Corrosion Mechanism of A Density-Reduced Steel Ladle Lining Containing Porous Spinel-Calcium Aluminate Aggregates
Abstract
:1. Introduction
- a lower material requirement per ladle lining;
- a lower energy loss through the refractory lining;
- an improved thermal shock resistance.
2. Materials and Methods
3. Results and Discussion
3.1. Laboratory Trials with Alumina Spinel Castable Containing Porous MagA Aggregates
3.2. Verification of Laboratory Findings in the Industrial Ladle Trial
3.3. Corrosion Mechanism of MagA-Containing Alumina Spinel Dry-Gunning Mix Applied in a Steel Ladle
- the hot side of the sample, where obviously, some penetration and corrosion took place,
- the center of the sample, which did not show alteration macroscopically, except a macro crack,
- the back side of the gunning mix that was in contact with the castable substrate.
3.3.1. Microstructure at the Hot Face, Zone a (0–2 mm)
3.3.2. Microstructure of the Non-Penetrated Zone f (23–42 mm)
3.3.3. Microstructure at the Interface with Substrate, Zone g (42–45 mm)
3.4. Complementary Trials with Spinel-Forming Steel Ladle Castable with MagA Addition
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Ito, S.; Inuzuka, T. Technical development of refractories for steelmaking processes. Nippon. Steel Tech. Rep. 2008, 98, 63–70. [Google Scholar]
- Braulio, M.; Rigaud, M.; Buhr, A.; Parr, C.; Pandolfelli, V. Spinel-containing alumina-based refractory castables. Ceram. Int. 2011, 37, 1705–1724. [Google Scholar] [CrossRef]
- Ogata, M. Development Trend of Refractories in Japan; ALAFAR Congress: Medellin, Colombia, 2018. [Google Scholar]
- Russo, A.A.; Smith, J.D.; O’Malley, R.J.; Richards, V.L. Mechanism for Carbon Transfer from Magnesia-Graphite Ladle Refractories to Ultralow-Carbon Steel. Iron Steel Technol. 2016. Available online: https://s3.amazonaws.com/academia.edu.documents/53467294/Mechanism_for_Carbon_Transfer_frof_Magnesia-Graphite_Ladle_Refractories_to_Ultra-Low_Carbon_Steel.pdf?response-content-disposition=inline%3B%20filename%3DMechanism_for_Carbon_Transfer_from_Magne.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20200318%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20200318T085613Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=e8cfd1592c9fad78d789b823312a9e732ebc734bd68a438ba219026026dfa0bd (accessed on 18 March 2020).
- Taira, H.; Nakamura, H. Microwave drying of monolithic refractories. Nippon. Steel Tech. Rep. 2008, 98, 70–76. [Google Scholar]
- Chen, R.R.; He, P.X.; Wang, N.; Mou, J.N.; Gan, F.F. Development of A Low Density Castable for Steel Ladle. Available online: http://www.baosteel.com/english_n/e07technical_n/021301e.pdf (accessed on 26 November 2019).
- Wöhrmeyer, C.; Parr, C.; Fryda, H.; Auvray, J.-M.; Touzo, B.; Guichard, S. New Spinel Containing Calcium Aluminate Cement for Corrosion Resistant Castables. In Proceedings of the Unified International Technical Conference on Refractories (UNITECR), Kyoto, Japan, August 2011. [Google Scholar]
- Auvray, J.-M.; Fryda, H.; Wöhrmeyer, C.; Parr, C.; Pawlig, O.; Martinez, M.M.; Campello, J.R. New insights into corrosion mechanisms of a dense refractory castable containing a novel calcium magnesia alumina binder. In Proceedings of the Int. