Optical Flow-Based Extraction of Breathing Signal from Cone Beam CT Projections
Abstract
:1. Introduction
2. Literature Review
2.1. Slow CT Scanning
2.2. Breath Hold
2.3. Abdominal Compression
2.4. Surface Block Markers
2.5. Spirometer
2.6. Image-Based Methods
2.6.1. Fiducial Marker Tracking
2.6.2. Diaphragm Tracking
2.6.3. Markerless (Amplitude/Phase) Binning
3. Materials and Methods
3.1. Datasets
3.2. Feature Tracking Using Optical Flow
3.3. Respiratory Motion Analysis Using Principal Component Analysis (PCA)
3.4. Respiratory Phase Sorting and 4D CBCT Reconstruction
4. Results and Discussion
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cancer. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 16 August 2024).
- Ehrhardt, J.; Lorenz, C. 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wijenayake, U.; Park, S.-Y. Respiratory motion estimation using visual coded markers for radiotherapy. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, Gyeongju, Republic of Korea, 24–28 March 2014. [Google Scholar] [CrossRef]
- Korreman, S.; Mostafavi, H.; Le, Q.T.; Boyer, A. Comparison of respiratory surrogates for gated lung radiotherapy without internal fiducials. Acta Oncol. 2006, 45, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Yin, F.F.; Zhu, G.P.; Ajlouni, M.; Kim, J.H. The correlation evaluation of a tumor tracking system using multiple external markers. J. Med. Phys. 2006, 33, 4073–4084. [Google Scholar] [CrossRef]
- Gierga, D.; Sharp, G.; Brewer, J.; Betke, M.; Willett, C.; Chen, G.T. Correlation between external and internal markers for abdominal tumors: Implications for respiratory gating. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, S186–S187. [Google Scholar] [CrossRef]
- Sabah, S. Optical Flow Based Extraction of Breathing Signal from Cone-Beam CT Projections. Master’s Thesis, American University of Sharjah, Sharjah, United Arab Emirates, 2020. Available online: http://hdl.handle.net/11073/16715 (accessed on 26 June 2024).
- Chinneck, C.D.; McJury, M.; Hounsell, A.R. The potential for undertaking slow CT using a modern CT scanner. Br. J. Radiol. 2010, 83, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Wurstbauer, K.; Deutschmann, H.; Kopp, P.; Sedlmayer, F. Radiotherapy planning for lung cancer: Slow CTs allow the drawing of tighter margins. Radiother. Oncol. 2005, 75, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.J.; Martin, D.; Whyte, R.; Hai, J.; Ozhasoglu, C.; Le, Q.T. The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Heinzerling, J.; Anderson, J.; Papiez, L.; Boike, T.; Chien, S.; Zhang, G.; Abdulrahman, R.; Timmerman, R. Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1571–1578. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Zhu, G.; Yang, J.; Lu, M.; Ajlouni, M.; Kim, L.; Yin, F. The investigation on the location effect of external markers in respiratory-gated radiotherapy. J. Appl. Clin. Med. Phys. Am. Coll. Med. Phys. 2008, 9, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Keller, H.; O’Brien, M.J.; Mackie, T.R.; Paliwal, B. Application of the spirometer in respiratory gated radiotherapy. Med. Phys. 2003, 30, 3165–3171. [Google Scholar] [CrossRef] [PubMed]
- Imura, M.; Yamazaki, K.; Shirato, H.; Onimaru, R.; Fujino, M.; Shimizu, S.; Harada, T.; Ogura, S.; Akita, H.D.; Miyasaka, K.; et al. Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 1442–1447. [Google Scholar] [CrossRef]
- Kothary, N.; Heit, J.; Louie, J.; Kuo, W.; Loo, B.; Koong, A.; Chang, D.; Hovsepian, D.; Sze, D.; Hofmann, L. Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J. Vasc. Interv. Radiol. 2009, 20, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Cerviño, L.I.; Chao, A.K.; Sandhu, A.; Jiang, S.B. The diaphragm as an anatomic surrogate for lung tumor motion. Phys. Med. Biol. 2009, 54, 3529–3541. [Google Scholar] [CrossRef] [PubMed]
- Wie, J.; Chao, M. A constrained linear regression optimization algorithm for diaphragm motion tracking with cone beam CT projections. Phys. Medica 2018, 46, 7–15. [Google Scholar] [CrossRef]
- Kubota, Y.; Aoki, K.; Nagahashi, H.; Minohara, S.-i. Pulmonary motion tracking from 4D-CT images using a 3D-KLT tracker. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 3475–3479. [Google Scholar] [CrossRef]
- Vergalasova, I.; Cai, J.; Yin, F.F. A novel technique for markerless, self-sorted 4D-CBCT: Feasibility study. Med. Phys. 2012, 39, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Dhou, S.; Motai, Y.; Hugo, G.D. Local intensity feature tracking and motion modeling for respiratory signal extraction in cone beam CT projections. IEEE Trans. Biomed. Eng. 2013, 60, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Dhou, S.; Docef, A.; Hugo, G. Image-based Respiratory Signal Extraction Using Dimensionality Reduction for Phase Sorting in Cone-Beam CT Projections. In Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics, Newark, NJ, USA, 18–20 October 2017. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Yi, B.; Hugo, G.; Gach, H.M.; Motai, Y. A Novel Method of Cone Beam CT Projection Binning Based on Image Registration. IEEE Trans. Med. Imaging 2017, 36, 1733–1745. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.; Wei, J.; Yuan, Y.; Lo, Y. SU-G-BRA-10: Marker Free Lung Tumor Motion Tracking by An Active Contour Model On Cone Beam CT Projections for Stereotactic Body Radiation Therapy of Lung Cancer. Med. Phys. 2016, 43, 3637. [Google Scholar] [CrossRef]
- Fischer, P.; Pohl, T.; Faranesh, A.; Maier, A.; Hornegger, J. Unsupervised Learning for Robust Respiratory Signal Estimation From X-Ray Fluoroscopy. IEEE Trans. Med. Imaging 2017, 36, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Geimer, T.; Unberath, M.; Birlutiu, A.; Taubmann, O.; Wolfelschneider, J.; Bert, C.; Maier, A. A kernel-based framework for intra-fractional respiratory motion estimation in radiation therapy. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017; pp. 1036–1039. [Google Scholar] [CrossRef]
- Sabah, S.; Dhou, S. Image-based extraction of breathing signal from cone-beam CT projections. In Proceedings of the Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, Houston, TX, USA, 15–20 February 2020; Volume 11315. [Google Scholar] [CrossRef]
- Mylonas, A.; Booth, J.; Nguyen, D.T. A review of artificial intelligence applications for motion tracking in radiotherapy. J. Med. Imaging Radiat. Oncol. 2021, 65, 596–611. [Google Scholar] [CrossRef]
- Horn, B.K.P.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef]
- Sun, D.; Roth, S.; Black, M.J. Secrets of optical flow estimation and their principles. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2432–2439. [Google Scholar] [CrossRef]
- van der Maaten, L. Matlab Toolbox for Dimensionality Reduction. Available online: https://lvdmaaten.github.io/drtoolbox/ (accessed on 15 November 2019).
