Technology Behavior Model—Beyond Your Sight with Extended Reality in Surgery
Abstract
:1. Introduction
2. Literature Review
2.1. Study Context
2.2. Theoretical Foundation
2.2.1. Technology Acceptance Model
2.2.2. Theory of Planned Behavior
2.3. Determinants of the Adoption of XRSG in Surgery
2.3.1. Extended Really Usefulness (XRU)
2.3.2. Extended Reality Ease of Use (XREU)
2.3.3. Image Modeling (IM)
2.3.4. Interaction Design (ID)
2.3.5. Operation Norm (ON)
2.3.6. Usage Perspicuity (UP)
2.4. Theoretical Framework
3. Methodology
3.1. Research Design
3.2. Sampling Design
3.3. Measurement
3.4. Data Collection Method
4. Data Analysis
4.1. Demographic Analysis
4.2. Statistical Analysis
4.2.1. Common Method Bias
4.2.2. Assessing the Outer Measurement Model
4.2.3. Inspecting the Inner Structural Model
4.2.4. Predictive Relevance and Effect Size
4.2.5. Importance Performance Map Analysis
5. Finding and Discussion
6. Implications
6.1. Theoretical Implication
6.2. Managerial Implication
6.3. Methodological Implication
6.4. Social Implication
7. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danielsson, O.; Holm, M.; Syberfeldt, A. Augmented reality smart glasses in industrial assembly: Current status and future challenges. J. Ind. Inf. Integr. 2020, 20, e100175. [Google Scholar] [CrossRef]
- Frederick, J.; van Gelderen, S. Revolutionizing simulation education with smart glass technology. Clin. Simul. Nurs. 2021, 52, 43–49. [Google Scholar] [CrossRef]
- Rejeb, A.; Keogh, J.G.; Leong, G.K.; Treiblmaier, H. Potentials and challenges of augmented reality smart glasses in logistics and supply chain management: A systematic literature review. Int. J. Prod. Res. 2021, 59, 3747–3776. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z. Cross-sectional studies: Strengths, weaknesses, and recommendations. Chest 2020, 158, S65–S71. [Google Scholar] [CrossRef] [PubMed]
- Macielak, R.J.; Wallerius, K.P.; Lawlor, S.K.; Lohse, C.M.; Marinelli, J.P.; Neff, B.A.; Van Gompel, J.J.; Driscoll, C.L.; Link, M.J.; Carlson, M.L. Defining clinically significant tumor size in vestibular schwannoma to inform timing of microsurgery during wait-and-scan management: Moving beyond minimum detectable growth. J. Neurosurg. 2021, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, G.; Ather, A.; Bueno, M.R.; Estrela, C.; Diogenes, A. Preserving the neurovascular bundle in targeted endodontic microsurgery: A case series. J. Endod. 2021, 47, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Nakayama, N.; Ushikoshi, S.; Kazumata, K.; Okamoto, M.; Ito, M.; Osanai, T.; Shimoda, Y.; Uchida, K.; Shimbo, D.; et al. Complication rate, cure rate, and long-term outcomes of microsurgery for intracranial dural arteriovenous fistulae: A multicenter series and systematic review. Neurosurg. Rev. 2021, 44, 435–450. [Google Scholar] [CrossRef]
- Rauschnabel, P.A. Augmented reality is eating the real-world! The substitution of physical products by holograms. Int. J. Inf. Manag. 2021, 57, 102279. [Google Scholar] [CrossRef]
