The 3D Product Model Research Evolution and Future Trends: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. The 3D Product Model Research Evolution
4.1.1. 1940s to 1960s
4.1.2. 1970s
4.1.3. 1980s
4.1.4. 1990s
4.1.5. 2000s
4.1.6. 2010s
4.1.7. 2020s
4.2. The 3D Product Model Research Current State and Future Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirpes, C.; Sly, D.; Hu, G. Quantitative Model for the Value of the 3D Product Model Use in Production Processes. Appl. Syst. Innov. 2021, 4, 90. [Google Scholar] [CrossRef]
- Kirpes, C.; Sly, D.; Hu, G. Value of the 3D product model use in assembly processes: Process planning, design, and shop floor execution. Appl. Syst. Innov. 2021, 4, 39. [Google Scholar] [CrossRef]
- Sly, D. Integrating 3D product models with assembly line balancing via process consumption. Procedia Manuf. 2018, 17, 183–189. [Google Scholar] [CrossRef]
- Sly, D.; Kirpes, C. Emerging frontiers in industrial and systems engineering: Success through collaboration. In Building and Managing the Bill of Process to Streamline the Enterprise—An Emerging Technology-Enabled Systems Approach; Nembhard, H.B., Cudney, E.A., Coperich, K.M., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 149–165. [Google Scholar]
- Casini, M. Chapter 3—Building digital revolution. In Construction 4.0; Casini, M., Ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 151–186. [Google Scholar]
- Kantaros, A.; Diegel, O.; Piromalis, D.; Tsaramirsis, G.; Khadidos, A.O.; Khadidos, A.O.; Khan, F.Q.; Sadeeq, J. 3D printing: Making an innovative technology widely accessible through makerspaces and outsourced services. Mater. Today Proc. 2022, 49, 2712–2723. [Google Scholar] [CrossRef]
- Mahamood, R.M.; Jen, T.-C.; Akinlabi, S.A.; Hassan, S.; Abdulrahman, K.; Akinlabi, E. Chapter 6—Role of additive manufacturing in the era of Industry 4.0. In Additive Manufacturing; Manjaiah, M., Raghavendra, K., Balashanmugam, N., Paulo Davim, J., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 107–126. [Google Scholar]
- Anonymous. 3D CAD strips 20% off engineer-to-order machining time. Manuf. Comput. Solut. 2005, 11, 57. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=1358-1066&date=2005&volume=11&issue=1&spage=57&epage=57&title=Manufacturing%20Computer%20Solutions&atitle=3D%20CAD%20strips%2020%25%20off%20engineer-to-order%20machining%20time&aulast=&aufirst=&isbn=&id=DOI:&ABBR=2005088847019&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Anonymous. Surface modelling cuts design by 50%. Manuf. Comput. Solut. 2005, 11, 40. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=1358-1066&date=2005&volume=11&issue=2&spage=40&epage=40&title=Manufacturing%20Computer%20Solutions&atitle=Surface%20modelling%20cuts%20design%20by%2050%25&aulast=&aufirst=&isbn=&id=DOI:&ABBR=2005139010103&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Anonymous. Simulation helps GM cut the tests. Environ. Eng. 2006, 19, 45–46. Available online: https://web.s.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=1&sid=263ff1cb-d16a-41cb-b70b-ddb193270055%40redis (accessed on 20 December 2021).
- Abdel-Malek, K.; Zou, H.L.; Wang, J.Y.; Othman, S. Automated design and parametrization of mechanical part geometry. Res. Eng. Des. Theory Appl. Concurr. Eng. 1999, 11, 206–217. [Google Scholar] [CrossRef] [Green Version]
- Aish, R. 3D Icons and Architectural CAD. Comput. Graph. Forum 1985, 4, 177–186. [Google Scholar] [CrossRef]
- Alfadhlani; Ari Samadhi, T.M.A.; Ma’Ruf, A.; Toha, I.S. Automatic collision detection for assembly sequence planning using a three-dimensional solid model. J. Adv. Manuf. Syst. 2011, 10, 277–291. [Google Scholar] [CrossRef]
- Anderson, R.O. Detecting and Eliminating Collisions in NC Machining. CAD Comput. Aided Des. 1978, 10, 231–237. [Google Scholar] [CrossRef]
- Anonymous. Perspective drawings speed plane assembly. Agric. Aviat. 1942, 41, 118–120. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=&date=1942&volume=41&issue=6&spage=118&epage=120&title=Aviation&atitle=Perspective%20drawings%20speed%20plane%20assembly&aulast=Anon&aufirst=&isbn=&id=DOI:&ABBR=19420000906&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Anonymous. Miniature auto plant aids engineers in analyzing production layouts. Steel 1947, 120, 89126. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=&date=1947&volume=120&issue=7&spage=89&epage=89&title=Steel&atitle=Miniature%20auto%20plant%20aids%20engineers%20in%20analyzing%20production%20layouts&aulast=Anon&aufirst=&isbn=&id=DOI:&ABBR=19470001851&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Anselmetti, B. Generation of functional tolerancing based on positioning features. CAD Comput. Aided Des. 2006, 38, 902–919. [Google Scholar] [CrossRef]
- Antonya, C.; Talaba, D. Design evaluation and modification of mechanical systems in virtual environments. Virtual Real. 2007, 11, 275–285. [Google Scholar] [CrossRef]
- Arai, E.; Iwata, K. CAD system with product assembly/disassembly planning function. Robot. Comput. Integr. Manuf. 1993, 10, 41–48. [Google Scholar] [CrossRef]
- Barr, R.E.; Schmidt, P.S.; Krueger, T.J.; Twu, C.-Y. An introduction to engineering through an integrated reverse engineering and design graphics project. J. Eng. Educ. 2000, 89, 413–418. [Google Scholar] [CrossRef]
- Barton, J.C.; Finley, C.R.; Faulkner, J.R. CAD System Used for Major Offshore Project. Oil Gas J. 1986, 84, 96–102. [Google Scholar]
- Baydar, C.M.; Saitou, K. Automated generation of robust error recovery logic in assembly systems using genetic programming. J. Manuf. Syst. 2001, 20, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Berg, L.P.; Behdad, S.; Vance, J.M.; Thurston, D. Disassembly Sequence Evaluation: A User Study Leveraging Immersive Computing Technologies. J. Comput. Inf. Sci. Eng. 2015, 15, 011002. [Google Scholar] [CrossRef] [Green Version]
- Bergsten, F.C. Computer-Aided Design, Manufacturing, Assembly and Test (CADMAT). Proc. Des. Autom. Conf. 1981, 18, 873–880. [Google Scholar]
- Besbes, M.; Zolghadri, M.; Costa Affonso, R.; Masmoudi, F.; Haddar, M. 3D facility layout problem. J. Intell. Manuf. 2021, 32, 1065–1090. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Winer, E.H. Augmented reality via expert demonstration authoring (AREDA). Comput. Ind. 2019, 105, 61–79. [Google Scholar] [CrossRef]
- Bhaumik, P.K. Building aircraft assembly tools from A 3-D database. In Proceedings of the Aerospace Technology Conference and Exposition, Anaheim, CA, USA, 3–6 October 1988; SAE International: Warrendale, PA, USA, 1988. [Google Scholar] [CrossRef]
- Blatcher, R. Productive processes. Engineering 2010, 251, 32–33. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=&date=1947&volume=120&issue=7&spage=89&epage=89&title=Steel&atitle=Miniature%20auto%20plant%20aids%20engineers%20in%20analyzing%20production%20layouts&aulast=Anon&aufirst=&isbn=&id=DOI:&ABBR=19470001851&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Bo, C.; Yang, Z.; Wang, L.; Chen, H. A comparison of tolerance analysis models for assembly. Int. J. Adv. Manuf. Technol. 2013, 68, 739–754. [Google Scholar] [CrossRef]
- Boer, C.R.; Pedrazzoli, P.; Sacco, M.; Rinaldi, R.; De Pascale, G.; Avai, A. Integrated computer aided design for assembly systems. CIRP Ann. Manuf. Technol. 2001, 50, 17–20. [Google Scholar] [CrossRef]
- Bonino, B.; Giannini, F.; Monti, M.; Raffaeli, R. Review on the leveraging of design information in 3D CAD models for subassemblies identification. Comput. Aided Des. Appl. 2021, 18, 1247–1264. [Google Scholar] [CrossRef]
- Boysen, N.; Bock, S. Scheduling just-in-time part supply for mixed-model assembly lines. Eur. J. Oper. Res. 2011, 211, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Boysen, N.; Fliedner, M.; Scholl, A. A classification of assembly line balancing problems. Eur. J. Oper. Res. 2007, 183, 674–693. [Google Scholar] [CrossRef]
- Boysen, N.; Fliedner, M.; Scholl, A. Level scheduling of mixed-model assembly lines under storage constraints. Int. J. Prod. Res. 2009, 47, 2669–2684. [Google Scholar] [CrossRef]
- Boysen, N.; Fliedner, M.; Scholl, A. Production planning of mixed-model assembly lines: Overview and extensions. Prod. Plan. Control 2009, 20, 455–471. [Google Scholar] [CrossRef] [Green Version]
- Boysen, N.; Fliedner, M.; Scholl, A. Sequencing mixed-model assembly lines: Survey, classification and model critique. Eur. J. Oper. Res. 2009, 192, 349–373. [Google Scholar] [CrossRef] [Green Version]
- Boysen, N.; Fliedner, M.; Scholl, A. The product rate variation problem and its relevance in real world mixed-model assembly lines. Eur. J. Oper. Res. 2009, 197, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Boysen, N.; Kiel, M.; Scholl, A. Sequencing mixed-model assembly lines to minimise the number of work overload situations. Int. J. Prod. Res. 2011, 49, 4735–4760. [Google Scholar] [CrossRef]
