Underlying Factors and Strategies for Organizational BIM Capabilities: The Case of Iran
Abstract
:1. Introduction
2. Literature Review and Context Background
2.1. Capability Factors Influencing OBIMC
2.2. Strategies for Improving OBIMC
2.2.1. Standardization
2.2.2. Policy
2.2.3. Training and Education
2.2.4. Motivation
2.2.5. Cultural Readiness
2.2.6. Network Relationships
2.2.7. Management of Processes and Performance
2.3. Study Positioning and Research Gap
3. Research Methodology
3.1. Survey Development
Code | Strategies for Improving Organizational BIM Capabilities | References |
---|---|---|
SBIM1 | Change staff attitude toward new technology | [47,80] |
SBIM2 | Encourage creativity among staff | [81] |
SBIM3 | Motivate staff to help each other | [81] |
SBIM4 | Provide the necessary BIM training | [80,81,82,83,84] |
SBIM5 | Have internal BIM policies | [57,85] |
SBIM6 | Hire competent supervisors to provide guidance | [2,53] |
SBIM7 | Ensure the database is sufficient for BIM-based projects | [2,47,76,86] |
SBIM8 | Create a partnership with BIM expert companies | [57] |
SBIM9 | Establish strategies to cater to client’s demand for BIM | [57,82] |
SBIM10 | Hire BIM experts into the company | [2,53] |
SBIM11 | Ensure good company history | [80] |
SBIM12 | Provide rewards and recognition to staff | [81] |
SBIM13 | Have top management provide clear company direction | [57,80,81,87] |
SBIM14 | Prepare staff for the demanding BIM-based construction projects | [47,83] |
Code | Capability Factors Affecting Organizational BIM Capabilities | References |
---|---|---|
CBIM1 | Staff have enough BIM experience | Interview, [47,49,61,88] |
CBIM2 | Staff have adequate academic qualifications | [47,49,88] |
CBIM3 | Company has sufficient BIM experience | [47,49,61,88,89] |
CBIM4 | Company has a standard process for evaluating BIM capability | Interview, [49,61,88,90] |
CBIM5 | Company has sufficient resources to implement BIM demand | [47,49,59,61,88,89] |
CBIM6 | Company has the necessary infrastructure (software and hardware) to implement BIM | Interview, [49,59,85,88] |
CBIM7 | Company has a good history of implementing BIM | [49,61,88] |
CBIM8 | Staff can design specific models using BIM | [49,61,88] |
CBIM9 | Company has specific roles for staff | [90] |
CBIM10 | Company and staff have the same goals | [47] |
CBIM11 | Company can provide a good cost structure | [6,49,88] |
CBIM12 | Company has a standard performance benchmarked | [47,59,61] |
CBIM13 | Staff receive guidance and supervision from BIM experts | Interview, [47,53,59] |
CBIM14 | Company has a good attitude toward new technology | [5,80] |
CBIM15 | Company can provide an example with rich BIM data | [90] |
CBIM16 | Company can provide the best products and services | [59] |
CBIM17 | Company has official standard contracts and agreements for BIM | [57,59] |
CBIM18 | Company has a Research and Development (R&D) department/team for BIM | [47] |
CBIM19 | Company understands its expertise | [47,90] |
3.2. Data Collection
4. Analysis and Results
4.1. Exploratory Factor Analysis (EFA)
4.2. Hypotheses for Structural Models
4.3. PLS-SEM Analysis
4.4. Measurement Model Assessment
4.5. Structural Model Assessment
5. Discussions
5.1. Relationship between BIMCR and OBIMC
5.2. Relationship between BIMCR and OCA
5.3. Relationship between OCU and OBIMC
5.4. Relationship between OCU and OCA
6. Conclusions
6.1. Theoretical Implications and Contribution
6.2. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIM | Building Information Modeling |
AECO | Architecture, Engineering, Construction, and Operation |
OBIMC | Organizational BIM Capabilities |
EFA | Exploratory Factor Analysis |
PLS-SEM | Partial Least-Squares Structural Equation Modeling |
VR | Virtual Reality |
AR | Augmented Reality |
OCA | Organizational Capabilities |
BIMCR | BIM Capability Requirement |
OCU | Organizational Culture |
IT | Information Technology |
SMEs | Small and Medium-sized Enterprises |
BEPs | BIM Execution Plans |
SLR | Systematic Literature Review |
R&D | Research and Development |
KMO | Kaiser-Meyer-Olkin |
PAF | Principal Axis Factoring |
SEM | Structural Equation Modeling |
CB–SEM | Covariance-based SEM |
AVE | Average Variance Extracted |
References
- NIBS (National Institute of Building Sciences). Frequently Asked Questions about the National BIM Standard—United States 2021. Available online: https://www.nationalbimstandard.org/faqs (accessed on 31 March 2022).
- Abbasnejad, B.; Nepal, M.P.; Ahankoob, A.; Nasirian, A.; Drogemuller, R. Building Information Modelling (BIM) adoption and implementation enablers in AEC firms: A systematic literature review. Archit. Eng. Des. Manag. 2021, 17, 411–433. [Google Scholar] [CrossRef]
- Global BIM Survey. U.S. Market Is Maturing as Advances Wake Imaginations–BIM Software & Autodesk Revit Apps T4R (Tools for Revit) 2021. Available online: https://agacad.com/blog/global-bim-survey-u-s-market-is-maturing-as-advances-wake-imaginations (accessed on 7 April 2022).
- Charef, R.; Emmitt, S.; Alaka, H.; Fouchal, F. Building Information Modelling adoption in the European Union: An overview. J. Build. Eng. 2019, 25, 100777. [Google Scholar] [CrossRef]
- Ahuja, R.; Sawhney, A.; Jain, M.; Arif, M.; Rakshit, S. Factors influencing BIM adoption in emerging markets–the case of India. Int. J. Constr. Manag. 2020, 20, 65–76. [Google Scholar] [CrossRef]
- Oraee, M.; Hosseini, M.R.; Edwards, D.J.; Li, H.; Papadonikolaki, E.; Cao, D. Collaboration barriers in BIM-based construction networks: A conceptual model. Int. J. Proj. Manag. 2019, 37, 839–854. [Google Scholar] [CrossRef]
- Bui, N.; Merschbrock, C.; Munkvold, B.E. A Review of Building Information Modelling for Construction in Developing Countries. Procedia Eng. 2016, 164, 487–494. [Google Scholar] [CrossRef]
- Chan, D.W.M.; Olawumi, T.O.; Ho, A.M.L. Perceived benefits of and barriers to Building Information Modelling (BIM) implementation in construction: The case of Hong Kong. J. Build. Eng. 2019, 25, 100764. [Google Scholar] [CrossRef]
- Gu, N.; London, K. Understanding and facilitating BIM adoption in the AEC industry. Autom. Constr. 2010, 19, 988–999. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W. A deployment framework for BIM localization. Eng. Constr. Archit. Manag. 2022, 29, 407–430. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Radzi, A.R.; Rezaeiashtiani, M.; Famili, A.; Rashidi, M.E.; Rahman, R.A. Key Assessment Criteria for Organizational BIM Capabilities: A Cross-Regional Study. Buildings 2022, 12, 1013. [Google Scholar] [CrossRef]
- Munianday, P.; Radzi, A.R.; Esa, M.; Rahman, R.A. Optimal Strategies for Improving Organizational BIM Capabilities: PLS-SEM Approach. J. Manag. Eng. 2022, 38, 04022015. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, H.; Lim, H.J.; Liu, P.; Sohn, H. Automated visualization of steel structure coating thickness using line laser scanning thermography. Autom. Constr. 2022, 139, 104267. [Google Scholar] [CrossRef]
- Moeinifard, P.; Rajabi, M.S.; Bitaraf, M. Lost Vibration Test Data Recovery Using Convolutional Neural Network: A Case Study. AUT J. Civ. Eng. 2021, 5, 701–714. [Google Scholar] [CrossRef]
- Shakerian, M.; Rajabi, M.S.; Tajik, M.; Taghaddos, H. Hybrid Simulation-based Resource Planning and Constructability Analysis of RCC Pavement Projects. arXiv 2022, arXiv:2204.05659. [Google Scholar] [CrossRef]
- Radzi, A.R.; Rahman, R.A.; Doh, S.I.; Esa, M. Construction Readiness for Highway Projects: Key Decision Criteria. J. Constr. Eng. Manag. 2022, 148, 04021196. [Google Scholar] [CrossRef]
- Radzi, A.R.; Rahman, R.A.; Doh, S.I. Decision making in highway construction: A systematic review and future directions. J. Eng. Des. Technol. 2021. [Google Scholar] [CrossRef]
- Lotfi, R.; Kargar, B.; Gharehbaghi, A.; Afshar, M.; Rajabi, M.S.; Mardani, N. A data-driven robust optimization for multi-objective renewable energy location by considering risk. Environ. Dev. Sustain. 2022, 1–22. [Google Scholar] [CrossRef]