- Gagandeep, S.; Tejasvi, K.; Nihal, M.; Shubham, J.; Anatoliy, V.; Vadim, S.; Prateek, P.; Sunil, M. Long-term solutions in neurosurgery using extended reality technologies. Neurosurg. Focus 2021, 51, E2. [Google Scholar] [CrossRef]
- Romare, C.; Skär, L. Smart glasses for caring situations in complex care environments: Scoping review. JMIR mHealth uHealth 2020, 8, e16055. [Google Scholar] [CrossRef]
- Tai, Y.; Gao, B.; Li, Q.; Yu, Z.; Zhu, C.; Chang, V. Trustworthy and intelligent COVID-19 diagnostic IoMT through XR and deep learning-based clinic data access. IEEE Internet Things J. 2021, 21, 15965–15976. [Google Scholar] [CrossRef]
- Kulak, O.; Drobysheva, A.; Wick, N.; Arvisais-Anhalt, S.; Germans, S.K.; Timmons, C.F.; Park, J.Y. Smart glasses as a surgical pathology grossing tool. Arch. Pathol. Lab. Med. 2021, 145, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; He, X.; Pan, H. Implementation of escape room system based on augmented reality involving deep convolutional neural network. Virtual Real. 2021, 25, 585–596. [Google Scholar] [CrossRef]
- Cha, K.; Woo, H.K.; Park, D.; Chang, D.K.; Kang, M. Effects of background colors, flashes, and exposure values on the accuracy of a smartphone-based pill recognition system using a deep convolutional neural network: Deep learning and experimental approach. JMIR Med. Inform. 2021, 9, e26000. [Google Scholar] [CrossRef]
- Bertolo, R.; Hung, A.; Porpiglia, F.; Bove, P.; Schleicher, M.; Dasgupta, P. Systematic review of augmented reality in urological interventions: The evidences of an impact on surgical outcomes are yet to come. World J. Urol. 2020, 38, 2167–2176. [Google Scholar] [CrossRef]
- Gong, X.; Wong, A.H.; Daronovna, R.K.; JosephNg, P.S. Beyond Human Eye in Surgical Smart Glasses. In Proceedings of the 2021, the 5th International Conference on Algorithms, Computing and Systems, Xi’an, China, 24–26 September 2021; pp. 135–139. [Google Scholar] [CrossRef]
- Kamal, S.A.; Shafiq, M.; Kakria, P. Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technol. Soc. 2020, 60, 101212. [Google Scholar] [CrossRef]
- Sok, J.; Borges, J.R.; Schmidt, P.; Ajzen, I. Farmer behaviour as reasoned action: A critical review of research with the theory of planned behaviour. J. Agric. Econ. 2021, 72, 388–412. [Google Scholar] [CrossRef]
- Hair, J.F.; Howard, M.C.; Nitzl, C. Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. J. Bus. Res. 2020, 109, 101–110. [Google Scholar] [CrossRef]
- Matsukawa, K.; Yato, Y. Smart glasses display device for fluoroscopically guided minimally invasive spinal instrumentation surgery: A preliminary study. J. Neurosurg. Spine 2021, 34, 150–155. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, S.K.; Lee, Y.; Choi, J. Google glass-supported cooperative training for health professionals: A case study based on using remote desktop virtual support. J. Multidiscip. Healthc. 2021, 14, 1451–1462. [Google Scholar] [CrossRef]
- Wamsley, C.E.; Hoopman, J.; Kenkel, J.M. Safety guidelines concerning the use of protective eyewear and gauze during laser procedures. Aesthetic Surg. J. 2021, 41, 1179–1185. [Google Scholar] [CrossRef]
