Reducing Wooden Structure and Wildland-Urban Interface Fire Disaster Risk through Dynamic Risk Assessment and Management
Abstract
:1. Introduction
2. Fire as a Threat
2.1. Fire Dynamics
2.2. Drying Dynamics
2.3. Dry Fuel Fire Risk
3. Possibilities for Mitigating the Fire Disaster Risk
3.1. Fire Risk in Wooden Structure Environments
3.2. Calluna Dominated WUI Fire Risk
3.3. Civic Groups for Fire Risk Management
3.4. Expected Climate Changes
3.5. Risk Based Emergency Management?
4. Suggested Research Agenda Framework
4.1. A Bow-Tie Framework
4.2. Risk Modeling and Risk Warnings
4.3. Adaptive Management of Calluna Heathland to Mitigate WUI Fire Risk
4.4. Risk-Based Emergency Planning and Dimensioning
4.5. Required Fields of Expertise and Research Cooperation
4.6. Stakeholder Involvement
5. Discussion
- risk modeling and risk warnings,
- adaptive management of Calluna heathland to mitigate WUI fire risk,
- risk-based emergency planning and dimensioning,
- in addition to stakeholder involvement.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scott, A.C.; Bowman, D.M.J.S.; Bond, W.J.; Pyne, S.J.; Alexander, M.E. Fire on Earth: An Introduction; John Wiley & Sons: West Sussex, UK, 2014. [Google Scholar]
- Losnegård, G. Norske Ulykker og Katastrofar; Skald: Leikanger, Norway, 2013. [Google Scholar]
- Pirsko, A.R.; Fons, W.L. Frequency of Urban Building Fires as Related to Daily Weather Conditions; Interim Technical Report, 866; US Dep. of Agriculture: Washington, DC, USA, 1956. [Google Scholar]
- DSB. Brannene i Lærdal, Flatanger og på Frøya Vinteren 2014; Norwegian Directorate for Civil Protection: Tønsberg, Norway, 2014. [Google Scholar]
- Steen-Hansen, A.; Bøe, G.A.; Hox, K.; Mikalsen, R.F.; Stensaas, J.P.; Storesund, K. Evaluation of fire spread in the large Lærdal fire, January 2014. In Proceedings of the 14th International Fire and Materials Conference and Exhibition, San Francisco, CA, USA, 2–4 February 2015; pp. 1014–1024. [Google Scholar]
- Log, T. Cold Climate Fire Risk; A Case Study of the Lærdalsøyri Fire, January 2014. Fire Technol. 2016, 52, 1825–1843. [Google Scholar] [CrossRef] [Green Version]
- Delâge, C. Rapport du Commissaire Aux Incendies du Québec. Rapport du Commissaire Aux Incendies du Québec. 2015. Available online: http://www.coroner.gouv.qc.ca/fileadmin/Coroners/Rapport_d_enquete_-_L._Isle-Verte.pdf (accessed on 14 March 2018).