- Erfani, A.; Tavakolan, M.; Mashhadi, A.H.; Mohammadi, P. Heterogeneous or homogeneous? A modified decision-making approach in renewable energy investment projects. AIMS Energy 2021, 9, 558–580. [Google Scholar] [CrossRef]
- Erfani, A.; Cui, Q. Predictive risk modeling for major transportation projects using historical data. Autom. Constr. 2022, 139, 104301. [Google Scholar] [CrossRef]
- Aghakhani, S.; Rajabi, M.S. A New Hybrid Multi-Objective Scheduling Model for Hierarchical Hub and Flexible Flow Shop Problems. arXiv 2022, arXiv:2205.06465. [Google Scholar] [CrossRef]
- Zhang, S.; Teizer, J.; Lee, J.-K.; Eastman, C.M.; Venugopal, M. Building Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules. Autom. Constr. 2013, 29, 183–195. [Google Scholar] [CrossRef]
- Mudiyanselage, S.E.; Nguyen, P.H.D.; Rajabi, M.S.; Akhavian, R. Automated Workers’ Ergonomic Risk Assessment in Manual Material Handling Using sEMG Wearable Sensors and Machine Learning. Electronics 2021, 10, 2558. [Google Scholar] [CrossRef]
- Saaty, M.; Haqq, D.; Toms, D.B.; Eltahir, I.; McCrickard, D.S. A Study on Pokémon GO: Exploring the Potential of Location-based Mobile Exergames in Connecting Players with Nature. In Extended Abstracts of the 2021 Annual Symposium on Computer-Human Interaction in Play; ACM: New York, NY, USA, 2021; pp. 128–132. [Google Scholar] [CrossRef]
- Safikhani, S.; Keller, S.; Schweiger, G.; Pirker, J. Immersive virtual reality for extending the potential of building information modeling in architecture, engineering, and construction sector: Systematic review. Int. J. Digit. Earth 2022, 15, 503–526. [Google Scholar] [CrossRef]
- Zhang, M.; Shu, L.; Luo, X.; Yuan, M.; Zheng, X. Virtual reality technology in construction safety training: Extended technology acceptance model. Autom. Constr. 2022, 135, 104113. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Taghaddos, H.; Zahrai, M. Improving Emergency Training for Earthquakes Through Immersive Virtual Environments and Anxiety Tests: A Case Study. arXiv 2022, arXiv:2205.04993. [Google Scholar] [CrossRef]
- Schiavi, B.; Havard, V.; Beddiar, K.; Baudry, D. BIM data flow architecture with AR/VR technologies: Use cases in architecture, engineering and construction. Autom. Constr. 2022, 134, 104054. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Yitmen, I. Digital twin-based progress monitoring management model through reality capture to extended reality technologies (DRX). Smart Sustain. Built Environ. 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Akhavian, R.; Behzadan, A.H. Smartphone-based construction workers’ activity recognition and classification. Autom. Constr. 2016, 71, 198–209. [Google Scholar] [CrossRef]
- Nath, N.D.; Akhavian, R.; Behzadan, A.H. Ergonomic analysis of construction worker’s body postures using wearable mobile sensors. Appl. Ergon. 2017, 62, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Famili, A.; Park, J.-M.J. Rolatin: Robust Localization and Tracking for Indoor Navigation of Drones. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Famili, A.; Stavrou, A.; Wang, H.; Park, J.-M.J. RAIL: Robust Acoustic Indoor Localization for Drones. arXiv 2021, arXiv:2111.03764. [Google Scholar] [CrossRef]
- Famili, A.; Stavrou, A.; Wang, H.; Park, J.-M.J. iDROP: Robust Localization for Indoor Navigation of Drones with Optimized Beacon Placement. arXiv 2022, arXiv:2201.10698. [Google Scholar] [CrossRef]
- Beigi, P.; Rajabi, M.S.; Aghakhani, S. An Overview of Drone Energy Consumption Factors and Models. arXiv 2022, arXiv:2206.10775. [Google Scholar] [CrossRef]