- Ghaednia, H.; Fourman, M.S.; Lans, A.; Detels, K.; Dijkstra, H.; Lloyd, S.; Sweeney, A.; Oosterhoff, J.H.F.; Schwab, J.H. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J. 2021, 21, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Lee, Y.; Yoon, H.; Choi, J. Adaptation of extended reality smart glasses for core nursing skill training among undergraduate nursing students: Usability and feasibility study. J. Med. Internet Res. 2021, 23, e24313. [Google Scholar] [CrossRef]
- Vasarainen, M.; Paavola, S.; Vetoshkina, L. A systematic literature review on extended reality: Virtual, augmented and mixed reality in working life. Int. J. Virtual Real. 2021, 21, 1–28. [Google Scholar] [CrossRef]
- Xu, X.; Mangina, E.; Campbell, A.G. HMD-based virtual and augmented reality in medical education: A systematic review. Front. Virtual Real. 2021, 2, 82. [Google Scholar] [CrossRef]
- Follmann, A.; Ohligs, M.; Hochhausen, N.; Beckers, S.K.; Rossaint, R.; Czaplik, M. Technical support by smart glasses during a mass casualty incident: A randomized controlled simulation trial on technically assisted triage and telemedical app use in disaster medicine. J. Med. Internet Res. 2019, 21, e11939. [Google Scholar] [CrossRef] [PubMed]
- Ooi, K.B.; Lew, S.; Tan, G.W.H.; Loh, X.M.; Hew, J.J. The disruptive mobile wallet in the hospitality industry: An extended mobile technology acceptance model. Technol. Soc. 2020, 63, 1–10. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior: Frequently asked questions. Hum. Behav. Emerg. Technol. 2020, 2, 314–324. [Google Scholar] [CrossRef]
- Bagheri, A.; Emami, N.; Damalas, C.A. Farmers’ behavior towards safe pesticide handling: An analysis with the theory of planned behavior. Sci. Total. Environ. 2021, 751, 141709. [Google Scholar] [CrossRef]
- Yuriev, A.; Dahmen, M.; Paillé, P.; Boiral, O.; Guillaumie, L. Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resour. Conserv. Recycl. 2020, 155, 104660. [Google Scholar] [CrossRef]
- Al-Qaysi, N.; Mohamad-Nordin, N.; Al-Emran, M. Employing the technology acceptance model in social media: A systematic review. Educ. Inf. Technol. 2020, 25, 4961–5002. [Google Scholar] [CrossRef]
- Cakit, E.; Olak, A.J.; Karwowski, W.; Marek, T.; Hejduk, I.; Taiar, R. Assessing safety at work using an adaptive neuro-fuzzy inference system (ANFIS) approach aided by partial least squares structural equation modeling (PLS-SEM). Int. J. Ind. Ergon. 2020, 76, 102925. [Google Scholar] [CrossRef]
- D’Alimonte, R.; de Sio, L.; Franklin, M.N. From issues to goals: A novel conceptualisation, measurement and research design for comprehensive analysis of electoral competition. West Eur. Politics 2020, 43, 518–542. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zhang, Q. Quantitative research on gas explosion inhibition by water mist. J. Hazard. Mater. 2019, 363, 16–25. [Google Scholar] [CrossRef]
- Santos, J.; Pham, A.; Stasinopoulos, P.; Giustozzi, F. Recycling waste plastics in roads: A life-cycle assessment study using primary data. Sci. Total. Environ. 2021, 751, 141842. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Cheah, J.H.; Ting, H.; Moisescu, O.I.; Radomir, L. Structural model robustness checks in PLS-SEM. Tour. Econ. 2020, 26, 531–554. [Google Scholar] [CrossRef]
- Shams, M.; Mei, T.; Adnan, Z. Nexus between idiosyncratic deals and work engagement via psychological empowerment: A PLS-SEM approach. Manag. Sci. Lett. 2021, 11, 689–698. [Google Scholar] [CrossRef]
- Hair, J.F.; Astrachan, C.B.; Moisescu, O.I.; Radomir, L.; Sarstedt, M.; Vaithilingam, S.; Ringle, C.M. Executing and interpreting applications of PLS-SEM: Updates for family business researchers. J. Fam. Bus. Strategy 2021, 12, 100392. [Google Scholar] [CrossRef]
- Basco, R.; Hair, J.F.; Ringle, C.M.; Sarstedt, M. Advancing family business research through modeling nonlinear relationships: Comparing PLS-SEM and multiple regression. J. Fam. Bus. Strategy 2021, 1, 100457. [Google Scholar] [CrossRef]
- Manley, S.C.; Hair, J.F.; Williams, R.I.; McDowell, W.C. Essential new PLS-SEM analysis methods for your entrepreneurship analytical toolbox. Int. Entrep. Manag. J. 2021, 17, 1805–1825. [Google Scholar] [CrossRef]
- JosephNg, P.S. EaaS infrastructure disruptor for MSE. Int. J. Bus. Inf. Syst. 2019, 30, 373–385. [Google Scholar]
- Jiang, Z.; Raymond, M.; DiStefano, C.; Shi, D.; Liu, R.; Sun, J. A Monte Carlo study of confidence interval methods for generalizability coefficient. Educ. Psychol. Meas. 2021, 3, 00131644211033899. [Google Scholar] [CrossRef]
- Rönkkö, M.; Cho, E. An updated guideline for assessing discriminant validity. Organ. Res. Methods 2022, 25, 6–14. [Google Scholar] [CrossRef]
- JosephNg, P.S. EaaS Optimization: Available yet hidden information technology infrastructure inside medium size enterprise. Technol. Forecast. Soc. Chang. 2018, 132, 165–173. [Google Scholar] [CrossRef]
- Blazek, K.; van Zwieten, A.; Saglimbene, V.; Teixeira-Pinto, A. A practical guide to multiple imputation of missing data in nephrology. Kidney Int. 2021, 99, 68–74. [Google Scholar] [CrossRef]
- Boillat, T.; Grantcharov, P.; Rivas, H. Increasing completion rate and benefits of checklists: Prospective evaluation of surgical safety checklists with smart glasses. JMIR mHealth uHealth 2019, 7, e13447. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Geiser, C.; Cadima, J.; Matias, M.; Leal, T.; Mena Matos, P. The Strengths and Difficulties Questionnaire: An examination of factorial, convergent, and discriminant validity using multitrait-multirater data. Psychol. Assess. 2021, 33, 45–59. [Google Scholar] [CrossRef]
- Lee, L.H.; Braud, T.; Hosio, S.; Hui, P. Towards augmented reality driven human-city interaction: Current research on mobile headsets and future challenges. ACM Comput. Surv. 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Nag, A.; Haber, N.; Voss, C.; Tamura, S.; Daniels, J.; Ma, J.; Chiang, B.; Ramachandran, S.; Schwartz, J.; Winograd, T.; et al. Toward continuous social phenotyping: Analyzing gaze patterns in an emotion recognition task for children with autism through wearable smart glasses. J. Med. Internet Res. 2020, 22, e13810. [Google Scholar] [CrossRef]