- Boysen, N.; Scholl, A.; Wopperer, N. Resequencing of mixed-model assembly lines: Survey and research agenda. Eur. J. Oper. Res. 2012, 216, 594–604. [Google Scholar] [CrossRef]
- Braun, R.C.; Marx, W.G. Virtual manufacturing tools in the product design environment. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers, Material Handling Division, MHD: Bethpage, NY, USA, 1999; Volume 5, pp. 171–177. [Google Scholar]
- Brody, H. CAD meets CAM. High Technol. 1987, 7, 12–15. [Google Scholar]
- Brost, R.C.; Peters, R.R. Automatic design of 3-D fixtures and assembly pallets. Int. J. Robot. Res. 1998, 17, 1243–1281. [Google Scholar] [CrossRef]
- Brough, J.E.; Schwartz, M.; Gupta, S.K.; Anand, D.K.; Kavetsky, R.; Pettersen, R. Towards the development of a virtual environment-based training system for mechanical assembly operations. Virtual Real. 2007, 11, 189–206. [Google Scholar] [CrossRef]
- Brown, R.G.; Brost, R.C. 3-D modular gripper design tool. IEEE Trans. Robot. Autom. 1999, 15, 174–180. [Google Scholar] [CrossRef]
- Bullinger, H.J.; Richter, M.; Seidel, K.A. Virtual assembly planning. Hum. Factors Ergon. Manuf. 2000, 10, 331–341. [Google Scholar] [CrossRef]
- Butt, S.W.; Miller, H.P.; Hoke, D.N.; Piazza, F. Comprehensive Application of a CAD/CAM System to Mechanical Design. RCA Engineer 1986, 31, 18–24. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0048-6574&date=1986&volume=31&issue=2&spage=18&epage=24&title=RCA%20engineer&atitle=COMPREHENSIVE%20APPLICATION%20OF%20A%20CAD%2FCAM%20SYSTEM%20TO%20MECHANICAL%20DESIGN.&aulast=Butt&aufirst=S.W.&isbn=&id=DOI:&ABBR=1986070091852&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Camillo, J. 3D Modeling and simulation software helps ford manage global assembly. Assembly 2014, 57. [Google Scholar]
- Camillo, J. Fast prototyping sweetens baker’s success. Assembly 2014, 57. [Google Scholar]
- Camillo, J. 3D modeling brings concurrent benefits to machinery builder. Assembly 2016, 59. [Google Scholar]
- Cao, Y.; Liu, T.; Yang, J.; Yan, H. A novel tolerance analysis method for three-dimensional assembly. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1818–1827. [Google Scholar] [CrossRef]
- Carlson, P.; Peters, A.; Gilbert, S.B.; Vance, J.M.; Luse, A. Virtual training: Learning transfer of assembly tasks. IEEE Trans. Vis. Comput. Graph. 2015, 21, 770–782. [Google Scholar] [CrossRef]
- Chan, S.C.F.; Soo, S.M.K.; Yu, K.M. Customer-driven collaborative product assembler for Internet-based commerce. Concurr. Eng. Res. Appl. 2006, 14, 99–109. [Google Scholar] [CrossRef]
- Chang, Y.; Aziz, E.-S.; Esche, S.K.; Chassapis, C. A framework for developing collaborative training environments for assembling. Comput. Educ. J. 2013, 4, 44–59. [Google Scholar]
- Chaudhuri, S.; Kalogerakis, E.; Guibas, L.; Koltun, V. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graph. 2011, 30, 1–10. [Google Scholar] [CrossRef]
- Chen, C.J.; Hong, J.; Wang, S.F. Automated positioning of 3D virtual scene in AR-based assembly and disassembly guiding system. Int. J. Adv. Manuf. Technol. 2015, 76, 753–764. [Google Scholar] [CrossRef]
- Chen, C.; Tian, Z.; Li, D.; Pang, L.; Wang, T.; Hong, J. Projection-based augmented reality system for assembly guidance and monitoring. Assem. Autom. 2021, 41, 10–23. [Google Scholar] [CrossRef]
- Chen, J.; Jia, X. A multimedia case-based reasoning framework for assembly sequence planning. Assem. Autom. 2019, 39, 673–684. [Google Scholar] [CrossRef]
- Chen, K.-Z.; Feng, X.-A.; Ding, L. Intelligent approaches for generating assembly drawings from 3-D computer models of mechanical products. CAD Comput. Aided Des. 2002, 34, 347–355. [Google Scholar] [CrossRef]
- Chen, R.-S.; Lu, K.-Y.; Tai, P.-H. Optimizing assembly planning through a three-stage integrated approach. Int. J. Prod. Econ. 2004, 88, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-C.; Hsu, Y.-Y.; Hsieh, L.-F.; Tai, P.-H. A systematic optimization approach for assembly sequence planning using Taguchi method, DOE, and BPNN. Expert Syst. Appl. 2010, 37, 716–726. [Google Scholar] [CrossRef]
- Chen, W.-C.; Tai, P.-H.; Deng, W.-J.; Hsieh, L.-F. A three-stage integrated approach for assembly sequence planning using neural networks. Expert Syst. Appl. 2008, 34, 1777–1786. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Kuo, C.-T.; Wu, D.-C. A novel 3D mesh compression using mesh segmentation with multiple principal plane analysis. Pattern Recognit. 2010, 43, 267–279. [Google Scholar] [CrossRef]
- Chu, C.-H.; Cheng, C.-Y.; Wu, C.-W. Applications of the Web-based collaborative visualization in distributed product development. Comput. Ind. 2006, 5, 272–282. [Google Scholar] [CrossRef]
- Chung, C.; Peng, Q. Enabled dynamic tasks planning in Web-based virtual manufacturing environments. Comput. Ind. 2008, 5, 82–95. [Google Scholar] [CrossRef]
- Chung, J.C.H.; Hwang, T.-S.; Wu, C.-T.; Jiang, Y.; Wang, J.-Y.; Bai, Y.; Zou, H. Framework for integrated mechanical design automation. CAD Comput. Aided Des. 2000, 32, 355–365. [Google Scholar] [CrossRef]
- Clark, J. 3D scanning systems for rapid prototyping. Assem. Autom. 1997, 17, 206–210. [Google Scholar] [CrossRef]
- Cormier, D.; Unnanon, K. Virtual interference detection with case goods assemblies. For. Prod. J. 2000, 50, 75–78. [Google Scholar]
- Corney, J.R.; Torres-Sanchez, C.; Jagadeesan, A.P.; Yan, X.T.; Regli, W.C.; Medellin, H. Putting the crowd to work in a knowledge-based factory. Adv. Eng. Inform. 2010, 24, 243–250. [Google Scholar] [CrossRef]
- Corrado, A.; Polini, W.; Moroni, G. Manufacturing signature and operating conditions in a variational model for tolerance analysis of rigid assemblies. Res. Eng. Des. 2017, 28, 529–544. [Google Scholar] [CrossRef]
- Corrado, A.; Polini, W. A comprehensive study of tolerance analysis methods for rigid parts with manufacturing signature and operating conditions. J. Adv. Mech. Des. Syst. Manuf. 2017, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Corrado, A.; Polini, W.; Moroni, G.; Petro, S. A variational model for 3d tolerance analysis with manufacturing signature and operating conditions. Assem. Autom. 2018, 38, 10–19. [Google Scholar] [CrossRef]
- Craig, M. Limits of tolerance. Manuf. Eng. 1996, 75, 139–143. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0956-9944&date=1996&volume=75&issue=3&spage=139&epage=143&title=Manufacturing%20Engineer&atitle=Limits%20of%20tolerance&aulast=Craig&aufirst=Mark&isbn=&id=DOI:&ABBR=1996413291764&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Davies, P.; Sivich, L. Augmented Reality and Other Visualization Technologies for Manufacturing in Boeing. SAE Int. J. Aerosp. 2011, 4, 1133–1139. [Google Scholar] [CrossRef]
- Dedoncker, D.; Spencer, A. Assembly tolerance analysis with simulation and optimization techniques. In Proceedings of the International Congress and Exposition, Detroit, MI, USA, 23–27 February 1987; SAE International: Warrendale, PA, USA, 1987. [Google Scholar] [CrossRef]
- Deitz, D. Human-integrated design. Mech. Eng. 1995, 117, 92–96. [Google Scholar]
- Easton, C.W. Shortcut to production: Three-dimensional drawings. Tool Eng. 1942, 11, 99–101. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=&date=1942&volume=11&issue=11&spage=99&epage=101&title=Tool%20Engineer&atitle=Shortcut%20to%20production:%20Three-dimensional%20drawings&aulast=Easton&aufirst=C.W.&isbn=&id=DOI:&ABBR=19420000920&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Eaton, F. Computer Modelling of a Three-Dimensional Assembly; American Society of Mechanical Engineers: New York, NY, USA, 1975; Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=conference&issn=0402-1215&date=1975&volume=&issue=75&spage=&epage=&title=American%20Society%20of%20Mechanical%20Engineers%20(Paper)&atitle=COMPUTER%20MODELING%20OF%20A%20THREE-DIMENSIONAL%20ASSEMBLY.&aulast=Eaton&aufirst=Fletcher&isbn=&id=DOI:&ABBR=1975050006653&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Emde, S.; Boysen, N. Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines. Int. J. Prod. Econ. 2012, 135, 393–402. [Google Scholar] [CrossRef]
- Emde, S.; Boysen, N.; Scholl, A. Balancing mixed-model assembly lines: A computational evaluation of objectives to smoothen workload. Int. J. Prod. Res. 2010, 48, 3173–3191. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Liu, H. Digitalized assembly process design and processing simulation of modem aircraft. J. Appl. Sci. 2013, 13, 1927–1933. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Liou, F.W. Virtual Prototyping of Mechanical Assemblies with Deformable Components. J. Manuf. Syst. 1997, 16, 211–219. [Google Scholar] [CrossRef]