- Rajabi, M.S.; Beigi, P.; Aghakhani, S. Drone Delivery Systems and Energy Management: A Review and Future Trends. arXiv 2022, arXiv:2206.10765. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Hadavi, A.; Huang, J.C. From BIM to extended reality in AEC industry. Autom. Constr. 2020, 116, 103254. [Google Scholar] [CrossRef]
- Qiu, Q.; Wang, M.; Guo, J.; Liu, Z.; Wang, Q. An adaptive down-sampling method of laser scan data for scan-to-BIM. Autom. Constr. 2022, 135, 104135. [Google Scholar] [CrossRef]
- Gan, V.J.L. BIM-Based Building Geometric Modeling and Automatic Generative Design for Sustainable Offsite Construction. J. Constr. Eng. Manag. 2022, 148, 04022111. [Google Scholar] [CrossRef]
- Olanrewaju, O.I.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the relationship between Building Information Modelling (BIM) implementation barriers, usage and awareness on building project lifecycle. Build Environ. 2022, 207, 108556. [Google Scholar] [CrossRef]
- Bifulco, I.; Cirillo, S.; Esposito, C.; Guadagni, R.; Polese, G. An intelligent system for focused crawling from Big Data sources. Expert. Syst. Appl. 2021, 184, 115560. [Google Scholar] [CrossRef]
- Haghir, S.; Haghnazar, R.; Saghafi Moghaddam, S.; Keramat, D.; Matini, M.R.; Taghizade, K. BIM based decision-support tool for automating design to fabrication process of freeform lattice space structure. Int. J. Space Struct. 2021, 36, 164–179. [Google Scholar] [CrossRef]
- Penttilä, H.; Rajala, M.; Freese, S. Building information modelling of modern historic buildings. In Proceedings of the 25th International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe), Frankfurt/Wiesbaden, Germany, 26–29 September 2007. [Google Scholar]
- Vilventhan, A.; Razin, S.; Rajadurai, R. 4D BIM models for smart utility relocation management in urban infrastructure projects. Facilities 2021, 39, 50–63. [Google Scholar] [CrossRef]
- Banihashemi, S.; Khalili, S.; Sheikhkhoshkar, M.; Fazeli, A. Machine learning-integrated 5D BIM informatics: Building materials costs data classification and prototype development. Innov. Infrastruct. Solut. 2022, 7, 215. [Google Scholar] [CrossRef]
- Matthews, J.; Love, P.E.D.; Heinemann, S.; Chandler, R.; Rumsey, C.; Olatunj, O. Real time progress management: Re-engineering processes for cloud-based BIM in construction. Autom. Constr. 2015, 58, 38–47. [Google Scholar] [CrossRef]
- Succar, B.; Sher, W.; Williams, A. An integrated approach to BIM competency assessment, acquisition and application. Autom. Constr. 2013, 35, 174–189. [Google Scholar] [CrossRef]
- Haron, A.T.; Marshall-Ponting, A.J.; Zakaria, Z.; Nawi, M.N.M.; Hamid, Z.A.; Kamar, K.A.M. An industrial report on the Malaysian building information modelling (BIM) taskforce: Issues and recommendations. Malays. Constr. Res. J. 2015, 17, 21–36. [Google Scholar]
- Mahamadu, A.-M.; Mahdjoubi, L.; Booth, C.; Manu, P.; Manu, E. Building information modelling (BIM) capability and delivery success on construction projects. Constr. Innov. 2019, 19, 170–192. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Dib, H.; Rober, F.C. A measurement model of building information modelling maturity. Constr. Innov. 2014, 14, 186–209. [Google Scholar] [CrossRef]
- Qin, X.; Shi, Y.; Lyu, K.; Mo, Y. Using a tam-toe model to explore factors of building information modelling (bim) adoption in the construction industry. J. Civ. Eng. Manag. 2020, 26, 259–277. [Google Scholar] [CrossRef]
- Alsabbagh, M.; AL Khalil, A.H. The Impact of Organizational Culture on Organizational Learning (An Empirical Study on the Education Sector in Damascus City). Int. J. Acad. Res. Bus. Soc. Sci. 2017, 7, 579–600. [Google Scholar] [CrossRef] [Green Version]
- Mirhosseini, S.A.; Kiani Mavi, R.; Kiani Mavi, N.; Abbasnejad, B.; Rayani, F. Interrelations among Leadership Competencies of BIM Leaders: A Fuzzy DEMATEL-ANP Approach. Sustainability 2020, 12, 7830. [Google Scholar] [CrossRef]
- Yoo, S.J.; Han, S. The effect of the attitude towards e-learning: The employees’ intention to use e-learning in the workplace. Int. J. E-Learn. 2013, 12, 425–438. [Google Scholar]
- Lee, S.; Yu, J.; Jeong, D. BIM Acceptance Model in Construction Organizations. J. Manag. Eng. 2015, 31, 04014048. [Google Scholar] [CrossRef]
- Arayici, Y.; Coates, P.; Koskela, L.; Kagioglou, M.; Usher, C.; O’Reilly, K. Technology adoption in the BIM implementation for lean architectural practice. Autom. Constr. 2011, 20, 189–195. [Google Scholar] [CrossRef]
- Wong, A.K.D.; Wong, F.K.W.; Nadeem, A. Attributes of Building Information Modelling Implementations in Various Countries. Archit. Eng. Des. Manag. 2010, 6, 288–302. [Google Scholar] [CrossRef]
- Succar, B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Autom. Constr. 2009, 18, 357–375. [Google Scholar] [CrossRef]
- Succar, B.; Sher, W.; Williams, A. Measuring BIM performance: Five metrics. Archit. Eng. Des. Manag. 2012, 8, 120–142. [Google Scholar] [CrossRef]
- Kam, C.; Senaratna, D.; McKinney, B.; Xiao, Y.; Song, M. The VDC Scorecard: Formulation and Validation; Center for Integrated Facility Engineering, Stanford University: Stanford, CA, USA, 2013. [Google Scholar]
- Mahamadu, A.-M.; Mahdjoubi, L.; Booth, C.A. Critical BIM qualification criteria for construction pre-qualification and selection. Archit. Eng. Des. Manag. 2017, 13, 326–343. [Google Scholar] [CrossRef]
- Barlish, K.; Sullivan, K. How to measure the benefits of BIM—A case study approach. Autom. Constr. 2012, 24, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Eastman, C.M.; Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Azhar, S.; Carlton, W.A.; Olsen, D.; Ahmad, I. Building information modeling for sustainable design and LEED® rating analysis. Autom. Constr. 2011, 20, 217–224. [Google Scholar] [CrossRef]
- Kassem, M.; Iqbal, N.; Kelly, G.; Lockley, S.; Dawood, N. Building information modelling: Protocols for collaborative design processes. J. Inf. Technol. Constr. 2014, 19, 126–149. [Google Scholar]
- Ahn, Y.H.; Kwak, Y.H.; Suk, S.J. Contractors’ Transformation Strategies for Adopting Building Information Modeling. J. Manag. Eng. 2016, 32, 05015005. [Google Scholar] [CrossRef]
- Gegenfurtner, A.; Veermans, K.; Festner, D.; Gruber, H. Integrative Literature Review: Motivation to Transfer Training: An Integrative Literature Review. Hum. Resour. Dev. Rev. 2009, 8, 403–423. [Google Scholar] [CrossRef]
- Peansupap, V.; Walker, D.H.T. Innovation diffusion at the implementation stage of a construction project: A case study of information communication technology. Constr. Manag. Econ. 2006, 24, 321–332. [Google Scholar] [CrossRef]
- Azhar, S. Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- Singh, V.; Gu, N.; Wang, X. A theoretical framework of a BIM-based multi-disciplinary collaboration platform. Autom. Constr. 2011, 20, 134–144. [Google Scholar] [CrossRef]
- Adriaanse, A.; Voordijk, H.; Dewulf, G. The use of interorganisational ICT in United States construction projects. Autom. Constr. 2010, 19, 73–83. [Google Scholar] [CrossRef]
- Green, S.D.; Fernie, S.; Weller, S. Making sense of supply chain management: A comparative study of aerospace and construction. Constr. Manag. Econ. 2005, 23, 579–593. [Google Scholar] [CrossRef]