- Elikkottil, J.; Jaseena Elikkottil, J.; Morton, L. Use of smart glass technology for resident education in long term care facilities during the COVID-19 pandemic. J. Am. Med. Dir. Assoc. 2021, 22, B10. [Google Scholar] [CrossRef]
- Wang, S.; Zargar, S.A.; Yuan, F.G. Augmented reality for enhanced visual inspection through knowledge-based deep learning. Struct. Health Monit. 2021, 20, 426–442. [Google Scholar] [CrossRef]
- Wei-Han Tan, G.; Ooi, K.B.; Yuan, Y.P.; Lim, W.L. Can COVID-19 pandemic influence experience response in mobile learning? Telemat. Inform. 2021, 64, 101676. [Google Scholar] [CrossRef]
- Lehdonvirta, V.; Oksanen, A.; Räsänen, P.; Blank, G. Social media, web, and panel surveys: Using non-probability samples in social and policy research. Policy Internet 2021, 13, 134–155. [Google Scholar] [CrossRef]
- Arpaia, P.; Callegaro, L.; Cultrera, A.; Esposito, A.; Ortolano, M. Metrological characterization of consumer-grade equipment for wearable brain-computer interfaces and extended reality. IEEE Trans. Instrum. Meas. 2021, 15, 1–8. [Google Scholar] [CrossRef]
- Furman, A.A.; Hsu, W.K. Augmented Reality (AR) in orthopedics: Current applications and future directions. Curr. Rev. Musculoskelet. Med. 2021, 53, 1–9. [Google Scholar] [CrossRef]
- Jang, Y.E.; Cho, S.A.; Ji, S.H.; Kim, E.H.; Lee, J.H.; Kim, H.S.; Kim, J.T. Smart glasses for radial arterial catheterization in pediatric patients: A randomized clinical trial. Anesthesiology 2021, 135, 612–620. [Google Scholar] [CrossRef]
- Tempini, N.; Leonelli, S. Actionable data for precision oncology: Framing trustworthy evidence for exploratory research and clinical diagnostics. Soc. Sci. Med. 2021, 272, 113760. [Google Scholar] [CrossRef]
Past | Now | Future | |
---|---|---|---|
Environment Awareness Technology | – | High-definition camera | |
Fixed label | Computer graphics | Deep learning | |
Motion tracking | Magnetic markers, visual markers | GPS, inertial navigation system | An optical system, depth of field camera |
Display technology | Handheld projector | Head-mounted display | Virtual retina display |
Interactive technologies | Flat user interface | A 3D user interface, gesture and pose capture, speech recognition | Touch, eye tracking, and man-machine symbiosis |
Medical image modeling | Solution of the plane model | Surface shading technique, volume roaming technique, and surface reconstruction technique | CT model reconstruction + real-time deep learning calibration |
Demographic Characteristic | Option | Counts | Percentage (%) |
---|---|---|---|
Gender | Male | 176 | 59.06% |
Female | 122 | 40.94% | |
Age | 20–35 | 103 | 34.56% |
36–45 | 150 | 50.34% | |
46–55 | 37 | 12.42% | |
More than 56 | 8 | 2.68% | |
Marital status | Single | 102 | 34.23% |
Married | 196 | 65.77% | |
Education | Undergraduate | 186 | 62.42% |
Postgraduate | 112 | 37.58% | |
Income | Less than RM 3000 | 4 | 1.37% |
RM 3000–5000 | 20 | 6.71% | |
RM 5000–8000 | 120 | 40.27% | |
RM 8000–10,000 | 98 | 32.88% | |
More than RM 10,000 | 56 | 18.78% |
Latent Construct | Indicators | Substantive Factor Loading (Ra) | Substantial Variance Square (Ra2) | Method Factor Loading (Rb) | Method Variance Square (Rb2) |