- Log, T. Indoor relative humidity as a fire risk indicator. Build. Environ. 2017, 111, 238–248. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Z.; Fan, C. Predictive analysis of fire frequency based on daily temperatures. Nat. Hazards 2019, 97, 1175–1189. [Google Scholar] [CrossRef]
- Blanchi, R.; Leonard, J.; Haynes, K.; Opie, K.; James, M.; de Oliveira, F.D. Environmental circumstances surrounding bushfire fatalities in Australia 1901–2011. Environ. Sci. Policy 2014, 37, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Rego, F.M.C.C.; Rodríguez, J.M.M.; Calzada, V.R.V.; Xanthopoulos, G. Forest Fires—Sparking Firesmart Policies in the EU; Publications Office of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- Keeley, J.E.; Syphard, A.D. Twenty-first century California, USA, wildfires: Fuel-dominated vs. wind-dominated fires. Fire Ecol. 2019, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Hardy, K.; Comfort, L.K. Dynamic decision processes in complex, high-risk operations: The Yarnell Hill Fire, June 30, 2013. Saf. Sci. 2015, 71, 39–47. [Google Scholar] [CrossRef]
- Simms, C.D. Canada’s Fort McMurray fire: Mitigating global risks. Lancet Glob. Health 2016, 48, e520. [Google Scholar] [CrossRef] [Green Version]
- Boustras, G.; Boukas, N. Forest fires’ impact on tourism development: A comparative study of Greece and Cyprus. Manag. Environ. Qual. 2013, 24, 498–511. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Vivancos, T.A.; Oom, D.; et al. Forest Fires in Europe, Middle East and North Africa 2018; Publications Office of the European Union: Brussels, Belgium, 2019. [Google Scholar]
- Uhr, C.; Lindgren, J.; Holmberg, M.; Bynander, F.; Koelga, S.; Johansson, B.J.E. Once upon a time in Västmanland—the power of narratives or how the “truth” unfolds. In Proceedings of the13th International Conference on Information Systems for Crisis Response and Management, Rio de Janeiro, Brazil, 22–25 May 2016. [Google Scholar]
- Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Stewart, S.I.; Radeloff, V.C. Where wildfires destroy buildings in the US relative to the wildland–urban interface and national fire outreach programs. Int. J. Wildland Fire 2018, 27, 329–341. [Google Scholar] [CrossRef] [Green Version]
- McGee, T.K. Public engagement in neighbourhood level wildfire mitigation and preparedness: Case studies from Canada, the US and Australia. J. Environ. Manag. 2011, 92, 2524–2532. [Google Scholar] [CrossRef]
- Olsen, C.S.; Kline, J.D.; Ager, A.A.; Olsen, K.A.; Short, K.C. Examining the influence of biophysical conditions on wildland–urban interface homeowners’ wildfire risk mitigation activities in fire-prone landscapes. Ecol. Soc. 2017, 22, 21. [Google Scholar] [CrossRef] [Green Version]
- Paveglio, T.B.; Kelly, E. Influences on the Adoption and Implementation of a Wildfire Mitigation Program in an Idaho City. J. For. 2018, 116, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Labossière, L.M.M.; McGee, T.M. Innovative wildfire mitigation by municipal governments: Two case studies in Western Canada. Int. J. Disaster Risk Reduct. 2017, 22, 204–210. [Google Scholar] [CrossRef]
- Manzello, S.L.; Foote, E.I.D. Characterizing Firebrand Exposure from Wildland–Urban Interface (WUI) Fires: Results from the 2007 Angora Fire. Fire Technol. 2014, 50, 105–124. [Google Scholar] [CrossRef]
- Mowery, M.; Read, M.; Johnston, K.; Wafaie, T. Planning the Wildland-Urban Interface, Report 594; Planning Advisory Service, American Planning Association: Washington, DC, USA, 2019. [Google Scholar]
- Bento-Gonçalves, A.; Vieira, A. Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Sci. Total Environ. 2019, 707, 135529. [Google Scholar] [CrossRef] [PubMed]
