developments to palaeoenvironmental changes from 5000 BP to present: A climate-culture reconstruction from Harshad estuary, Saurashtra, Gujarat, India. Quat. Int. 2019, 507, 188–196. [Google Scholar] [CrossRef]
- Manoj, M.C.; Srivastava, J.; Uddandam, P.R.; Thakur, B. A 2000 year multi-proxy evidence of natural/anthropogenic influence on climate from the southwest coast of India. J. Earth Sci. 2020, 31, 1029–1044. [Google Scholar] [CrossRef]
- Banerji, U.S.; Shaji, J.; Arulbalaji, P.; Maya, K.; Vishnu Mohan, S.; Dabhi, A.J.; Shivam, A.; Bhushan, R.; Padmalal, D. Mid-late Holocene evolutionary history and climate reconstruction of Vellayani lake, south India. Quat. Int. 2021, 599–600, 72–94. [Google Scholar] [CrossRef]
- Aravind, G.H.; Rafaz, A.K.; Sandeep, K.; Badesab, F.; Warrier, A.K.; Sijinkumar, A.V.; Sharma, R.; Mahesh, B.S.; Karunakara, N.; Kumara, K.S.; et al. A multi-proxy lacustrine sedimentary record of sub-decadal to decadal scale variability of monsoon during the late Holocene in southern India. J. Asian Earth Sci. 2024, 270, 106196. [Google Scholar] [CrossRef]
- Soman, K. Geology of Kerala; Geological Society of India: Bangalore, India, 2013; p. 324. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D.H. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Srinivas, K. Seasonal and Interannual Variability of Sea Level and Associated Surface Meteorological Parameters at Cochin. Ph.D. Thesis, Cochin University of Science and Technology, Cochin, India, 1999. [Google Scholar]
- Nayar, T.S.; Beegam, A.S.; Mohanan, N.; Rajkumar, G. Flowering Plants of Kerala: A Handbook; Tropical Botanic Garden and Research Institute: Thiruvananthapuram, India, 2006. [Google Scholar]
- Bronk Ramsey, C. Development of the radiocarbon calibration program. Radiocarbon 2001, 43, 355–363. [Google Scholar] [CrossRef]
- Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; Buck, C.E.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 2013, 55, 1869–1887. [Google Scholar] [CrossRef]
- Bhushan, R.; Yadava, M.G.; Shan, M.S.; Banerji, U.S.; Raj, H.; Shah, C.; Dabhi, A.J. First results from PRL Accelerator Mass Spectrometer. Curr. Sci. 2019, 116, 361–363. [Google Scholar]
- Reimer, P.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal KBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 2008, 27, 42–60. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Tiwari, P.; Srivastava, P.; Thakur, B. Diatom response in different climatic zones from west coast of India. J. Palaeontol. Soc. India 2023, 68, 84–98. [Google Scholar] [CrossRef]
- Hustedt, F. Bacillariophyta (Diatomae). In Die Süßwasser-Flora Mitteleuropas; Pascher, A., Koeltz, O., Eds.; Gustav Fischer Publication: Jena, Germany, 1930; pp. 1–466. [Google Scholar]
- Simonsen, R. The diatom system: Ideas on phylogeny. Bacillaria 1979, 2, 9–72. [Google Scholar]
- Battarbee, R.W.; Kneen, M.J. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 1982, 27, 184–188. [Google Scholar] [CrossRef]
- Battarbee, R.W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology; Berglund, B.E., Ed.; Wiley and Sons: Hoboken, NJ, USA, 1986; pp. 527–570. [Google Scholar]
- Desikachary, T.V. Marine Diatoms of the Indian Ocean Region; Madras Science Foundation: Kancheepuram, India, 1989. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. In Süsswasserflora von Mitteleuropa; Ettl, J.H., Heynig, G.H., Mollenhauer, D., Eds.; Gustav Fischer Verlag: Jena, Germany, 1986–1991; Volume 2. [Google Scholar]
- Dixit, S.S.; Smol, J.P.; Kingston, J.C.; Charles, D.F. Diatoms: Powerful indicators of environmental change. Environ. Sci. Technol. 1992, 26, 22–33. [Google Scholar] [CrossRef]
- Karthick, B.; Hamilton, B.; Kociolek, J.P. An Illustrated Guide to Common Diatoms of Peninsular India; Gubbilabs: Gubbi, India, 2013; p. 208. [Google Scholar]
- Smol, J.P.; Stoermer, E.F. The Diatoms: Applications for the Environmental and Earth Sciences; Cambridge University Press: Cambridge, UK, 2010; p. 655. [Google Scholar]
- Smol, J.P.; Walker, I.R.; Leavitt, P.R. Paleolimnology and hindcasting climatic trends. Verhandlungen Int. Ver. Limnol. 1991, 24, 1240–1246. [Google Scholar] [CrossRef]
- John, J. Diatoms in the Swan River Estuary, Western Australia: Taxonomy and Ecology; Koeltz Scientific Books: Glashütten, Germany, 2012; p. 456. [Google Scholar]
- Bahls, L.; Boynton, B.; Johnston, B. Atlas of Diatoms (Bacillariophyta) from diverse habitats in remote regions of western Canada. PhytoKeys 2018, 105, 1–186. [Google Scholar] [CrossRef] [PubMed]
- Combaz, A. Les palynofaciès. Rev. Micropaléontologie 1964, 7, 205–218. [Google Scholar]
- Traverse, A. Sedimentation of Organic Particles; Cambridge University Press: New York, NY, USA, 1994; p. 544. [Google Scholar]
- Tyson, R.V. Sedimentary Organic Matter: Organic facies and Palynofacies; Chapman and Hall: London, UK, 1995; p. 615. [Google Scholar]
- Batten, D.J. Palynofacies and palaeoenvironmental interpretation. In Palynology: Principles and Applications; McGregor, D.C., Ed.; American Association of Stratigraphic Palynologists Foundation: Houston, TX, USA, 1996; pp. 1011–1064. [Google Scholar]
- Roncaglia, L. Palynofacies analysis and organic-walled dinoflagellate cysts as indicators of palaeo-hydrographic changes: An example from Holocene sediments in Skálafjord, Faroe Islands. Mar. Micropaleontol. 2003, 50, 21–42. [Google Scholar] [CrossRef]
- Sebag, D.; Copard, Y.; Di-Giovanni, C.; Durand, A.; Laignel, B.; Ogier, S.; Lallier-Verges, E. Palynofacies as useful tool to study origins and transfers of particulate organic matter in recent terrestrial environments: Synopsis and prospects. Earth-Sci. Rev. 2006, 79, 241–259. [Google Scholar] [CrossRef]
- Mendonça Filho, J.G.; Menezes, T.R.; Mendonça, J.O. Chapter 5: Organic Composition (Palynofacies Analysis). In ICCP Training Course on Dispersed Organic Matter; ICCP: Porto, Portugal, 2011; pp. 33–81. [Google Scholar]
- Prasad, V.; Singh, I.B.; Bajpai, S.; Garg, R.; Thakur, B.; Singh, A.; Saravanan, N.; Kapur, V.V. Palynofacies and sedimentology-based high-resolution sequence stratigraphy of the lignite-bearing muddy coastal deposits (early Eocene) in the Vastan Lignite Mine, Gulf of Cambay, India. Facies 2013, 59, 737–761. [Google Scholar] [CrossRef]
- Sridhar, A.; Thakur, B.; Basavaiah, N.; Seth, P.; Tiwari, P.; Chamyal, L. Lacustrine record of high magnitude flood events and climate variability during mid to late Holocene in the semiarid alluvial plains, western India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 542, 109581. [Google Scholar] [CrossRef]
- Tiwari, P.; Srivastava, P.; Thakur, B. Palynofacies and sediment texture response from sub-tropical mixed sub-urban to urban floodplains of the Gomati River, Lucknow, India. Int. J. Sediment. Res. 2024, 39, 276–290. [Google Scholar]
- Visher, G.S. Grain size distributions and depositional processes. J. Sediment. Petrol. 1969, 39, 1074–1106. [Google Scholar]
- Friedman, G.M. Distinction between dune, beach and river sands from their textural characteristics. J. Sediment. Petrol. 1961, 31, 514–529. [Google Scholar]
- Friedman, G.M. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. J. Sediment. Petrol. 1967, 37, 327–354. [Google Scholar]