- Klein, K.J.; Knight, A.P. Innovation Implementation. Curr. Dir. Psychol. Sci. 2005, 14, 243–246. [Google Scholar] [CrossRef]
- Kokkonen, A.; Alin, P. Practitioners deconstructing and reconstructing practices when responding to the implementation of BIM. Constr. Manag. Econ. 2016, 34, 578–591. [Google Scholar] [CrossRef]
- Khosrowshahi, F.; Arayici, Y. Roadmap for implementation of BIM in the UK construction industry. Eng. Constr. Archit. Manag. 2012, 19, 610–635. [Google Scholar] [CrossRef] [Green Version]
- Succar, B.; Kassem, M. Macro-BIM adoption: Conceptual structures. Autom. Constr. 2015, 57, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Liu, R.; Issa, R.R.A. BIM Cloud Score: Benchmarking BIM Performance. J. Constr. Eng. Manag. 2014, 140, 04014054. [Google Scholar] [CrossRef]
- Baden-Fuller, C.; Winter, S.G. Replicating Organizational Knowledge: Principles or Templates? SSRN Electron. J. 2008. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Wu, Y. Green strategy for gaining competitive advantage in housing development: A China study. J. Clean. Prod. 2011, 19, 157–167. [Google Scholar] [CrossRef]
- Lattuch, F.; Hickey, R.B. From intention to action: An organizational learning case of implementing Building Information Modeling. Dev. Learn. Organ. Int. J. 2019, 34, 1–4. [Google Scholar] [CrossRef]
- Olatunji, O.A. Promoting student commitment to BIM in construction education. Eng. Constr. Archit. Manag. 2019, 26, 1240–1260. [Google Scholar] [CrossRef]
- Jones, B.I. A study of Building Information Modeling (BIM) uptake and proposed evaluation framework. J. Inf. Technol. Constr. 2020, 25, 452–468. [Google Scholar] [CrossRef]
- Harris, M.; Ismail, E.; Hussain, A.H. Business value of bim in malaysia’s aec industry: Preliminary findings. Malays. Constr. Res. J. 2015, 16, 31–41. [Google Scholar]
- Rice, J.; Martin, N. Smart infrastructure technologies: Crowdsourcing future development and benefits for Australian communities. Technol. Forecast. Soc. Chang. 2020, 153, 119256. [Google Scholar] [CrossRef]
- Wang, Y.; Gosling, J.; Naim, M.M. Assessing supplier capabilities to exploit building information modelling. Constr. Innov. 2019, 19, 491–510. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Marzouk, M.M. An integrated framework for managing building facilities. J. Eng. Appl. Sci. 2020, 67, 809–828. [Google Scholar]
- Subki, S.F.; Mahazir, M. Capability of building information modelling (bim) in improving the efficiency of green building project in klang valley–A literature review. Malays. Constr. Res. J. 2019, 7, 74–80. [Google Scholar]
- Mahamadu, A.-M.; Manu, P.; Mahdjoubi, L.; Booth, C.; Aigbavboa, C.; Abanda, F.H. The importance of BIM capability assessment. Eng. Constr. Archit. Manag. 2019, 27, 24–48. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, R.; Sawhney, A.; Arif, M. Developing organizational capabilities to deliver lean and green project outcomes using BIM. Eng. Constr. Archit. Manag. 2018, 25, 1255–1276. [Google Scholar] [CrossRef]
- McCuen, T.L.; Suermann, P.C.; Krogulecki, M.J. Evaluating Award-Winning BIM Projects Using the National Building Information Model Standard Capability Maturity Model. J. Manag. Eng. 2012, 28, 224–230. [Google Scholar] [CrossRef]
- Zhao, X.; Hwang, B.-G.; Pheng Low, S.; Wu, P. Reducing Hindrances to Enterprise Risk Management Implementation in Construction Firms. J. Constr. Eng. Manag. 2015, 141, 04014083. [Google Scholar] [CrossRef]
- Patton, M.Q. Qualitative Research & Evaluation Methods: Integrating Theory and Practice; Sage Publications: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Wilkins, J.R. Construction workers’ perceptions of health and safety training programmes. Constr. Manag. Econ. 2011, 29, 1017–1026. [Google Scholar] [CrossRef]