- Badia, A.; Pallares-Barbera, M.; Valldeperas, N.; Gisbert, M. Wildfires in the wildland-urban interface in Catalonia: Vulnerability analysis based on land use and land cover change. Sci. Total Environ. 2019, 673, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Manzello, S.L. Characteristics of Firebrands Collected from Actual Urban Fires. Fire Technol. 2018, 54, 1533–1546. [Google Scholar] [CrossRef]
- Suzuki, S.; Manzello, S.L. Understanding structure ignition vulnerabilities using mock-up sections of attached wood fencing assemblies. Fire Mater. 2019, 43, 675–684. [Google Scholar] [CrossRef]
- Manzello, S.L.; Bianchi, R.; Gollner, M.J.; Gorham, D.; McAllister, S.; Pastor, E.; Planas, E.; Reszeka, P.; Susuki, S. Summary of workshop large outdoor fires and the built environment. Fire Saf. J. 2018, 100, 76–92. [Google Scholar] [CrossRef] [Green Version]
- Manzello, S.L.; McAllister, S.; Suzuki, S. Large out-door fires and the built environment: Objectives and goals of permanent IAFSS working Group. Fire Technol. 2018, 54, 579–581. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.; Barbat, A.; Carreño, M.L.; Kienberger, S.; Miniati, R.; Welle, W.; Zaidi, R.Z.; Tedim, F.; Vinchon, C.; Manuel Garcin, M.; et al. Methods for the Improvement of Vulnerability Assessment in Europe; Collaborative Project No. 211590 Report; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Babrauskas, V.; Peacock, R. Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Saf. J. 1992, 18, 255–272. [Google Scholar] [CrossRef]
- Baronas, R.; Ivanauskasa, F.; Juodeikienėc, I.; Kajalavičiusc, A. Modelling of Moisture Movement in Wood during Outdoor Storage. Nonlinear Anal. Model. Control 2001, 6, 3–14. [Google Scholar] [CrossRef]
- Metallinou, M.M.; Log, T. Cold Climate Structural Fire Danger Rating System? Challenges 2018, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Dowell, A.M. Layer of protection analysis for determining safety integrity level. ISA Trans. 1998, 37, 155–165. [Google Scholar] [CrossRef]
- Willey, R.J. Layer of Protection Analysis. Procedia Eng. 2014, 84, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Log, T.; Thuestad, G.; Velle, L.G.; Khattri, S.K.; Kleppe, G. Unmanaged heathland—a fire risk in subzero temperatures? Fire Saf. J. 2017, 90, 62–71. [Google Scholar] [CrossRef]
- Webb, N.R. The traditional management of European heathlands. J. Appl. Ecol. 1998, 35, 987–990. [Google Scholar] [CrossRef]
- Davies, G.M.; Legg, J.J.; O’hara, R.; MacDonals, A.J.; Smith, A.A. Winter desiccation and rapid changes in the live fuel moisture content of Calluna vulgaris. Plant Ecol. Divers. 2010, 3, 289–299. [Google Scholar] [CrossRef]
- Velle, L.G.; Haugum, S.V.; Log, T.; Thorvaldsen, P.; Thuestad, G.; Vandvik, V. New perspectives on heathland management under influence of extreme winter droughts. In Proceedings of the 15th European Heathland Workshop. Lowland Heaths under Pressure: Challenges in Ecological Restoration, Nijmegen, The Netherlands, 25 August 2017. [Google Scholar]
- Nilsen, L.S.; Johansen, L.; Velle, L.G. Early stages of Calluna vulgaris regeneration after burning of coastal heath in central Norway. Appl. Veg. Sci. 2005, 8, 57–64. [Google Scholar] [CrossRef]
- Diotte, M.; Bergeron, Y. Fire and the distribution of Juniperus communis L. in the Boreal Forest of Quebec, Canada. J. Biogeogr. 1989, 16, 91–96. [Google Scholar] [CrossRef]
- Maclean, N.F. Young Men and Fire; The Univ. Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Kaland, P.E. The origin and management of Norwegian coastal heaths as reflected by pollen analysis. In Anthropogenic Indicators in Pollen Diagrams, Behre, K.E., Ed.; Balkema: Rotterdam, The Netherlands, 1986; pp. 19–36. [Google Scholar] [CrossRef]