- Friedman, G.M. Differences in size distributions of populations of particles among sands of various origins. Sedimentology 1979, 26, 859–862. [Google Scholar] [CrossRef]
- Sun, D.; Bloemendal, J.; Rea, D.K.; Vandenberghe, J.; Jiang, F.; An, Z.; Su, R. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol. 2002, 152, 263–277. [Google Scholar] [CrossRef]
- Yanhong, W.; Lücke, A.; Zhangdong, J.; Sumin, W.; Schleser, G.H.; Battarbee, R.W.; Weilan, X. Holocene climate development on the central Tibetan Plateau: A sedimentary record from Cuoe Lake. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 328–340. [Google Scholar] [CrossRef]
- Huang, X.; Sun, M.; Xiang, L.; Zhang, E.; Zhang, J.; Grimm, E.C. The effect of diatoms on the grain size of lake sediments: A case study of the sediments of Lake Kanas. J. Paleolimnol. 2020, 63, 101–111. [Google Scholar] [CrossRef]
- Fu, S.; Li, J.; Rioual, P.; Wang, J.; Wang, L. A new method to remove biogenic silica from lake sediments by chemical dissolution coupled with sonication. J. Paleolimnol. 2024, 71, 125–138. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River bar: A study in the significance of grain size parameters. J. Sediment. Pet. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Grimm, E.C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Grimm, E.C. TILIA and TILIA.GRAPH, PC spreadsheet and graphics software for pollen data. INQUA Work. Group Data-Handl. Methods Newsl. 1990, 4, 5–7. [Google Scholar]
- Smilauer, P.; Leps, J. Multivariate Analysis of Ecological Data Using Canoco 5; Cambridge University Press: Cambridge, UK, 2014; p. 527. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 1998; p. 853. [Google Scholar]
- Legendre, P.; Legendre, L. Numerical ecology. In Developments in Environmental Modelling, 3rd ed.; Elsevier Science BV: Amsterdam, The Netherlands, 2012; Volume 24. [Google Scholar]
- Robertson, M.P.; Caithness, N.; Villet, M.H. A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Divers. Distrib. 2001, 7, 15–27. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Ellison, A.M. A Primer of Ecological Statistics; Sinauer Associates, Inc.: Sunderland, UK, 2004; p. 510. [Google Scholar]
- Bateman, R.M. The Significance of Palynofacies Variations in Recent and Ancient Sediments. Geol. Soc. Spec. Publ. 1991, 58, 65–94. [Google Scholar]
- Tyson, R.V. Palynofacies analysis. In Applied Micropaleontology; Jenkins, D.J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp. 153–191. [Google Scholar]
- Punning, J.M.; Puusepp, L. Diatom assemblages in sediments of Lake Juusa, Southern Estonia with an assessment of their habitat. Hydrobiologia 2007, 586, 27–41. [Google Scholar] [CrossRef]
- Margaritelli, G.; Cacho, I.; Català, A.; Barra, M.; Bellucci, L.G.; Lubritto, C.; Rettori, R.; Lirer, F. Persistent warm Mediterranean surface waters during the Roman period. Sci. Rep. 2020, 10, 10431. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.; Bingham, A.; Heard, A.M.; Hewitt, J.; Lynch, J.; Waite, R.; Bell, M.D. Diatoms to human uses: Linking nitrogen deposition, aquatic eutrophication, and ecosystem services. Ecosphere 2017, 8, 01858. [Google Scholar] [CrossRef]
- Wang, L.-C.; Li, H.-C.; Shiau, L.-J. Impacts of Anthropogenic Disturbances on Diatom Diversity in a Shallow Spring-Fed Pool. Diversity 2022, 14, 166. [Google Scholar] [CrossRef]
- Smol, J.P. The power of the past: Using sediments to track the effects of multiple stressors on lake ecosystems. Freshw. Biol. 2010, 55 (Suppl. S1), 43–59. [Google Scholar] [CrossRef]
- Rodriguez-Miret, X.; Del Carmen Trapote, M.; Sigro, J.; Vegas-Vilarrubia, T. Diatom responses to warming, heavy rains and human impact in a Mediterranean lake since the preindustrial period. Sci. Tot. Environ. 2023, 884, 163685. [Google Scholar] [CrossRef]