- Mao, C.; Shen, Q.; Pan, W.; Ye, K. Major Barriers to Off-Site Construction: The Developer’s Perspective in China. J. Manag. Eng. 2015, 31, 04014043. [Google Scholar] [CrossRef]
- Norusis, M. SPSS 16.0 Advanced Statistical Procedure; Companion Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Gorsuch, R.L. Factor Analysis, 2nd ed.; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1983. [Google Scholar]
- Julie, P. SPSS Survival Manual-A Step by Step Guide to Data Analysis Using SPSS; Routledge: London, UK, 2011. [Google Scholar]
- de Winter, J.C.F.; Dodou, D. Factor recovery by principal axis factoring and maximum likelihood factor analysis as a function of factor pattern and sample size. J. Appl. Stat. 2012, 39, 695–710. [Google Scholar] [CrossRef]
- Olanipekun, A.O.; Xia, B.; Hon, C.; Hu, Y. Project owners’ motivation for delivering green building projects. J. Constr. Eng. Manag.-ASCE 2017, 143. [Google Scholar] [CrossRef] [Green Version]
- Radzi, A.R.; Rahman, R.A.; Almutairi, S. Modeling COVID-19 Impacts and Response Strategies in the Construction Industry: PLS–SEM Approach. Int. J. Environ. Res. Public Health 2022, 19, 5326. [Google Scholar] [CrossRef]
- Field, A.; Miles, J. Discovering Statistics Using SAS; Sage: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Ghosh, S.; Jintanapakanont, J. Identifying and assessing the critical risk factors in an underground rail project in Thailand: A factor analysis approach. Int. J. Proj. Manag. 2004, 22, 633–643. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Joreskog, K.G. The ML and PLS techniques for modeling with latent variables: Historical and comparative aspects. In Systems under Indirect Observation, Part I; North-Holland: Amsterdam, The Netherlands, 1982; pp. 263–270. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Management and Planning Organization of Tehran; Project Management and Building Information Modeling (PMBIM). Iran BIM Strategic Plan for Public Construction Projects Vision Document; Sharif University of Technology: Tehran, Iran, 2021. [Google Scholar]
- ISO-ISO 19650-1, 2018-Organization and Digitization of Information about Buildings and Civil Engineering Works, including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1, Concepts and Principles n.d. Available online: https://www.iso.org/standard/68078.html (accessed on 17 July 2022).
Characteristics | Categories | Frequency | Percentage (%) |
---|---|---|---|
Years of experience in the construction industry | Less than 2 years | 26 | 20.6 |
2–5 years | 60 | 47.6 | |
6–9 years | 25 | 19.8 | |
10 years and above | 15 | 11.9 | |
Type of organization | Clients | 13 | 10.3 |
Contractors | 29 | 23.0 | |
Consultants | 63 | 50.0 | |
Others | 21 | 16.7 | |
Types of projects that used BIM | Infrastructure construction | 11 | 8.7 |
Building construction (residential) | 42 | 33.3 | |
Building construction (non-residential) | 52 | 41.3 | |
Industrial construction | 17 | 13.5 | |
Others | 4 | 3.2 | |
Number of BIM projects involved | 1 to 5 projects | 79 | 62.7 |
6 to 10 projects | 21 | 16.7 | |
More than 10 projects | 26 | 20.6 |
Constructs | Code | Factor Loadings | Variance Explained (%) | Cronbach’s Alpha |
---|---|---|---|---|
BIM Capability Requirement (BIMCR) | SBIM5 | 0.637 | 52.481 | 0.886 |
SBIM6 | 0.590 | |||
SBIM7 | 0.648 | |||
SBIM8 | 0.663 | |||
SBIM9 | 0.765 | |||
SBIM10 | 0.716 | |||
SBIM14 | 0.560 | |||
OCU | SBIM2 | 0.721 | 11.848 | 0.791 |