- Farish, M. Sweet dreams. Engineering 2007, 248, 37–38. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0013-7782&date=2007&volume=248&issue=5&spage=37&epage=38&title=Engineering&atitle=Sweet%20dreams&aulast=Farish&aufirst=Mike&isbn=&id=DOI:&ABBR=20073110734309&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Favi, C.; Campi, F. CAD-based design for welding (DFW) method. Int. J. Interact. Des. Manuf. 2021, 15, 95–97. [Google Scholar] [CrossRef]
- Fearis, P.; McMillan, A. 3D CAD puts product designers in the driving seat. Br. Plast. Rubber 1996, 4–6. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0307-6164&date=1996&volume=&issue=&spage=4&epage=6&title=British%20Plastics%20and%20Rubber&atitle=3D%20CAD%20puts%20product%20designers%20in%20the%20driving%20seat&aulast=Fearis&aufirst=Paul&isbn=&id=DOI:&ABBR=1996413291785&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Fenster, A.; Lee, D.; Sherebrin, S.; Rankin, R.; Downey, D. Three-dimensional ultrasound imaging of the vasculature. Ultrasonics 1998, 36, 629–633. [Google Scholar] [CrossRef]
- Feyen, R.; Liu, Y.; Chaffin, D.; Jimmerson, G.; Joseph, B. New software tools improve workplace design. Ergon. Des. 1999, 7, 24–30. [Google Scholar] [CrossRef]
- Feyen, R.; Liu, Y.; Chaffin, D.; Jimmerson, G.; Joseph, B. Computer-aided ergonomics: A case study of incorporating ergonomics analyses into workplace design. Appl. Ergon. 2000, 31, 291–300. [Google Scholar] [CrossRef]
- Fiorentino, M.; Radkowski, R.; Stritzke, C.; Uva, A.E.; Monno, G. Design review of CAD assemblies using bimanual natural interface. Int. J. Interact. Des. Manuf. 2013, 7, 249–260. [Google Scholar] [CrossRef]
- Fiorentino, M.; Uva, A.E.; Gattullo, M.; Debernardis, S.; Monno, G. Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 2014, 65, 270–278. [Google Scholar] [CrossRef]
- Fliedner, M.; Boysen, N.; Scholl, A. Solving symmetric mixed-model multi-level just-in-time scheduling problems. Discret. Appl. Math. 2010, 158, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Franciosa, P.; Patalano, S.; Riviere, A. 3D tolerance specification: An approach for the analysis of the global consistency based on graphs. Int. J. Interact. Des. Manuf. 2010, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gangal, M.; Thakur, A.; Roy, D.; Kumar, P.; Kelso, B.; Marks, S. Integrated, virtual plant design and commissioning methodology using digital manufacturing and lean principles. SAE Int. J. Mater. Manuf. 2009, 2, 368–383. [Google Scholar] [CrossRef]
- Garbaya, S.; Zaldivar-Colado, U. The affect of contact force sensations on user performance in virtual assembly tasks. Virtual Real. 2007, 11, 287–299. [Google Scholar] [CrossRef]
- Geng, J.; Tian, X.; Bai, M.; Jia, X.; Liu, X. A design method for three-dimensional maintenance, repair and overhaul job card of complex products. Comput. Ind. 2014, 65, 200–209. [Google Scholar] [CrossRef]
- Geng, J.; Zhang, S.; Yang, B. A publishing method of lightweight three-dimensional assembly instruction for complex products. J. Comput. Inf. Sci. Eng. 2015, 15, 031004. [Google Scholar] [CrossRef]
- Gilbert, S.B. Perceived realism of virtual environments depends on authenticity. Presence Teleoperators Virtual Environ. 2016, 25, 322–324. [Google Scholar] [CrossRef]
- Gimeno, J.; Morillo, P.; Orduna, J.M.; Fernandez, M. A new AR authoring tool using depth maps for industrial procedures. Comput. Ind. 2013, 64, 1263–1271. [Google Scholar] [CrossRef]
- Golle, U.; Boysen, N.; Rothlauf, F. Analysis and design of sequencing rules for car sequencing. Eur. J. Oper. Res. 2010, 206, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Golle, U.; Rothlauf, F.; Boysen, N. Car sequencing versus mixed-model sequencing: A computational study. Eur. J. Oper. Res. 2014, 237, 50–61. [Google Scholar] [CrossRef]
- Gordon, D.; Reynolds, R.A. Image Space Shading of 3-Dimensional Objects. Comput. Vis. Graph. Image Processing 1985, 29, 361–376. [Google Scholar] [CrossRef]
- Gorjup, G.; Gao, G.; Dwivedi, A.; Liarokapis, M. A Flexible Robotic Assembly System Combining CAD Based Localization, Compliance Control, and a Multi-Modal Gripper. IEEE Robot. Autom. Lett. 2021, 6, 8639–8646. [Google Scholar] [CrossRef]
- Grimsdale, R.L.; Chang, C.W. Layout design language: A technique for generating layout plans. Comput. Graph. Forum 1996, 15, 97–106. [Google Scholar] [CrossRef]
- Guo, D.; Zhong, R.Y.; Lin, P.; Lyu, Z.; Rong, Y.; Huang, G.Q. Digital twin-enabled Graduation Intelligent Manufacturing System for fixed-position assembly islands. Robot. Comput. Integr. Manuf. 2020, 63, 101917. [Google Scholar] [CrossRef]
- Guo, J.; Yan, D.-M.; Li, E.; Dong, W.; Wonka, P.; Zhang, X. Illustrating the disassembly of 3D models. Comput. Graph. 2013, 37, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, B.; Liu, Z.; Hong, J.; Wu, X. Integration of geometric variation and part deformation into variation propagation of 3-D assemblies. Int. J. Prod. Res. 2016, 54, 5708–5721. [Google Scholar] [CrossRef]
- Ha, J.-S.; Choi, S.-H.; Shin, S.-Y.; Chwa, K.-Y.; Chang, S.-Y.; Woo, T.C. On deciding 3D part disassemblability and surface machinability. IIE Trans. Inst. Ind. Eng. 1996, 28, 847–854. [Google Scholar] [CrossRef]
- Han, Z.; Li, Y.; Yang, M.; Yuan, Q.; Ba, L.; Xu, E. Digital twin-driven 3D visualization monitoring and traceability system for general parts in continuous casting machine. J. Adv. Mech. Des. Syst. Manuf. 2020, 14. [Google Scholar] [CrossRef]
- Hanh, L.D.; Hieu, K.T.G. 3D matching by combining CAD model and computer vision for autonomous bin picking. Int. J. Interact. Des. Manuf. 2021, 15, 239–247. [Google Scholar] [CrossRef]
- He, H.; Wu, Y.; Pan, H.; Zheng, D. Visualized interactive manipulation in virtual assembly. J. Comput. Inf. Syst. 2007, 3, 387–392. [Google Scholar]
- Hirata, Y.; Mizuguchi, T.; Sato, M.; Kawarada, H. Virtual work space for assembly. Syst. Comput. Jpn. 1994, 25, 92–100. [Google Scholar] [CrossRef]
- Hoole, S.R.H. Memory Economic 3-D Finite Element Mesh Generator for Small Computers. In Proceedings of the COMPCON 84 Fall: The Small Computer (R)Evolution, Arlington, VA, USA, 16–20 September 1984; IEEE: New York, NY, USA, 1984; pp. 111–115. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=conference&issn=&date=1984&volume=&issue=&spage=111&epage=115&title=Proceedings%20-%20IEEE%20Computer%20Society%20International%20Conference&atitle=MEMORY%20ECONOMIC%203-D%20FINITE%20ELEMENT%20MESH%20GENERATOR%20FOR%20SMALL%20COMPUTERS.&aulast=Hoole&aufirst=S.R.H.&isbn=9780818605468&id=DOI:&ABBR=1985010012307&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Hoover, M.; Miller, J.; Gilbert, S.; Winer, E. Measuring the performance impact of using the microsoft HoloLens 1 to provide guided assembly work instructions. J. Comput. Inf. Sci. Eng. 2020, 20, 061001. [Google Scholar] [CrossRef]
- Hoskins, E.M. Descriptive Databases in Some Design Manufacturing Environments. Comput. Aided Des. 1979, 11, 151–157. [Google Scholar] [CrossRef]
- Hoskins, E.M. Design Development and Description Using 3D Box Geometries. CAD Comput. Aided Des. 1979, 11, 329–336. [Google Scholar] [CrossRef]
- Hou, L.; Wang, X. A study on the benefits of augmented reality in retaining working memory in assembly tasks: A focus on differences in gender. Autom. Constr. 2013, 32, 38–45. [Google Scholar] [CrossRef]
- Hou, W.; Yan, Y.; Duan, W.; Sun, H. Research on three dimensional computer assistance assembly process design system. Wuhan Ligong Daxue Xuebao J. Wuhan Univ. Technol. 2006, 28, 1088–1092. [Google Scholar]
- Hsu, Y.-Y.; Tai, P.-H.; Wang, M.-W.; Chen, W.-C. A knowledge-based engineering system for assembly sequence planning. Int. J. Adv. Manuf. Technol. 2011, 55, 763–782. [Google Scholar] [CrossRef]
- Huang, S.-J.; Lin, Y.-W. Prototype system of three-dimensional non-contact measurement. Int. J. Adv. Manuf. Technol. 1996, 11, 336–342. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Q.; Wang, M.; Ye, H. Virtual training system for hydraulic pump cart based on virtual reality. Telkomnika Indones. J. Electr. Eng. 2013, 11, 4282–4290. [Google Scholar] [CrossRef]
- Hudspeth, M. Modeling smart assemblies. Mach. Des. 2005, 77, 82–84. Available online: https://www.engineeringvillage.com/search/doc/detailed.url?SEARCHID=91cf80b291b647ff804a17733fc5ed90&DOCINDEX=1&database=1&pageType=quickSearch&searchtype=Quick&dedupResultCount=null&format=quickSearchDetailedFormat&usageOrigin=recordpage&usageZone=abstracttab&toolsinScopus=Noload (accessed on 20 December 2021).
- Hudspeth, M. Software keeps focus on design, not CAD. Mach. Des. 2006, 78, 120–123. Available online: https://web.s.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=1&sid=56473b0c-4af5-472d-82a1-66883272f526%40redis (accessed on 20 December 2021).