- Velle, L.G.; Vandvik, V. Succession after prescribed burning in coastal Calluna heathlands along a 340-km latitudinal gradient. J. Veg. Sci. 2014, 25, 546–558. [Google Scholar] [CrossRef]
- Log, T.; Cannon-Brookes, P. ‘Water Mist’ for Fire Protection of Historic Buildings and Museums. Mus. Manag. Curatorship 1995, 13, 283–298. [Google Scholar] [CrossRef]
- Davies, G.M.; Legg, C.J. Fuel moisture thresholds in flammability of Calluna vulgaris. Fire Technol. 2011, 47, 421–436. [Google Scholar] [CrossRef]
- Cloutier, G.; Papin, M.; Bizier, C. Do-it-yourself (DIY) adaptation: Civic initiatives as drivers to address climate change at the urban scale. Cities 2018, 74, 284–291. [Google Scholar] [CrossRef]
- Bihari, M.; Ryan, R. Influence of social capital on community preparedness for wildfires. Landsc. Urban Plan. 2012, 106, 253–261. [Google Scholar] [CrossRef]
- Paveglio, T.B.; Nielsen-Pincus, M.; Abrams, J.; Mosseley, C. Advancing characterization of social diversity in the wildland-urban interface: An indicator approach for wildfire management. Landsc. Urban Plan. 2017, 160, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, J.; McLennan, B.; Handmer, J. A review of informal volunteerism in emergencies and disasters: Definition, opportunities and challenges. Int. J. Disaster Risk Reduct. 2015, 13, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Moi, A.L.; Haugsmyr, E.; Heisterkamp, H. Long-Term Study of Health and Quality of Life after Burn Injury. Ann. Burns Fire Disasters 2016, 29, 295–299. [Google Scholar]
- Log, T. Modeling burns for pre-cooled skin flame exposure. Int. J. Environ. Res. Public Health 2017, 14, 1024. [Google Scholar] [CrossRef] [Green Version]
- Log, T.; Moi, A.L. Ethanol and Methanol Burn Risks in the Home Environment. Int. J. Environ. Res. Public Health 2018, 15, 2379. [Google Scholar] [CrossRef] [Green Version]
- Davies, G.M.; Legg, C.J.; Smith, A.A.; MacDonald, A. Development and participatory evaluation of fireline intensity and flame property models for managed burns on Calluna-dominated heathlands. Fire Ecol. 2019, 15, 30. [Google Scholar] [CrossRef]
- Johannessen, I.; McArthur, P.W.; Jonassen, J.R. Informal leadership redundancy: Balancing structure and flexibility in subsea operations. Scand. J. Manag. 2015, 31, 409–423. [Google Scholar] [CrossRef] [Green Version]
- Johansson, R.; Danielsson, E.; Kvarnlöf, L.; Eriksson, K.; Karlsson, R. At the external boundary of a disaster response operation: The dynamics of volunteer inclusion. J. Contingencies Crisis Manag. 2018, 26, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Darkow, P.M. Beyond ‘bouncing back’: Towards an integral, capability-based understanding of organizational resilience. J. Contingencies Crisis Manag. 2018, 27, 145–156. [Google Scholar] [CrossRef]
- Skar, M.; Sydnes, M.; Sydnes, A.K. Integrating unorganized volunteers in emergency response management: A case study. Int. J. Emerg. Ser. 2016, 5, 52–65. [Google Scholar] [CrossRef]
- Kraaijeveld, A.; Gunnarshaug, A.; Schei, B.; Log, T. Burning rate and time to flashover in wooden 1/4 scale compartments as a function of fuel moisture content. In Proceedings of the 8th International Fire Science & Engineering Conference, Interflam 2016, Windsor, UK, 4–6 July 2016; pp. 553–558. [Google Scholar]
- Götmark, F.; Cafaro, P.; O’Sullivan, J. Aging Human Populations: Good for Us, Good for the Earth. Trends Ecol. Evol. 2018, 33, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Jansen, W.J.; Wilson, R.S.; Visser, P.J.; Nag, S.; Schneider, J.A.; James, B.D.; Leurgans, S.E.; Capuano, A.W.; Bennett, D.A.; Boyle, P.A. Age and the association of dementia-related pathology with trajectories of cognitive decline. Neurobiol. Aging 2018, 61, 138–145. [Google Scholar] [CrossRef]
- Westcott, R.; Ronan, K.; Bambrick, H.; Taylor, M. Public health and natural hazards: New policies and preparedness initiatives developed from an Australian bushfire case study. Aust. N. Z. J. Public Health 2019, 43, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Njå, O.; Vastveit, K.R. Norske Kommuners Planlegging, Gjennomføring og Bruk av Risiko- og Sårbarhetsanalyser i Forbindelse med Samfunnssikkerhetsarbeidet; University of Stavanger: Stavanger, Norway, 2016. [Google Scholar]
- Torero, J.L. Fire-induced structural failure: The World Trade Center, New York. For. Eng. 2011, 164, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Potton, E. Grenfell Tower Fire: Background. In House of Commons Briefing Paper; CBP: Washington, DC, USA, 2018. [Google Scholar]
- Metallinou, M.M.; Log, T. Health Impacts of Climate Change-Induced Subzero Temperature Fires. Int. J. Environ. Res. Public Health 2017, 14, 814. [Google Scholar] [CrossRef] [Green Version]
- Williams-Bell, F.M.; Kapralos, B.; Hogue, A.; Murphy, B.M.; Weckman, E.J. Using serious games and virtual simulation for training in the fire service: A review. Fire Technol. 2015, 51, 553–584. [Google Scholar] [CrossRef]
- Heldal, I.; Wijkmark, C.H.; Pareto, L. Simulation and serious games for firefighter training: Challenges for effective use. NOKOBIT 2016, 24, 12. [Google Scholar]
- Heldal, I.; Wijkmark, C.H. The ROI of Simulation-Based Training vs. Live Training of Fire Commanders. In Proceedings of the International Forum for the Military and Civil Simulation, Training and Education Community (ITEC), Stockolmsmässan, Sweden, 14–16 May 2019. [Google Scholar]
- Pérez, J.; Maldonado, S.; López-Ospina, H. A fleet management model for the Santiago fire department. Fire Saf. J. 2016, 82, 1–11. [Google Scholar] [CrossRef]
- Sampson, H.; Johannessen, I.A. Turning on The Tap: The benefits of using ‘real-life’ vignettes in qualitative research interview. Qual. Res. 2020, 20, 56–72. [Google Scholar] [CrossRef] [Green Version]
- Metallinou, M.M. Liquefied Natural Gas as a New Hazard; Learning Processes in Norwegian Fire Brigades. Safety 2019, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Sommer, M.; Njå, O. Learning amongst Norwegian fire-fighters. J. Workp. Learn. 2011, 23, 435–455. [Google Scholar] [CrossRef]
- Johansson, N.; Svensson, S. Review of the Use of Fire Dynamics Theory in Fire Service Activities. Fire Technol. 2019, 55, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Metallinou, M.M. Single- and double-loop organi-zational learning through a series of pipeline emergency exercises. J. Contingencies Crisis Manag. 2018, 26, 530–543. [Google Scholar] [CrossRef]
- Andonov, S. Bowtie Methodology: A Guide for Practitioners; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- McLeod, R.W.; Bowie, P. Bowtie Analysis as a prospective risk assessment technique in primary healthcare. Policy Pract. Health Saf. 2018, 16, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Tuckman, B.W. Developmental sequence in small groups. Psychol. Bull. 1965, 53, 384–399. [Google Scholar] [CrossRef] [Green Version]
- Bonebright, D.A. 40 years of storming: A historical review of Tuckman’s model of small group development. Hum. Resour. Dev. Int. 2010, 13, 111–120. [Google Scholar] [CrossRef]
- Gilham, B. Research Interviews, the Range of Techniques; McGraw-Hill Education: London, UK, 2005. [Google Scholar]
- Kvale, S. Interviews. An Introduction to Qualitative Research Interviewing, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Tough, A. The Adult’s Learning Projects, A Fresh Theory and Practice in Adult Learning; The Ontario Institute for Studies in Education: Toronto, ON, Canada, 1971. [Google Scholar]