---|---|---|---|---|---|
ITASG | ITASG1 | 0.89 | 0.7921 | −0.059 | 0.003 NS |
ITASG2 | 0.938 | 0.879844 | −0.075 | 0.005625 NS | |
ITASG3 | 0.935 | 0.874225 | 0.05 | 0.0025 NS | |
ID | ID1 | 0.928 | 0.861184 | 0.025 | 0.000625 NS |
ID2 | 0.918 | 0.842724 | −0.112 | 0.012544 *** | |
ID3 | 0.932 | 0.868624 | 0.109 | 0.011881 *** | |
IM | IM1 | 0.9 | 0.81 | −0.002 | 0.000004 NS |
IM2 | 0.941 | 0.885481 | 0.054 | 0.002916 NS | |
IM3 | 0.91 | 0.8281 | 0.093 | 0.008649 NS | |
ON | ON1 | 0.935 | 0.874225 | −0.148 | 0.021904 ** |
ON2 | 0.946 | 0.894916 | 0.06 | 0.0036 NS | |
ON3 | 0.925 | 0.855625 | 0.026 | 0.000676 NS | |
XREU | XREU1 | 0.9 | 0.81 | −0.128 | 0.016384 *** |
XREU2 | 0.917 | 0.840889 | 0.069 | 0.004761 NS | |
XREU3 | 0.943 | 0.889249 | 0.032 | 0.001024 NS | |
XRU | XRU1 | 0.926 | 0.857476 | −0.055 | 0.003025 NS |
XRU2 | 0.929 | 0.863041 | 0.24 | 0.0576 * | |
XRU3 | 0.895 | 0.801025 | −0.189 | 0.035721 ** | |
UP | UP1 | 0.928 | 0.861184 | −0.002 | 0.000004 NS |
UP2 | 0.925 | 0.855625 | −0.031 | 0.000961 NS | |
UP3 | 0.903 | 0.815409 | 0.032 | 0.001024 NS | |
Average | 0.922095238 | 0.850521238 | −0.00052381 | 0.009281381 | |
Ration | 91.63735897 |
Latent Construct | Items | Loadings | Standard Deviation | RhoA (ρA) | Composite Reliability | Average Variance Extracted (AVE) |
---|---|---|---|---|---|---|
ITASG | ITASG1 | 0.892 | 0.385 | 0.914 | 0.944 | 0.849 |
ITASG2 | 0.933 | |||||
ITASG3 | 0.937 | |||||
ID | ID1 | 0.928 | 0.377 | 0.921 | 0.948 | 0.857 |
ID2 | 0.923 | |||||
ID3 | 0.927 | |||||
IM | IM1 | 0.903 | 0.397 | 0.908 | 0.941 | 0.841 |
IM2 | 0.941 | |||||
IM3 | 0.906 | |||||
ON | ON1 | 0.933 | 0.384 | 0.929 | 0.954 | 0.875 |
ON2 | 0.944 | |||||
ON3 | 0.928 | |||||
XREU | XREU1 | 0.893 | 0.389 | 0.917 | 0.943 | 0.846 |
XREU2 | 0.923 | |||||
XREU3 | 0.943 | |||||
XRU | XRU1 | 0.928 | 0.397 | 0.907 | 0.941 | 0.841 |
XRU2 | 0.927 | |||||
XRU3 | 0.895 | |||||
UP | UP1 | 0.923 | 0.395 | 0.910 | 0.942 | 0.844 |
UP2 | 0.922 | |||||
UP3 | 0.910 |
Latent Construct | ITASG | ID | IM | ON | XREU | XRU | UP |
---|---|---|---|---|---|---|---|
ITASG | |||||||
ID | 0.642 | ||||||
IM | 0.654 | 0.678 | |||||
ON | 0.601 | 0.665 | 0.541 | ||||
XREU | 0.642 | 0.650 | 0.570 | 0.622 | |||
XRU | 0.772 | 0.743 | 0.649 | 0.638 | 0.662 | ||
UP | 0.684 | 0.624 | 0.625 | 0.436 | 0.519 | 0.597 |
Latent Construct | Original Sample (O) | Sample Mean (M) | Bias | 2.50% | 97.50% |
---|---|---|---|---|---|
ID -> ITASG | 0.252 | 0.249 | −0.003 | 0.171 | 0.340 |
ID -> XREU | 0.243 | 0.238 | −0.004 | 0.119 | 0.374 |
ID -> XRU | 0.346 | 0.342 | −0.003 | 0.244 | 0.461 |
IM -> ITASG | 0.134 | 0.135 | 0.002 | 0.050 | 0.212 |
IM -> XREU | 0.153 | 0.154 | 0.000 | 0.025 | 0.277 |
IM -> XRU | 0.171 | 0.173 | 0.001 | 0.048 | 0.285 |
ON -> ITA | 0.198 | 0.201 | 0.003 | 0.126 | 0.265 |
ON -> XREU | 0.291 | 0.292 | 0.001 | 0.185 | 0.401 |
ON -> XRU | 0.223 | 0.227 | 0.004 | 0.123 | 0.319 |
XREU -> ITASG | 0.263 | 0.263 | 0.000 | 0.138 | 0.391 |
XRU -> ITASG | 0.544 | 0.544 | 0.000 | 0.420 | 0.663 |
UP -> ITASG | 0.123 | 0.123 | 0.000 | 0.051 | 0.197 |