- Jaiswal, P.; Huang, J.; Rai, R. Assembly-based conceptual 3D modeling with unlabeled components using probabilistic factor graph. CAD Comput. Aided Des. 2016, 74, 45–54. [Google Scholar] [CrossRef]
- Jayaram, S.; Connacher, H.I.; Lyons, K.W. Virtual assembly using virtual reality techniques. CAD Comput. Aided Des. 1997, 29, 575–584. [Google Scholar] [CrossRef]
- Jeang, A. Computer-aided tolerance synthesis with statistical method and optimization techniques. Qual. Reliab. Eng. Int. 2001, 17, 131–139. [Google Scholar] [CrossRef]
- Jezernik, A.; Hren, G. A solution to integrate computer-aided design (CAD) and virtual reality (VR) databases in design and manufacturing processes. Int. J. Adv. Manuf. Technol. 2003, 22, 768–774. [Google Scholar] [CrossRef]
- Ji, W.; Yin, S.; Wang, L. A Virtual Training Based Programming-Free Automatic Assembly Approach for Future Industry. IEEE Access 2018, 6, 43865–43873. [Google Scholar] [CrossRef]
- Jia, D.; Bhatti, A.; Nahavandi, S. The impact of self-efficacy and perceived system efficacy on effectiveness of virtual training systems. Behav. Inf. Technol. 2014, 33, 16–35. [Google Scholar] [CrossRef]
- Jin, S.; Cai, W.; Lai, X.; Lin, Z. Design automation and optimization of assembly sequences for complex mechanical systems. Int. J. Adv. Manuf. Technol. 2010, 48, 1045–1059. [Google Scholar] [CrossRef]
- Jolly, S.D. Design of large systems for packaging and launch on multiple, heterogeneous vehicles. J. Aerosp. Eng. 1996, 9, 45–51. [Google Scholar] [CrossRef]
- Jones, R.E.; Calton, T.L.; Peters, R.R. Automated assembly and fixture planning at Sandia National Laboratories. Assem. Autom. 1997, 17, 201–205. [Google Scholar] [CrossRef]
- Kang, X.; Peng, Q. Data integration from product design to assembly planning in a collaborative environment. Int. J. Manuf. Res. 2010, 5, 120–137. [Google Scholar] [CrossRef]
- Kang, X.; Peng, Q. Integration of CAD models with product assembly planning in a Web-based 3D visualized environment. Int. J. Interact. Des. Manuf. 2014, 8, 121–131. [Google Scholar] [CrossRef]
- Kanou, Y. Virtual reality training system. Rev. Automot. Eng. 2004, 25, 265–270. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=1349-4724&date=2004&volume=25&issue=3&spage=265&epage=270&title=Review%20of%20Automotive%20Engineering&atitle=Virtual%20reality%20training%20system&aulast=Kanou&aufirst=Yutaka&isbn=&id=DOI:&ABBR=2005469482992&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Kaplan, G. Auto manufacture digitizes in depth. IEEE Spectr. 1997, 34, 62–69. [Google Scholar] [CrossRef]
- Kasik, D.J.; Dill, J.C.; Johnson, C.; Kasik, D.; Whitton, M.C. Interactive Graphics in Industry: The Early Days. IEEE Comput. Graph. Appl. 2020, 40, 89–99. [Google Scholar] [CrossRef]
- Katayama, K.; Hirashima, T. A retrieval method for 3D CAD assembly models using 3D radon transform and spherical harmonic transform. IEICE Trans. Inf. Syst. 2020, E103D, 992–1001. [Google Scholar] [CrossRef]
- Katayama, K.; Sato, T. Matching 3D CAD assembly models with different layouts of components using projections. IEICE Trans. Inf. Syst. 2015, E98D, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Katayama, K.; Sato, W. Subassembly retrieval of 3D CAD assembly models with different layout of components based on sinogram. IEICE Trans. Inf. Syst. 2019, E102D, 777–787. [Google Scholar] [CrossRef]
- Kehoe, G.M. Benefits of Integrated Manufacturing Systems for Vehicle Operations. In Proceedings of the PEMEC: The Factory Efficiency Show and Conference, Birmingham, UK, 27–30 September 1986; pp. 1.1.1–1.1.8. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=conference&issn=&date=1986&volume=&issue=&spage=1&epage=1&title=PEMEC:%20The%20Factory%20Efficiency%20Show%20and%20Conference.&atitle=BENEFITS%20OF%20INTEGRATED%20MANUFACTURING%20SYSTEMS%20FOR%20VEHICLE%20OPERATIONS.&aulast=Kehoe&aufirst=Gerard%20Michael&isbn=&id=DOI:&ABBR=1987060097933&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Khosla, P.K.; Mattikali, R. Determining the assembly sequence from a 3-D model. J. Mech. Work. Technol. 1989, 20, 153–162. [Google Scholar] [CrossRef]
- Kieu, D.; Luecke, G.R.; Gilbert, S.; Hunt, T.; Gilmore, B.; Meusel, C.; Kelly, N. Listening to the voice of the customer using an immersive combine simulator: Innovative techniques for product development. Int. J. Heavy Veh. Syst. 2020, 27, 303–324. [Google Scholar] [CrossRef]
- Kim, H.; Cha, M.; Mun, D. Shape distribution-based approach to comparing 3D CAD assembly models. J. Mech. Sci. Technol. 2017, 31, 5627–5638. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.S.; Choi, K.; Lee, J.Y. Solving 3D geometric constraints for assembly modelling. Int. J. Adv. Manuf. Technol. 2000, 16, 843–849. [Google Scholar] [CrossRef]
- Kim, J.J.; Rossignac, J.R. Screw motions for the animation and analysis of mechanical assemblies. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2001, 44, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lee, J.Y. Touch and hand gesture-based interactions for directly manipulating 3D virtual objects in mobile augmented reality. Multimed. Tools Appl. 2016, 75, 16529–16550. [Google Scholar] [CrossRef]
- Klindworth, H.; Otto, C.; Scholl, A. On a learning precedence graph concept for the automotive industry. Eur. J. Oper. Res. 2012, 217, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Kojima, S.; Hashimoto, H. 3-D CAD data oriented self-planning of assembly robot cell systems. IEEE ASME Int. Conf. Adv. Intell. Mechatron. AIM 1999, 484–489. [Google Scholar] [CrossRef]
- Kostic, Z.; Radakovic, D.; Cvetkovic, D.; Jevremovic, A.; Markovic, D.; Ranisavljev, M.K. Web-based laboratory for collaborative and concurrent CAD designing, assembling, and practical exercising on distance. Teh. Vjesn. 2015, 22, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.; Kim, B.C.; Mun, D.; Han, S. Simplification of feature-based 3D CAD assembly data of ship and offshore equipment using quantitative evaluation metrics. CAD Comput. Aided Des. 2015, 59, 140–154. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, B.C.; Mun, D.; Han, S. User-assisted integrated method for controlling level of detail of large-scale B-rep assembly models. Int. J. Comput. Integr. Manuf. 2018, 31, 881–892. [Google Scholar] [CrossRef]
- Kwon, S.; Mun, D.; Kim, B.C.; Han, S. Feature shape complexity: A new criterion for the simplification of feature-based 3D CAD models. Int. J. Adv. Manuf. Technol. 2017, 88, 1831–1843. [Google Scholar] [CrossRef]
- Ladeveze, N.; Fourquet, J.-Y.; Puel, B. Interactive path planning for haptic assistance in assembly tasks. Comput. Graph. 2010, 34, 17–25. [Google Scholar] [CrossRef]
- Lambiase, F.; Lambiase, A. An integrated approach to the analysis of automotive assembly activities using digital manufacturing tools. Int. J. Internet Manuf. Serv. 2008, 1, 160–175. [Google Scholar] [CrossRef]
- Latombe, J.-C.; Wilson, R.H.; Cazals, F. Assembly sequencing with toleranced parts. CAD Comput. Aided Des. 1997, 29, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Leicht, R.; Messner, J. Moving toward an ‘intelligent’ shop modeling process. Electron. J. Inf. Technol. Constr. 2008, 13, 286–302. [Google Scholar]
- Li, B.; Roy, U. Relative positioning of toleranced polyhedral parts in an assembly. IIE Trans. Inst. Ind. Eng. 2001, 33, 323–336. [Google Scholar] [CrossRef]
- Li, C.; Hou, W. Analysis of Assembly Tolerance Based on Assembly Constraint Information Model. Math. Probl. Eng. 2021, 2021, 7438966. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Zhou, X.; Li, P.; Yu, Z. A new computer-aided tolerance analysis and optimization framework for assembling processes using DP-SDT theory. Int. J. Adv. Manuf. Technol. 2016, 86, 1299–1310. [Google Scholar] [CrossRef]
- Li, X.; He, B.; Zhou, Y.; Li, G. Multisource Model-Driven Digital Twin System of Robotic Assembly. IEEE Syst. J. 2021, 15, 114–123. [Google Scholar] [CrossRef]
- Liang, J.S. A web-based 3D virtual technologies for developing product information framework. Int. J. Adv. Manuf. Technol. 2007, 34, 617–630. [Google Scholar] [CrossRef]
- Liang, J.S.; Wei, P.W. Conceptual design system in a Web-based virtual interactive environment for product development. Int. J. Adv. Manuf. Technol. 2006, 30, 1010–1020. [Google Scholar] [CrossRef]
- Liang, J.; He, H.; Wu, Y. Bare-Hand Depth Perception Used in Augmented Reality Assembly Supporting. IEEE Access 2020, 8, 1534–1541. [Google Scholar] [CrossRef]
- Lin, Y.J.; Uhler, A. Shortening the design for assembly process time for torque converter development. Assem. Autom. 2002, 22, 248–259. [Google Scholar] [CrossRef]
- Liu, J.; Jin, J.; Shi, J. State space modeling for 3-D variation propagation in rigid-body multistage assembly processes. IEEE Trans. Autom. Sci. Eng. 2010, 7, 274–290. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C. Pipe-assembly approach for aero-engines by modified particle swarm optimization. Assem. Autom. 2010, 30, 365–377. [Google Scholar] [CrossRef]
- Lupinetti, K.; Giannini, F.; Monti, M.; Pernot, J.-P. Content-based multi-criteria similarity assessment of CAD assembly models. Comput. Ind. 2019, 112, 103111. [Google Scholar] [CrossRef] [Green Version]