- Rit, S.; Oliva, M.V.; Brousmiche, S.; Labarbe, R.; Sarrut, D.; Sharp, G.C. The Reconstruction Toolkit (RTK), an open-source cone-beam CT reconstruction toolkit based on the Insight Toolkit (ITK). J. Phys. Conf. Ser. 2014, 489, 012079. [Google Scholar] [CrossRef]
- Segars, W.P.; Sturgeon, G.; Mendonca, S.; Grimes, J.; Tsui, B.M. 4D XCAT phantom for multimodality imaging research. Med. Phys. 2010, 37, 4902–4915. [Google Scholar] [CrossRef]
- Segars, W.P.; Tsui, B.M.; Cai, J.; Yin, F.F.; Fung, G.S.; Samei, E. Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond. IEEE Trans. Med. Imaging 2018, 37, 680–692. [Google Scholar] [CrossRef]
- Zhi, S.; Kachelrieß, M.; Mou, X. High-quality initial image-guided 4D CBCT reconstruction. Med. Phys. 2020, 47, 2099–2115. [Google Scholar] [CrossRef]
- Huang, Y.; Thielemans, K.; Price, G.; McClelland, J.R. Surrogate-driven respiratory motion model for projection-resolved motion estimation and motion compensated cone-beam CT reconstruction from unsorted projection data. Phys. Med. Biol. 2024, 69, 025020. [Google Scholar] [CrossRef]
- Zhi, S.; Kachelrie, B.M.; Pan, F.; Mou, X. CycN-Net: A Convolutional Neural Network Specialized for 4D CBCT Images Refinement. IEEE Trans. Med. Imaging 2021, 40, 3054–3064. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Tsui, T.; Liang, X.; Xie, Y.; Hu, Z.; Niu, T. Four-Dimensional Cone Beam CT Imaging Using a Single Routine Scan via Deep Learning. IEEE Trans. Med. Imaging 2023, 42, 1495–1508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, J.; Yang, D.; Kamilov, U.S.; Hugo, G.D. Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction. Med. Phys. 2023, 50, 808–820. [Google Scholar] [CrossRef]
- Dweek, S.; Dhou, S.; Shanableh, T. In-between projection interpolation in cone-beam CT imaging using convolutional neural networks. In Proceedings of the Medical Imaging 2022: Physics of Medical Imaging, San Diego, CA, USA, 20 February–28 March 2022. [Google Scholar] [CrossRef]
- Dhou, S.; Hugo, G.D.; Docef, A. Motion-based projection generation for 4D-CT reconstruction. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 1698–1702. [Google Scholar] [CrossRef]
Dataset | Projection Size | Number of Projections | Imaging System | Ground-Truth Breathing Signal |
---|---|---|---|---|
Patient 1 | 512 × 512 | 701 | XVI 3.5 (Elekta) | Diaphragm motion |
Patient 2 | 768 × 1024 | 1220 | OBI (Varian) | Internal marker trace |
Patient 3 | 768 × 1024 | 2396 | OBI (Varian) | Internal marker trace |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabah, S.; Dhou, S. Optical Flow-Based Extraction of Breathing Signal from Cone Beam CT Projections. Appl. Syst. Innov. 2025, 8, 20. https://doi.org/10.3390/asi8010020
Sabah S, Dhou S. Optical Flow-Based Extraction of Breathing Signal from Cone Beam CT Projections. Applied System Innovation. 2025; 8(1):20. https://doi.org/10.3390/asi8010020
Chicago/Turabian StyleSabah, Shafiya, and Salam Dhou. 2025. "Optical Flow-Based Extraction of Breathing Signal from Cone Beam CT Projections" Applied System Innovation 8, no. 1: 20. https://doi.org/10.3390/asi8010020
APA StyleSabah, S., & Dhou, S. (2025). Optical Flow-Based Extraction of Breathing Signal from Cone Beam CT Projections. Applied System Innovation, 8(1), 20. https://doi.org/10.3390/asi8010020