SBIM1 | 0.650 | |||
SBIM3 | 0.742 |
Constructs | Code | Factor Loadings | Variance Explained (%) | Cronbach’s Alpha |
---|---|---|---|---|
OBIMC | CBIM4 | 0.834 | 58.057 | 0.935 |
CBIM9 | 0.823 | |||
CBIM8 | 0.712 | |||
CBIM17 | 0.711 | |||
CBIM13 | 0.695 | |||
CBIM5 | 0.689 | |||
CBIM18 | 0.657 | |||
CBIM15 | 0.532 | |||
OC | CBIM16 | 0.751 | 8.192 | 0.870 |
CBIM11 | 0.677 | |||
CBIM12 | 0.633 | |||
CBIM14 | 0.600 | |||
CBIM19 | 0.585 | |||
CBIM10 | 0.552 |
Constructs | Indicators | Loadings | AVE | CR | CA |
---|---|---|---|---|---|
BIMCR | SBIM5 | 0.799 | 0.596 | 0.911 | 0.887 |
SBIM6 | 0.720 | ||||
SBIM7 | 0.773 | ||||
SBIM8 | 0.728 | ||||
SBIM9 | 0.774 | ||||
SBIM10 | 0.841 | ||||
SBIM14 | 0.763 | ||||
OCU | SBIM2 | 0.799 | 0.705 | 0.878 | 0.791 |
SBIM1 | 0.852 | ||||
SBIM3 | 0.866 | ||||
BIMCR | CBIM4 | 0.866 | 0.689 | 0.946 | 0.935 |
CBIM9 | 0.882 | ||||
CBIM8 | 0.845 | ||||
CBIM17 | 0.892 | ||||
CBIM13 | 0.801 | ||||
CBIM5 | 0.774 | ||||
CBIM18 | 0.810 | ||||
CBIM15 | 0.760 | ||||
OCA | CBIM16 | 0.823 | 0.606 | 0.902 | 0.870 |
CBIM11 | 0.739 | ||||
CBIM12 | 0.806 | ||||
CBIM14 | 0.788 | ||||
CBIM19 | 0.778 | ||||
CBIM10 | 0.733 |
Constructs/Indicators | BIMCR | OCU | OBIMC | OCA |
---|---|---|---|---|
SBIM5 | 0.799 | 0.509 | 0.327 | 0.385 |
SBIM6 | 0.720 | 0.504 | 0.266 | 0.226 |
SBIM7 | 0.773 | 0.536 | 0.204 | 0.275 |
SBIM8 | 0.728 | 0.362 | 0.325 | 0.274 |
SBIM9 | 0.774 | 0.327 | 0.370 | 0.306 |
SBIM10 | 0.841 | 0.489 | 0.388 | 0.398 |
SBIM14 | 0.763 | 0.553 | 0.311 | 0.345 |
SBIM1 | 0.569 | 0.799 | 0.275 | 0.362 |
SBIM2 | 0.462 | 0.852 | 0.325 | 0.389 |
SBIM3 | 0.495 | 0.866 | 0.369 | 0.413 |
CBIM4 | 0.302 | 0.273 | 0.866 | 0.612 |
CBIM5 | 0.229 | 0.258 | 0.774 | 0.592 |
CBIM8 | 0.357 | 0.384 | 0.845 | 0.646 |
CBIM9 | 0.409 | 0.312 | 0.882 | 0.635 |
CBIM13 | 0.301 | 0.295 | 0.801 | 0.600 |
CBIM15 | 0.298 | 0.313 | 0.760 | 0.632 |
CBIM17 | 0.446 | 0.394 | 0.892 | 0.701 |
CBIM18 | 0.342 | 0.304 | 0.810 | 0.622 |
CBIM10 | 0.257 | 0.286 | 0.644 | 0.733 |
CBIM11 | 0.261 | 0.316 | 0.473 | 0.739 |
CBIM12 | 0.279 | 0.401 | 0.655 | 0.806 |
CBIM14 | 0.411 | 0.402 | 0.573 | 0.788 |
CBIM16 | 0.406 | 0.384 | 0.598 | 0.823 |
CBIM19 | 0.296 | 0.348 | 0.621 | 0.778 |
Hypotheses | Paths | Path Coefficient | t-Value | Decisions |
---|---|---|---|---|
H1 | BIMCR→OBIMC | 0.284 | 2.779 *** | Supported |
H2 | BIMCR→OCA | 0.219 | 2.252 ** | Supported |
H3 | OCU→OBIMC | 0.217 | 1.907 * | Supported |
H4 | OCU→OCA | 0.331 | 2.900 *** | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, M.S.; Rezaeiashtiani, M.; Radzi, A.R.; Famili, A.; Rezaeiashtiani, A.; Rahman, R.A. Underlying Factors and Strategies for Organizational BIM Capabilities: The Case of Iran. Appl. Syst. Innov. 2022, 5, 109. https://doi.org/10.3390/asi5060109
Rajabi MS, Rezaeiashtiani M, Radzi AR, Famili A, Rezaeiashtiani A, Rahman RA. Underlying Factors and Strategies for Organizational BIM Capabilities: The Case of Iran. Applied System Innovation. 2022; 5(6):109. https://doi.org/10.3390/asi5060109
Chicago/Turabian StyleRajabi, Mohammad Sadra, Mohammad Rezaeiashtiani, Afiqah R. Radzi, Alireza Famili, Amirhossein Rezaeiashtiani, and Rahimi A. Rahman. 2022. "Underlying Factors and Strategies for Organizational BIM Capabilities: The Case of Iran" Applied System Innovation 5, no. 6: 109. https://doi.org/10.3390/asi5060109
APA StyleRajabi, M. S., Rezaeiashtiani, M., Radzi, A. R., Famili, A., Rezaeiashtiani, A., & Rahman, R. A. (2022). Underlying Factors and Strategies for Organizational BIM Capabilities: The Case of Iran. Applied System Innovation, 5(6), 109. https://doi.org/10.3390/asi5060109