- Lynch, K. 3D tolerance analysis in PC manufacture. Assem. Autom. 2001, 21, 213–214. [Google Scholar] [CrossRef]
- Mall, J.; Staudacher, S. Evaluation of assemblability during aero engine preliminary design. CEAS Aeronaut. J. 2018, 9, 147–156. [Google Scholar] [CrossRef]
- Marconi, M.; Germani, M.; Favi, C.; Raffaeli, R. CAD feature recognition as a means to prevent ergonomics issues during manual assembly tasks. Comput. Aided Des. Appl. 2018, 15, 734–746. [Google Scholar] [CrossRef]
- Marino, E.; Barbieri, L.; Colacino, B.; Fleri, A.K.; Bruno, F. An Augmented Reality inspection tool to support workers in Industry 4.0 environments. Comput. Ind. 2021, 127, 103412. [Google Scholar] [CrossRef]
- Masehian, E.; Ghandi, S. ASPPR: A New Assembly Sequence and Path Planner/Replanner for Monotone and Nonmonotone Assembly Planning. CAD Comput. Aided Des. 2020, 123, 102828. [Google Scholar] [CrossRef]
- McClelland, M.J. Engine Design and Analysis by Computer Techniques. In Proceedings of the Autotech ‘85—International Automotive Technology Exhibition and Congress. Alternator Technology; Analysis of Data for Automotive Development; Automated Assembly and Fastening Methods; Automatic Inspection and Condition Monitoring, Automotive Brake, Birmingham, UK, 1985; Institute of Mechanical Engineers, Automobile Division: London, UK, 1985. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=conference&issn=&date=1985&volume=&issue=&spage=&epage=&title=Autotech%20%2785%20-%20International%20Automotive%20Technology%20Exhibition%20and%20Congress.%20Alternator%20Technology;%20Analysis%20of%20Data%20for%20Automotive%20Development;%20Automated%20Assembly%20and%20Fastening%20Methods;%20Automatic%20Inspection%20and%20Condition%20Monitoring;%20Automotive%20Brake&atitle=ENGINE%20DESIGN%20AND%20ANALYSIS%20BY%20COMPUTER%20TECHNIQUES.&aulast=McClelland&aufirst=M.J.&isbn=&id=DOI:&ABBR=1988120174167&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- McEwan, S.; Sims, P. Computer Graphics in Practice. BKSTS J. 1984, 66, 330–331. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0305-6996&date=1984&volume=66&issue=8&spage=330&epage=331&title=BKSTS%20journal&atitle=COMPUTER%20GRAPHICS%20IN%20PRACTICE.&aulast=McEwan&aufirst=Stewart&isbn=&id=DOI:&ABBR=1985080107276&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Meusel, C.; Grimm, C.; Starkey, J.; Gilbert, S.B.; Gilmore, B.; Luecke, G.; Kieu, D.; Hunt, T. The importance of operator knowledge in evaluating virtual reality cue fidelity. Comput. Electron. Agric. 2019, 160, 179–187. [Google Scholar] [CrossRef]
- Mills, R. Mechanical CAD on a roll. Comput. Aided Eng. 1996, 15, 5. [Google Scholar]
- Mills, R. The advancing state of solid modeling. Comput. Aided Eng. 1998, 17, 6. [Google Scholar]
- Mitra, N.J.; Yang, Y.-L.; Yan, D.-M.; Li, W.; Agrawala, M. Illustrating how mechanical assemblies work. ACM Trans. Graph. 2010, 29, 58. [Google Scholar] [CrossRef]
- Mitra, N.J.; Yang, Y.-L.; Yan, D.-M.; Li, W.; Agrawala, M. Illustrating how mechanical assemblies work. Commun. ACM 2013, 56, 106–114. [Google Scholar] [CrossRef]
- Molineros, J.; Sharma, R. Real-time tracking of multiple objects using fiducials for augmented reality. Real Time Imaging 2001, 7, 495–506. [Google Scholar] [CrossRef]
- Murali, G.B.; Deepak, B.B.V.L.; Raju, M.V.A.; Biswal, B.B. Optimal robotic assembly sequence planning using stability graph through stable assembly subset identification. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 5410–5430. [Google Scholar] [CrossRef]
- Nassar, K.; Thabet, W.; Beliveau, Y. Building assembly detailing using constraint-based modeling. Autom. Constr. 2003, 12, 365–379. [Google Scholar] [CrossRef]
- Nayar, N. Workplace ergonomics and simulation. Assem. Autom. 1996, 16, 25–28. [Google Scholar] [CrossRef]
- Neely, M.J. Digital prototyping for golf car development. SAE Int. J. Mater. Manuf. 2009, 1, 433–440. [Google Scholar] [CrossRef]
- Neumann, F.; Atten, M. Novel approach for shape-based similarity search enabled by 3D PDF. Int. J. Comput. Appl. Technol. 2018, 58, 165–173. [Google Scholar] [CrossRef]
- Newton, M. Real-Time 3-D Graphics for Microcomputers. Byte 1984, 9, 251–286. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0360-5280&date=1984&volume=9&issue=10&spage=17&epage=17&title=Byte&atitle=REAL-TIME%203-D%20GRAPHICS%20FOR%20MICROCOMPUTERS.&aulast=Newton&aufirst=Marcus&isbn=&id=DOI:&ABBR=1984120218487&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Ng, L.X.; Wang, Z.B.; Ong, S.K.; Nee, A.Y.C. Integrated product design and assembly planning in an augmented reality environment. Assem. Autom. 2013, 33, 345–359. [Google Scholar] [CrossRef]
- Nilsson, D. Taking flight in 3D [aerospace design]. Manufacturing 2007, 86, 24–26. [Google Scholar] [CrossRef]
- Ong, S.K.; Wang, Z.B. Augmented assembly technologies based on 3D bare-hand interaction. CIRP Ann. Manuf. Technol. 2011, 60, 1–4. [Google Scholar] [CrossRef]
- Oren, M.; Carlson, P.; Gilbert, S.; Vance, J.M. Puzzle assembly training: Real world vs. virtual environment. In Proceedings of the 19th IEEE Virtual Reality Conference, VR 2012, Costa Mesa, CA, USA, 4–8 March 2012; IEEE Computer Society: Washington, DC, USA, 2012; pp. 27–30. [Google Scholar] [CrossRef] [Green Version]
- Otto, A.; Otto, C. How to design effective priority rules: Example of simple assembly line balancing. Comput. Ind. Eng. 2014, 69, 43–52. [Google Scholar] [CrossRef]
- Ouverson, K.M.; Gilbert, S.B. A Composite Framework of Co-located Asymmetric Virtual Reality. Proc. ACM Hum. Comput. Interact. 2021, 5, 1–20. [Google Scholar] [CrossRef]
- Palmer, D. Pump maker cuts lead times to production and assembly. Manuf. Comput. Solut. 2002, 8, 48–49. [Google Scholar]
- Pang, Y.; Nee, A.Y.C.; Ong, S.K.; Yuan, M.; Youcef-Toumi, K. Assembly feature design in an augmented reality environment. Assem. Autom. 2006, 26, 34–43. [Google Scholar] [CrossRef]
- Park, H.G. Framework of design interface module in ERP. In Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP’99) (Cat. No.99TH8470), Porto, Portugal , 24 July 1999; pp. 112–116. [Google Scholar]
- Park, J.C.; Lee, K. Computer aided design of a mold cavity with proper rigging system for casting processes. Part 2. J. Eng. Ind. 1991, 113, 67–74. [Google Scholar] [CrossRef]
- Patton, W.G. Plastic prototypes, perspective drawings speed new product production. Iron Age 1952, 170, 155–158. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=&date=1952&volume=170&issue=12&spage=155&epage=158&title=Iron%20Age&atitle=Plastic%20prototypes,%20perspective%20drawings%20speed%20new%20product%20production&aulast=Patton&aufirst=W.G.&isbn=&id=DOI:&ABBR=19520012977&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Peng, G.; Wang, G.; Liu, W.; Yu, H. A desktop virtual reality-based interactive modular fixture configuration design system. CAD Comput. Aided Des. 2010, 42, 432–444. [Google Scholar] [CrossRef]
- Peng, H.; Wang, B. A statistical approach for three-dimensional tolerance redesign of mechanical assemblies. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 2132–2144. [Google Scholar] [CrossRef]
- Pichler, G. 3D Laser scanning—Application in plant engineering and construction. Aufbereit. Tech. Miner. Processing 2015, 56, 82–87. [Google Scholar]
- Polini, W. Concurrent tolerance design. Res. Eng. Des. 2016, 27, 23–36. [Google Scholar] [CrossRef]
- Polini, W.; Corrado, A. Geometric tolerance analysis through Jacobian model for rigid assemblies with translational deviations. Assem. Autom. 2016, 36, 72–79. [Google Scholar] [CrossRef]
- Pontonnier, C.; Dumont, G.; Samani, A.; Madeleine, P.; Badawi, M. Designing and evaluating a workstation in real and virtual environment: Toward virtual reality based ergonomic design sessions. J. Multimodal User Interfaces 2014, 8, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Qiao, H.; Wu, Q.; Yu, S.; Du, J.; Xiang, Y. A 3D assembly model retrieval method based on assembly information. Assem. Autom. 2019, 39, 556–565. [Google Scholar] [CrossRef]
- Qin, S.F.; Harrison, R.; West, A.A.; Wright, D.K. Development of a novel 3D simulation modelling system for distributed manufacturing. Comput. Ind. 2004, 54, 69–81. [Google Scholar] [CrossRef]
- Qin, S.; Wright, D.K.; Harrison, R.; West, A.A. Drag-and-drop simulation assembly modelling over the Internet. Int. J. Agil. Manuf. 2005, 8, 43–56. [Google Scholar]
- Qin, Y.; Bloomquist, E.; Bulbul, T.; Gabbard, J.; Tanous, K. Impact of information display on worker performance for wood frame wall assembly using AR HMD under different task conditions. Adv. Eng. Inform. 2021, 50, 101423. [Google Scholar] [CrossRef]
- Quadros, W.R.; Vyas, V.; Brewer, M.; Owen, S.J.; Shimada, K. A computational framework for automating generation of sizing function in assembly meshing via disconnected skeletons. Eng. Comput. 2010, 26, 231–247. [Google Scholar] [CrossRef]
- Ragon, D.; Spencer, A. John deere assembly variation of crawler track chain/shoe assembly. In Proceedings of the International Off-Highway and Powerplant Congress and Exposition, Milwaukee, WI, USA, 12–15 September 1988; SAE International: Warrendale, PA, USA, 1988. [Google Scholar] [CrossRef]