- UK Court of Appeal. Edwards Versus National Coal Board; Croner-i: London, UK, 1949. [Google Scholar]
- Jones-Lee, M.; Aven, T. ALARP—what does it really mean? Reliab. Eng. Sys. Saf. 2011, 96, 877–882. [Google Scholar] [CrossRef]
- Kaland, P.E.; Kvamme, M. Kystlyngheiene i Norge—Kunnskapsstatus og Beskrivelse av 23 Referanseomrader. (Coastal Heathlands in Norway—Descriptions of 23 Reference Areas); Norwegian Environment Agency: Trondheim, Norway, 2013. [Google Scholar]
- Nygaard, J. Local, Open-Air Performances in Norway as Interdisciplinary Theatre. Theatre Res. Int. 2001, 26, 172–180. [Google Scholar] [CrossRef]
- Mathisen, G.E. Climates for Creativity and Innovation: Definitions, Measurement, Predictors, and Consequences. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2005. [Google Scholar]
- Forsth, L.-R. Praktisk Nytenkning. Systematisk og Kreativ Problemløsning; Aquarius: Oslo, Norway, 2014. [Google Scholar]
- Brad, R.; Murray, B.R.; Martin, L.J.; Brown, C.; Phillips, M.L. Selecting Low-Flammability Plants as Green Firebreaks within Sustainable Urban Garden Design. Fire 2018, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Pilone, E.; Demichela, M.; Baldissone, G. The Multi-Risk Assessment Approach as a Basis for the Territorial Resilience. Sustainability 2019, 11, 2612. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, M.; Zambon, I.; Colantoni, A.; Salvati, L. Socioeconomic Development, Demographic Dynamics and Forest Fires in Italy, 1961–2017: A Time-Series Analysis. Sustainability 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Martinho, V.J.P.D. Socioeconomic Impacts of Forest Fires upon Portugal: An Analysis for the Agricultural and Forestry Sectors. Sustainability 2019, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Varela, V.; Vlachogiannis, D.; Sfetsos, A.; Karozis, S.; Politi, N.; Giroud, F. Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region. Sustainability 2019, 11, 4284. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhao, Q.; Wem, Z.; Qu, J. RAFFIA: Short-term Forest Fire Danger Rating Prediction via Multiclass Logistic Regression. Sustainability 2018, 10, 4620. [Google Scholar] [CrossRef] [Green Version]
- Marchi, M.; Chianucci, F.; Ferrara, C.; Pontuale, G.; Pontuale, E.; Mavrakis, A.; Morrow, N.; Rossi, F.; Salvati, L. Sustainable Land-Use, Wildfires, and Evolving Local Contexts in a Mediterranean Country, 2000–2015. Sustainability 2018, 10, 3911. [Google Scholar] [CrossRef] [Green Version]
- Lidskog, R. Invented Communities and Social Vulnerability: The Local Post-Disaster Dynamics of Extreme Environmental Events. Sustainability 2018, 10, 4457. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Log, T.; Vandvik, V.; Velle, L.G.; Metallinou, M.-M. Reducing Wooden Structure and Wildland-Urban Interface Fire Disaster Risk through Dynamic Risk Assessment and Management. Appl. Syst. Innov. 2020, 3, 16. https://doi.org/10.3390/asi3010016
Log T, Vandvik V, Velle LG, Metallinou M-M. Reducing Wooden Structure and Wildland-Urban Interface Fire Disaster Risk through Dynamic Risk Assessment and Management. Applied System Innovation. 2020; 3(1):16. https://doi.org/10.3390/asi3010016
Chicago/Turabian StyleLog, Torgrim, Vigdis Vandvik, Liv Guri Velle, and Maria-Monika Metallinou. 2020. "Reducing Wooden Structure and Wildland-Urban Interface Fire Disaster Risk through Dynamic Risk Assessment and Management" Applied System Innovation 3, no. 1: 16. https://doi.org/10.3390/asi3010016
APA StyleLog, T., Vandvik, V., Velle, L. G., & Metallinou, M. -M. (2020). Reducing Wooden Structure and Wildland-Urban Interface Fire Disaster Risk through Dynamic Risk Assessment and Management. Applied System Innovation, 3(1), 16. https://doi.org/10.3390/asi3010016