- McCartney, K.; Witkowski, J.; Jordan, R.W.; Abe, K.; Januszkiewicz, A.; Wróbel, R.; Bąk, M.; Soeding, E. Silicoflagellate evolution through the Cenozoic. Mar. Micropaleontol. 2022, 172, 102108. [Google Scholar] [CrossRef]
- Banerji, U.S.; Pandey, S.; Bhushan, R.; Juyal, N. Mid-Holocene climate and land–sea interaction along the southern coast of Saurashtra, western India. J. Asian Earth Sci. 2015, 111, 428–439. [Google Scholar] [CrossRef]
- Guy-Ohlson, D. Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Rev. Palaeobot. Palynol. 1992, 71, 1–15. [Google Scholar] [CrossRef]
- Peristykh, A.N.; Damon, P.E. Persistence of the Gleissberg 88-year solar cycle over the last 12,000 years: Evidence from cosmogenic isotopes. J. Geophys. Res. 2003, 108, 1003. [Google Scholar] [CrossRef]
- Cherian, P.J.; Vora, K.H.; Gangadharan, S. Excavations at Pattanam: Searching for Muziris. PIHC 2009, 69, 753–756. [Google Scholar]
- Cherian, P.J.; Menon, J. Unearthing Pattanam: Histories, Cultures, Crossings; National Museum: New Delhi, India, 2014; p. 142. [Google Scholar]
- Gurukkal, R. Rethinking Classical Indo-Roman Trade: Political Economy of Eastern Mediterranean Exchange Relations; Oxford University Press: Oxford, UK, 2016; p. 336. [Google Scholar]
- Tomber, R. Indo-Roman Trade: From Pots to Pepper; Bristol Classical Press: London, UK; Duckworth: London, UK, 2008; p. 218. [Google Scholar]
- Srimali, K.M. The Age of Iron and the Religious Revolution c. 700–c. 350 BC; Aligarh Historians Society and Tulika Books: New Delhi, India, 2011; p. 160. [Google Scholar]
Sample No. | Radiocarbon Age | Cal Year BP (Median Age) | Cal Age Ranges (Cal yr BP) | Cal Age Ranges (BCE-CE) | ||
---|---|---|---|---|---|---|
1 Sigma | 2 Sigma | 1 Sigma | 2 Sigma | |||
ARD-1 | 1839 ± 75 | 1747 | 1623–1864 | 1548–1926 | 89 CE–326 CE | 24 CE–402 CE |
ARD-3 | 2302 ± 90 | 2318 | 2150–2461 | 2059–2700 | 512 BCE–201 BCE | 751 BCE–110 BCE |
ARD-6 | 2400 ± 56 | 2460 | 2348–2671 | 2339–2703 | 722 BCE–399 BCE | 754 BCE–390 BCE |
Zone | Start | End |
---|---|---|
Zone-IV | 134 CE (62 BCE–332 CE) | 428 CE (196 CE–684 CE) |
Zone-III | 151 BCE (339 BCE–28 CE) | 134 CE (62 BCE–332 CE) |
Zone-II | 361 BCE (557 BCE–166 BCE) | 151 BCE (339 BCE–28 CE) |
Zone-I | 535 BCE (694 BCE–341 BCE) | 361 BCE (557 BCE–166 BCE) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, P.; Thakur, B.; Srivastava, P.; Gahlaud, S.K.S.; Bhusan, R.; Agnihotri, R. Paleolimnology and Natural Versus Anthropogenic Influx During the Late Holocene from Vembanad Wetland, Ramsar Site, Kerala, India. Quaternary 2025, 8, 3. https://doi.org/10.3390/quat8010003
Tiwari P, Thakur B, Srivastava P, Gahlaud SKS, Bhusan R, Agnihotri R. Paleolimnology and Natural Versus Anthropogenic Influx During the Late Holocene from Vembanad Wetland, Ramsar Site, Kerala, India. Quaternary. 2025; 8(1):3. https://doi.org/10.3390/quat8010003
Chicago/Turabian StyleTiwari, Pooja, Biswajeet Thakur, Purnima Srivastava, Sanjay Kumar Singh Gahlaud, Ravi Bhusan, and Rajesh Agnihotri. 2025. "Paleolimnology and Natural Versus Anthropogenic Influx During the Late Holocene from Vembanad Wetland, Ramsar Site, Kerala, India" Quaternary 8, no. 1: 3. https://doi.org/10.3390/quat8010003
APA StyleTiwari, P., Thakur, B., Srivastava, P., Gahlaud, S. K. S., Bhusan, R., & Agnihotri, R. (2025). Paleolimnology and Natural Versus Anthropogenic Influx During the Late Holocene from Vembanad Wetland, Ramsar Site, Kerala, India. Quaternary, 8(1), 3. https://doi.org/10.3390/quat8010003