- Raju Bahubalendruni, M.; Biswal, B. Liaison concatenation A method to obtain feasible assembly sequences from 3D-CAD product. Sadhana Acad. Proc. Eng. Sci. 2016, 41, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Ramos Barbero, B.; Perez Azcona, J.; Gonzalez Perez, J. A tolerance analysis and optimization methodology. The combined use of 3D CAT, a dimensional hierarchization matrix and an optimization algorithm. Int. J. Adv. Manuf. Technol. 2015, 81, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Reffat, R.M.; Khaeruzzaman, Y.; El-Sebakhy, E.; Raharja, I.P. Augmentation of real-time 3D virtual environments for architectural design at the conceptual stage. Electron. J. Inf. Technol. Constr. 2008, 13, 553–563. [Google Scholar]
- Riitahuhta, A.; Rautakorpi, E.; Viitanen, Y. Three-dimensional measurement method (CADMM) for the realization of process plants. Meas. J. Int. Meas. Confed. 1994, 13, 213–223. [Google Scholar] [CrossRef]
- Rivers, A.; Durand, F.; Igarashi, T. 3D modeling with silhouettes. ACM Trans. Graph. 2010, 29, 1–8. [Google Scholar] [CrossRef]
- Riviere, G.; Couture, N.; Reuter, P. The activation of modality in virtual objects assembly. J. Multimodal User Interfaces 2010, 3, 189–196. [Google Scholar] [CrossRef]
- Roberts, D.I. Detailing a New Diesel Engine Design Using a Three-Dimensional Interactive Graphic System; American Society of Mechanical Engineers: USA, 1976; Volume 76, Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=conference&issn=0402-1215&date=1976&volume=&issue=76&spage=&epage=&title=American%20Society%20of%20Mechanical%20Engineers%20(Paper)&atitle=DETAILING%20A%20NEW%20DIESEL%20ENGINE%20DESIGN%20USING%20A%20THREE-DIMENSIONAL%20INTERACTIVE%20GRAPHIC%20SYSTEM.&aulast=Roberts&aufirst=D.I.&isbn=&id=DOI:&ABBR=1977040007246&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Roberts, D.I. 3-D Interactive Graphics—Assist Diesel Engine Design. Mech. Eng. 1978, 10, 40–45. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0025-6501&date=1978&volume=10&issue=3&spage=40&epage=45&title=Mechanical%20Engineering&atitle=3-D%20INTERACTIVE%20GRAPHICS%20-%20ASSIST%20DIESEL%20ENGINE%20DESIGN.&aulast=Roberts&aufirst=D.I.&isbn=&id=DOI:&ABBR=1978060003288&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Robinson, P. Making CAD files usable to down stream teams. Mach. Des. 2005, 77, 164. [Google Scholar]
- Rossignac, J.R.; Kim, J.J. Computing and visualizing pose-interpolating 3D motions. CAD Comput. Aided Des. 2001, 33, 279–291. [Google Scholar] [CrossRef]
- Rowe, J. SolidWorks 2004—Strong CAD program offers features that help you switch to 3D. Cadalyst 2004, 21, 24–27. [Google Scholar]
- Rowe, J. Solidworks 2006: Analyzing and validating mechanical designs on the fly. Cadalyst 2005, 22, 24–28. [Google Scholar]
- Ruffle, S. Does your architectural CAD system understand you? In Knowledge Engineering and Computer Modelling in CAD, Proceedings of CAD86: Seventh International Conference on the Computer as a Design Tool, London, UK, 2–5 September 1986; Butterworth & Co Ltd.: Cambridge, UK, 1986; p. 448. [Google Scholar] [CrossRef]
- Ryken, M.J.; Vance, J.M. Applying virtual reality techniques to the interactive stress analysis of a tractor lift arm. Finite Elem. Anal. Des. 1999, 35, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Samper, S.; Adragna, P.-A.; Favreliere, H.; Pillet, M. Modeling of 2D and 3D assemblies taking into account form errors of plane surfaces. J. Comput. Inf. Sci. Eng. 2009, 9, 1–12. [Google Scholar] [CrossRef]
- Schmitz, B. Great expectations: The future of virtual design. Comput. Aided Eng. 1995, 14, 4. Available online: https://www.engineeringvillage.com/search/doc/detailed.url?SEARCHID=6ea5bcf4983d42008dcf20f086951bb2&DOCINDEX=1&database=1&pageType=quickSearch&searchtype=Quick&dedupResultCount=null&format=quickSearchDetailedFormat&usageOrigin=recordpage&usageZone=abstracttab&toolsinScopus=Noload (accessed on 20 December 2021).
- Scholl, A.; Fliedner, M.; Boysen, N. Absalom: Balancing assembly lines with assignment restrictions. Eur. J. Oper. Res. 2010, 200, 688–701. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.; Gupta, S.K.; Brough, J.E.; Anand, D.K.; Kavetsky, R. Using virtual demonstrations for creating multi-media training instructions. Comput. Aided Des. Appl. 2007, 4, 99–108. [Google Scholar] [CrossRef]
- Scott, R.T.; Gabriele, G.A. Computer aided tolerance analysis of parts and assemblies. In Proceedings of the ASME 1989 Design Technical Conferences, DETC 1989, Montreal, QC, Canada, 17–21 September 1989; American Society of Mechanical Engineers (ASME): New York, NY, USA, 1989; Volume 1, pp. 29–36. [Google Scholar] [CrossRef]
- Senderska, K.; Mare, A.; Zajac, J. Hardware of manual assembly workstation online analysis. UPB Sci. Bull. Ser. D Mech. Eng. 2012, 74, 103–110. [Google Scholar]
- Shao, T.; Li, D.; Rong, Y.; Zheng, C.; Zhou, K. Dynamic furniture modeling through assembly instructions. ACM Trans. Graph. 2016, 35, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.M.; Haas, C.; Walbridge, S. Using termination points and 3D visualization for dimensional control in prefabrication. Autom. Constr. 2022, 133, 103998. [Google Scholar] [CrossRef]
- Shelley, T. 3D CAD integrates with manufacturing. Eureka 2006, 26, 21. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0261-2097&date=2006&volume=26&issue=3&spage=21&epage=21&title=Eureka&atitle=3D%20CAD%20integrates%20with%20manufacturing&aulast=Shelley&aufirst=Tom&isbn=&id=DOI:&ABBR=2006139784901&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Shelley, T. Learning for the future. Eureka 2006, 26, 35. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0261-2097&date=2006&volume=26&issue=12&spage=35&epage=35&title=Eureka&atitle=Learning%20for%20the%20future&aulast=Shelley&aufirst=Tom&isbn=&id=DOI:&ABBR=20070410385776&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Sheng, B.; Yin, X.; Zhang, C.; Zhao, F.; Fang, Z.; Xiao, Z. A rapid virtual assembly approach for 3D models of production line equipment based on the smart recognition of assembly features. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1257–1270. [Google Scholar] [CrossRef]
- Sheng, B.; Zhao, F.; Zhang, C.; Yin, X.; Shu, Y. Parameterized representation and solution method of the lightweight 3D model virtual assembly constraint. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1167–1187. [Google Scholar] [CrossRef]
- Shesler, A.T.; Wagner, S.G. Three-Dimensional Core Model for Personal Computers. In Simulators IV, Proceedings of the SCS Simulators Conference, 1987, Orlando, FL, USA, 6–9 April 1987; Society for Computer Simulation: Vista, CA, USA; Volume 18, pp. 115–122. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=conference&issn=0735-9276&date=1987&volume=18&issue=4&spage=115&epage=122&title=Simulation%20Series&atitle=THREE-DIMENSIONAL%20CORE%20MODEL%20FOR%20PERSONAL%20COMPUTERS.&aulast=Shesler&aufirst=Albert%20T.&isbn=9780911801156&id=DOI:&ABBR=1988060091130&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Shidpour, H.; Shahrokhi, M.; Bernard, A. A multi-objective programming approach, integrated into the TOPSIS method, in order to optimize product design, in three-dimensional concurrent engineering. Comput. Ind. Eng. 2013, 64, 875–885. [Google Scholar] [CrossRef]
- Sierla, S.; Kyrki, V.; Aarnio, P.; Vyatkin, V. Automatic assembly planning based on digital product descriptions. Comput. Ind. 2018, 97, 34–46. [Google Scholar] [CrossRef]
- Sinha, S.; Franciosa, P.; Ceglarek, D. Object Shape Error Response Using Bayesian 3-D Convolutional Neural Networks for Assembly Systems with Compliant Parts. IEEE Trans. Ind. Inform. 2021, 17, 6676–6686. [Google Scholar] [CrossRef]
- Sitharam, M.; Oung, J.-J.; Zhou, Y.; Arbree, A. Geometric constraints within feature hierarchies. CAD Comput. Aided Des. 2006, 38, 22–38. [Google Scholar] [CrossRef] [Green Version]
- Sittas, E. 3D design reference framework. CAD Comput. Aided Des. 1991, 23, 380–384. [Google Scholar] [CrossRef]
- Smith, G.E. Let web pages show assembly instructions and more. Mach. Des. 2001, 73, 124–128. [Google Scholar]
- Srikanth, K.; Liou, F.W.; Balakrishnan, S.N. Integrated approach for assembly tolerance analysis. Int. J. Prod. Res. 2001, 39, 1517–1535. [Google Scholar] [CrossRef]
- Stefanides, E.J. Molded, 3-D interconnect generates 50% cost reduction. Des. News 1990, 46, 226–227. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0011-9407&date=1990&volume=46&issue=3&spage=226&epage=227&title=Design%20News%20(Boston)&atitle=Molded,%203-D%20interconnect%20generates%2050%25%20cost%20reduction&aulast=Stefanides&aufirst=E.J.&isbn=&id=DOI:&ABBR=1990120187389&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Studt, T. CAD systems get even smarter, speed up product development. Res. Dev. 1995, 37, 25–26. Available online: https://web.s.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=1&sid=a6242309-ba9d-40ef-84b3-b9a7f9a05c2e%40redis (accessed on 20 December 2021).