UP -> XREU | 0.136 | 0.136 | 0.000 | 0.033 | 0.248 |
PLS Paths | Original Sample (O) | Sample Mean (M) | Standard Deviation (STDEV) | T Statistics (|O/STDEV|) | p Values | 2.5% | 97.5% | Remarks | |
---|---|---|---|---|---|---|---|---|---|
H1 | XRU -> ITASG *** | 0.544 | 0.544 | 0.061 | 8.909 | 0.000 | 0.033 | 0.134 | Yes |
H2 | XREU -> ITASG *** | 0.263 | 0.264 | 0.064 | 4.137 | 0.000 | 0.137 | 0.391 | Yes |
H3 | IM -> XRU ** | 0.171 | 0.172 | 0.061 | 2.823 | 0.005 | 0.048 | 0.288 | Yes |
H4 | IM -> XREU * | 0.153 | 0.152 | 0.064 | 2.4 | 0.016 | 0.026 | 0.274 | Yes |
H5 | ID -> XRU *** | 0.346 | 0.343 | 0.056 | 6.12 | 0.000 | 0.235 | 0.457 | Yes |
H6 | ID -> XREU *** | 0.243 | 0.238 | 0.064 | 3.769 | 0.000 | 0.122 | 0.375 | Yes |
H7 | ON -> XRU *** | 0.223 | 0.226 | 0.051 | 4.366 | 0.000 | 0.126 | 0.326 | Yes |
H8 | ON -> XREU *** | 0.291 | 0.292 | 0.055 | 5.289 | 0.000 | 0.187 | 0.404 | Yes |
H9 | UP -> XRU ** | 0.160 | 0.158 | 0.051 | 3.134 | 0.002 | 0.061 | 0.258 | Yes |
H10 | UP -> XREU ** | 0.136 | 0.137 | 0.055 | 2.489 | 0.013 | 0.034 | 0.247 | Yes |
Endogenous Construct | SSO | SSE | Q2 (=1 − SSE/SSO) | Predictive Relevance |
---|---|---|---|---|
ID | 900.000 | 436.140 | 0.515 | Q2 > 0 |
IM | 900.000 | 422.971 | 0.530 | Q2 > 0 |
ITASG | 6300.000 | 3761.205 | 0.403 | Q2 > 0 |
ON | 900.000 | 405.964 | 0.549 | Q2 > 0 |
UP | 900.000 | 437.587 | 0.514 | Q2 > 0 |
XREU | 4500.000 | 2732.652 | 0.393 | Q2 > 0 |
XRU | 4500.000 | 2669.201 | 0.407 | Q2 > 0 |
ITASG | PLS-SEM | Linear Model Benchmark | ||||
---|---|---|---|---|---|---|
Q2_Predict | RMSE | MAE | Q2_Predict | RMSE | MAE | |
ITASG1 | 0.443 | 0.778 | 0.652 | 0.576 | 0.678 | 0.549 |
ITASG2 | 0.404 | 0.833 | 0.687 | 0.45 | 0.8 | 0.654 |
ITASG3 | 0.384 | 0.796 | 0.663 | 0.526 | 0.698 | 0.579 |
Predictor Construct/Dependent Construct | ID | IM | ITASG | ON | UP | XREU | XRU |
---|---|---|---|---|---|---|---|
ID | 0.252 | 0.243 | 0.346 | ||||
IM | 0.134 | 0.153 | 0.171 | ||||
ON | 0.198 | 0.291 | 0.223 | ||||
UP | 0.123 | 0.136 | 0.16 | ||||
XREU | 0.263 | ||||||
XRU | 0.544 |
Importance (Total Effect) | Importance (Total Effect) | Performances (Index Value) |
---|---|---|
ID | 0.222 | 77.533 |
IM | 0.140 | 71.042 |
ON | 0.184 | 73.921 |
UP | 0.115 | 67.941 |
XREU | 0.241 | 68.576 |
XRU | 0.493 | 71.502 |
Mean Value | 0.252 | 67.952 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; JosephNg, P.S. Technology Behavior Model—Beyond Your Sight with Extended Reality in Surgery. Appl. Syst. Innov. 2022, 5, 35. https://doi.org/10.3390/asi5020035
Gong X, JosephNg PS. Technology Behavior Model—Beyond Your Sight with Extended Reality in Surgery. Applied System Innovation. 2022; 5(2):35. https://doi.org/10.3390/asi5020035
Chicago/Turabian StyleGong, Xiaoxue, and Poh Soon JosephNg. 2022. "Technology Behavior Model—Beyond Your Sight with Extended Reality in Surgery" Applied System Innovation 5, no. 2: 35. https://doi.org/10.3390/asi5020035
APA StyleGong, X., & JosephNg, P. S. (2022). Technology Behavior Model—Beyond Your Sight with Extended Reality in Surgery. Applied System Innovation, 5(2), 35. https://doi.org/10.3390/asi5020035