- Su, Q.; Lai, S.-J. 3D geometric constraint analysis and its application on the spatial assembly sequence planning. Int. J. Prod. Res. 2010, 48, 1395–1414. [Google Scholar] [CrossRef]
- Su, Q.; Lai, S.-j.; Liu, J. Geometric computation based assembly sequencing and evaluating in terms of assembly angle, direction, reorientation, and stability. CAD Comput. Aided Des. 2009, 41, 479–489. [Google Scholar] [CrossRef]
- Sun, W.; Mu, X.; Sun, Q.; Sun, Z.; Wang, X. Analysis and optimization of assembly precision-cost model based on 3D tolerance expression. Assem. Autom. 2018, 38, 497–510. [Google Scholar] [CrossRef]
- Tanaka, M.; Anthony, L.; Kaneeda, T.; Hirooka, J. A single solution method for converting 2D assembly drawings to 3D part drawings. CAD Comput. Aided Des. 2004, 36, 723–734. [Google Scholar] [CrossRef]
- Tariki, K.; Kiyokawa, T.; Nagatani, T.; Takamatsu, J.; Ogasawara, T. Generating complex assembly sequences from 3D CAD models considering insertion relations. Adv. Robot. 2021, 35, 337–348. [Google Scholar] [CrossRef]
- Tching, L.; Dumont, G.; Perret, J. Interactive simulation of CAD models assemblies using virtual constraint guidance: A new method to assist haptic assembly tasks. Int. J. Interact. Des. Manuf. 2010, 4, 95–102. [Google Scholar] [CrossRef]
- Teck, T.B.; Senthil Kumar, A.; Subramanian, V. A CAD integrated analysis of flatness in a form tolerance zone. CAD Comput. Aided Des. 2001, 33, 853–865. [Google Scholar] [CrossRef]
- Templeman, M. All in the mind. Manuf. Eng. 1996, 75, 133–135. [Google Scholar] [CrossRef]
- Tharratt, G. Production breakdown illustration. Automot. Ind. 1941, 85, 24–28. [Google Scholar]
- Toma, M.I.; Girbacia, F.; Antonya, C. A comparative evaluation of human interaction for design and assembly of 3D CAD models in desktop and immersive environments. Int. J. Interact. Des. Manuf. 2012, 6, 179–193. [Google Scholar] [CrossRef]
- Tong, S.; Downey, D.B.; Cardinal, H.N.; Fenster, A. A three-dimensional ultrasound prostate imaging system. Ultrasound Med. Biol. 1996, 22, 735–746. [Google Scholar] [CrossRef]
- Tsai, C.-Y.; Liu, T.-Y.; Lu, Y.-H.; Nisar, H. A novel interactive assembly teaching aid using multi-template augmented reality. Multimed. Tools Appl. 2020, 79, 31981–32009. [Google Scholar] [CrossRef]
- Vaclav, T.; Mare, A.; Legutko, S.; Koal, P.; Delgado Sobrino, D.R. Proposal of a system for estimating the assembly time in small and medium-sized enterprises. Teh. Vjesn. 2020, 27, 2089–2096. [Google Scholar] [CrossRef]
- Velaz, Y.; Arce, J.R.; Gutierrez, T.; Lozano-Rodero, A.; Suescun, A. The influence of interaction technology on the learning of assembly tasks using virtual reality. J. Comput. Inf. Sci. Eng. 2014, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vigano, R.; Gomez, G.O. Assembly planning with automated retrieval of assembly sequences from CAD model information. Assem. Autom. 2012, 32, 347–360. [Google Scholar] [CrossRef]
- Walters, W.E. Drawing three-dimensional assemblies. Mach. Des. 1947, 19, 82–87. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=&date=1947&volume=19&issue=10&spage=82&epage=87&title=Machine%20Design&atitle=Drawing%20three-dimensional%20assemblies&aulast=Walters&aufirst=W.E.&isbn=&id=DOI:&ABBR=19480005378&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Wang, H.; Ning, R.; Yan, Y. Simulated toleranced CAD geometrical model and automatic generation of 3D dimension chains. Int. J. Adv. Manuf. Technol. 2006, 29, 1019–1025. [Google Scholar] [CrossRef]
- Wang, J.; Gu, D.; Yu, Z.; Tan, C.; Zhou, L. A framework for 3D model reconstruction in reverse engineering. Comput. Ind. Eng. 2012, 63, 1189–1200. [Google Scholar] [CrossRef]
- Wang, K.; Liu, D.; Liu, Z.; Duan, G.; Hu, L.; Tan, J. A fast object registration method for augmented reality assembly with simultaneous determination of multiple 2D-3D correspondences. Robot. Comput. Integr. Manuf. 2020, 63. [Google Scholar] [CrossRef]
- Wang, L.; Givehchi, M.; Adamson, G.; Holm, M. A sensor-driven 3D model-based approach to remote real-time monitoring. CIRP Ann. Manuf. Technol. 2011, 60, 493–496. [Google Scholar] [CrossRef]
- Wang, P.; Bai, X.; Billinghurst, M.; Zhang, S.; Wei, S.; Xu, G.; He, W.; Zhang, X.; Zhang, J. 3DGAM: Using 3D gesture and CAD models for training on mixed reality remote collaboration. Multimed. Tools Appl. 2021, 80, 31059–31084. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Tian, L. A systematic approach for 3D VRML model-based assembly in Web-based product design. Int. J. Adv. Manuf. Technol. 2007, 33, 819–836. [Google Scholar] [CrossRef]
- Wang, Y. Application of three-dimensional solid modeling of virtual reality technology in ship assembling. Int. J. Mechatron. Appl. Mech. 2017, 2017, 33–38. [Google Scholar]
- Wang, Z.B.; Ng, L.X.; Ong, S.K.; Nee, A.Y.C. Assembly planning and evaluation in an augmented reality environment. Int. J. Prod. Res. 2013, 51, 7388–7404. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Guan, C.X.; Sun, Y.M.; Ying, D.W.; Li, M.; Zhang, T. VRML-based remote concurrent design tool approach. Huanan Ligong Daxue Xuebao J. South China Univ. Technol. Nat. Sci. 2001, 29, 52–55. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=1000-565X&date=2001&volume=29&issue=10&spage=52&epage=55&title=Huanan%20Ligong%20Daxue%20Xuebao%2FJournal%20of%20South%20China%20University%20of%20Technology%20(Natural%20Science)&atitle=VRML-based%20remote%20concurrent%20design%20tool%20approach&aulast=Wang&aufirst=Z.-Y.&isbn=&id=DOI:&ABBR=2001536787792&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Watabe, H.; Miyoshi, N.; Kakazu, Y.; Okino, N. Interference recognition among 3D solid models for assembly planning. In Advances in Design Automation—1989, Montreal, QC, Canada, 17–21 September 1989; ASME: New York, NY, USA, 1989; Volume 20, pp. 79–84. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=conference&issn=&date=1989&volume=20&issue=&spage=79&epage=84&title=American%20Society%20of%20Mechanical%20Engineers,%20Design%20Engineering%20Division%20(Publication)%20DE&atitle=Interference%20recognition%20among%203D%20solid%20models%20for%20assembly%20planning&aulast=Watabe&aufirst=H.&isbn=&id=DOI:&ABBR=1990040423825&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Waurzyniak, P. Enter the virtual world. Manuf. Eng. 2007, 139, 67–82. Available online: https://www.proquest.com/docview/219718396/fulltextPDF/B300FF9807704131PQ/1?accountid=10906 (accessed on 20 December 2021).
- Waurzyniak, P. Connecting the digital world with the factory floor: New collaborative 3D plant process planning and visualization tools are helping manufacturers prove out PLM’s promise. Manuf. Eng. 2014, 152, 53–64. [Google Scholar]
- Weber, N.O. Product development teams and tools applied to the aircraft industry. World Cl. Des. Manuf. 1994, 1, 20–26. [Google Scholar] [CrossRef]
- Wesley, M.A.; Lozano-Perez, T.; Lieberman, L.I.; Lavin, M.A.; Grossman, D.D. Geometric Modeling System for Automated Mechanical Assembly. IBM J. Res. Dev. 1980, 24, 64–74. [Google Scholar] [CrossRef]
- Whitward, L. 3D visualisation—Time to suspend our disbelief? Des. Eng. Lond. 1995, 28–30. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0308-8448&date=1995&volume=&issue=&spage=28&epage=30&title=Design%20engineering%20London&atitle=3D%20visualisation%20-%20time%20to%20suspend%20our%20disbelief%3F&aulast=Whitward&aufirst=Lane&isbn=&id=DOI:&ABBR=1995422832785&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Wiegand, B.A. Three-Dimensional Interactive Computer-Aided Design and Manufacture of Mechanical Structures. RCA Eng. 1981, 26, 51–57. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=article&issn=0048-6574&date=1981&volume=26&issue=6&spage=51&epage=57&title=RCA%20engineer&atitle=THREE-DIMENSIONAL%20INTERACTIVE%20COMPUTER-AIDED%20DESIGN%20AND%20MANUFACTURE%20OF%20MECHANICAL%20STRUCTURES.&aulast=Wiegand&aufirst=Bernie%20A.&isbn=&id=DOI:&ABBR=1982080003707&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Wigotsky, V. 3-D CAD. Plast. Eng. 1990, 46, 12–16. Available online: https://bi.gale.com/global/article/GALE%7CA9131418/e971004cf632d5fb92e6e15d6350c300?u=iastu_main (accessed on 20 December 2021).
- Williams, A. Transition from 2D to 3D. Cadalyst 2004, 21, 10–12. [Google Scholar]
- Wittenberg, G. Training with virtual reality. Assem. Autom. 1995, 15, 12–14. [Google Scholar] [CrossRef]
- Wolfe, R.N. 3D geometric databases for mechanical engineering. In Proceedings of the International Conference on Data Base Techniques for Pictorial Applications, Florence, Italy, 20–22 June 1979; Springer: Berlin/Heidelberg, Germany, 1980; Volume 81, pp. 253–261. [Google Scholar] [CrossRef]
- Xiao, H.; Duan, Y.; Zhang, Z. Mobile 3D assembly process information construction and transfer to the assembly station of complex products. Int. J. Comput. Integr. Manuf. 2018, 31, 11–26. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Y.; Yu, J.; Zhang, J. CAD mesh model simplification with assembly features preservation. Sci. China Inf. Sci. 2014, 57, 1–11. [Google Scholar] [CrossRef]
- Xiao, H.; Li, Y.; Yu, J.; Zhang, J.; Tang, W. Dynamic assembly simplification for virtual assembly process of complex product in cloud computing environment. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 228, 1198–1213. [Google Scholar] [CrossRef]
- Xie, X.; Xu, K.; Mitra, N.J.; Cohen-Or, D.; Gong, W.; Su, Q.; Chen, B. Sketch-to-design: Context-based part assembly. Comput. Graph. Forum 2013, 32, 233–245. [Google Scholar] [CrossRef]
- Yap, H.-J.; Taha, Z.; Dawal, S.Z.M. A generic approach of integrating 3D models into virtual manufacturing. J. Zhejiang Univ. Sci. C 2012, 13, 20–28. [Google Scholar] [CrossRef]
- Yesin, K.B.; Nelson, B.J. A CAD model based tracking system for visually guided microassembly. Robotica 2005, 23, 409–418. [Google Scholar] [CrossRef]
- Yi, C.; Besant, C.B.; Jebb, A. Three-Dimensional Digitizing Techniques for Computer-Aided Animation. In Proceedings of the 2nd International Conference on Computers in Engineering and Building Design (CAD ‘76), London, UK, 23–25 March 1976; IPC Science and Technology Press, Ltd.: London, UK, 1976; pp. 292–295. Available online: https://iowa-primo.hosted.exlibrisgroup.com/primo-explore/openurl?sid=Compendex&genre=conference&issn=&date=1976&volume=&issue=&spage=292&epage=295&title=Int%20Conf%20on%20Comput%20in%20Eng%20and%20Build%20Des%20(CAD%20%2776),%202nd,%20Proc&atitle=THREE-DIMENSIONAL%20DIGITIZING%20TECHNIQUES%20FOR%20COMPUTER-AIDED%20ANIMATION.&aulast=Yi&aufirst=C.&isbn=&id=DOI:&ABBR=1976100001275&vid=01IASU&institution=01IASU&url_ctx_val=&url_ctx_fmt=null&isSerivcesPage=true (accessed on 20 December 2021).
- Yoshimura, M.; Yoshida, S.; Konishi, Y.; Izui, K.; Nishiwaki, S.; Inamori, Y.; Nomura, A.; Mitsuyuki, K.; Kawaguchi, Y.; Inagaki, T. A rapid analysis method for production line design. Int. J. Prod. Res. 2006, 44, 1171–1192. [Google Scholar] [CrossRef]
- Yuan, X. An interactive approach of assembly planning. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2002, 32, 522–526. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, G.; Lu, Q.; Chang, F. Generating significant subassemblies from 3D assembly models for design reuse. Int. J. Prod. Res. 2018, 56, 4744–4761. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Tang, S. An integrated modeling method of unified tolerance representation for mechanical product. Int. J. Adv. Manuf. Technol. 2010, 46, 217–226. [Google Scholar] [CrossRef]
- Zhang, P.; Bao, J.; Yang, Z.; Huang, F. The site visualization and closed-loop control for 3D assembly process. Key Eng. Mater. 2014, 621, 617–626. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, G.; Qi, N. Research on high-resolution improved projection 3D localization algorithm and precision assembly of parts based on virtual reality. Neural Comput. Appl. 2019, 31, 103–111. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Zhao, A.; Ke, Y. A multi-object posture coordination method with tolerance constraints for aircraft components assembly. Assem. Autom. 2020, 40, 345–359. [Google Scholar] [CrossRef]
- Zhang, Y.; Travis, A.R.L. Creation and evaluation of a multi-sensory virtual assembly environment. Int. J. Autom. Comput. 2008, 5, 163–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Travis, A.R.L.; Collings, N. Evaluation of multi-sensory feedback on the usability of a virtual assembly environment. J. Multimed. 2007, 2, 38–47. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Z. A new assembly sequences generation of three dimensional product based on polychromatic sets. Inf. Technol. J. 2008, 7, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Bezdecny, M.; Lee, B.; Wu, Y.; Robinson, D.; Bauer, L.; Slagle, M.; Coleman, D.; Barnes, J.; Walls, S. Prediction of assembly variation during early design. J. Comput. Inf. Sci. Eng. 2009, 9, 1–11. [Google Scholar] [CrossRef]
- Zhu, W.; Vader, A.M.; Chadda, A.; Leu, M.C.; Liu, X.F.; Vance, J.B. Wii remote-based low-cost motion capture for automated assembly simulation. Virtual Real. 2013, 17, 125–136. [Google Scholar] [CrossRef]
Decade(s) | Compendex Journal Article Records | Compendex Records (Limited by Search Terms) |
---|---|---|
1940s–1960s | 24 | 20 |
1970s | 5 | 1 |
1980s | 188 | 99 |
1990s | 957 | 354 |
2000s | 4662 | 943 |
2010s | 14,428 | 1824 |
2020s | 4416 | 501 |
Total | 24,688 | 3742 |
S. No | 3D Product Model Research Themes | # of Reference (s) |
---|---|---|
1 | Product Design | 37 |
2 | Design for Assembly | 21 |
3 | Data Processing | 22 |
4 | Geometric Dimensioning and Tolerancing (GD&T) | 34 |
5 | Assembly Sequence Planning | 34 |
6 | Virtual Assembly/Virtual Reality (VR) | 27 |
7 | Assembly line/Station layout planning | 24 |
8 | Interpolation between 2D and 3D Models | 10 |
9 | Reverse Engineering/Scanning Technology | 7 |
10 | Assembly Feasibility | 4 |
11 | Web-Based Applications | 14 |
12 | Virtual Training/Work Instructions (WI) | 13 |
13 | Augmented Reality (AR) | 21 |
14 | 3D Model Library | 13 |
15 | Disassembly | 3 |
16 | Artificial Intelligence (AI) and Digital Twin | 8 |
Total | 292 |
S. No | 3D Product Model Research Themes | Reference(s) |
---|---|---|
1 | Product Design | [11,12,14,15,21,24,27,41,42,46,65,67,72,76,81,84,100,102,106,114,134,139,172,176,195,196,212,215,216,221,232,243,244,253,270,274,275,277] |
2 | Design for Assembly | [16,19,22,30,58,82,98,116,120,155,163,181,183,192,204,211,220,260,267,273,289] |
3 | Data Processing | [9,62,95,111,113,149,150,151,173,175,185,207,217,233,234,235,276,280,282,283,285,287] |
4 | Geometric Dimensioning and Tolerancing | [17,29,50,69,70,71,74,77,91,105,122,143,154,156,157,158,164,167,198,200,201,208,210,223,227,238,239,242,247,251,261,291,294,298] |
5 | Assembly Sequence Planning | [32,33,34,35,36,37,38,39,57,59,60,61,79,90,98,99,117,126,128,130,140,146,165,171,190,209,225,229,237,240,245,246,259,297] |
6 | Virtual Assembly/Virtual Reality | [18,43,45,53,75,93,96,109,110,119,123,125,133,152,197,214,222,224,231,250,254,258,279,286,295,296,299] |
7 | Assembly line/station layout planning | [10,25,40,44,47,78,80,83,86,87,92,135,147,153,169,182,194,202,228,236,252,256,257,271,272,288] |
8 | Interpolation between 2D and 3D Models | [8,28,85,168,213,219,248,255,263,278] |
9 | Reverse Engineering/Scanning Technology | [20,48,66,118,199,230,262] |
10 | Assembly Feasibility | [13,129,144,218] |
11 | Web-Based Applications | [52,63,64,68,131,132,148,160,161,191,205,241,266,269] |
12 | Virtual Training/Work Instructions | [26,49,51,112,127,141,174,177,178,187,189,226,281] |
13 | Augmented Reality | [55,56,73,88,89,97,115,145,162,170,179,186,188,193,206,258,264,265,268,292] |
14 | 3D Model Library | [54,121,122,136,137,138,142,166,180,184,203,284,290] |
15 | Disassembly | [23,94,104] |
16 | Artificial Intelligence and Digital Twin | [31,101,103,107,108,159,249,293] |
S. No | 3D Product Model Research Themes | 1940s–1960s | 1970s | 1980s | 1990s | 2000s | 2010s | 2020s |
---|---|---|---|---|---|---|---|---|
1 | Product Design | 3 | 4 | 12 | 15 | 3 | ||
2 | Design for Assembly | 3 | 2 | 15 | 1 | |||
3 | Data Processing | 2 | 6 | 1 | 2 | 11 | ||
4 | Geometric Dimensioning and Tolerancing | 1 | 3 | 1 | 11 | 15 | 3 | |
5 | Assembly Sequence Planning | 1 | 2 | 9 | 21 | 1 | ||
6 | Virtual Assembly/Virtual Reality | 6 | 11 | 10 | ||||
7 | Assembly line/station layout planning | 7 | 6 | 8 | 3 | |||
8 | Interpolation between 2D and 3D Models | 2 | 4 | 3 | 1 | |||
9 | Reverse Engineering/Scanning Technology | 2 | 1 | 3 | 1 | |||
10 | Assembly Feasibility | 1 | 2 | 1 | ||||
11 | Web-Based Applications | 9 | 4 | 1 | ||||
12 | Virtual Training/Work Instructions | 2 | 9 | 2 | ||||
13 | Augmented Reality | 2 | 12 | 7 | ||||
14 | 3D Model Library | 1 | 11 | 1 | ||||
15 | Disassembly | 3 | ||||||
16 | Artificial Intelligence and Digital Twin | 1 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirpes, C.; Hu, G.; Sly, D. The 3D Product Model Research Evolution and Future Trends: A Systematic Literature Review. Appl. Syst. Innov. 2022, 5, 29. https://doi.org/10.3390/asi5020029
Kirpes C, Hu G, Sly D. The 3D Product Model Research Evolution and Future Trends: A Systematic Literature Review. Applied System Innovation. 2022; 5(2):29. https://doi.org/10.3390/asi5020029
Chicago/Turabian StyleKirpes, Carl, Guiping Hu, and Dave Sly. 2022. "The 3D Product Model Research Evolution and Future Trends: A Systematic Literature Review" Applied System Innovation 5, no. 2: 29. https://doi.org/10.3390/asi5020029
APA StyleKirpes, C., Hu, G., & Sly, D. (2022). The 3D Product Model Research Evolution and Future Trends: A Systematic Literature Review. Applied System Innovation, 5(2), 29. https://doi.org/10.3390/asi5020029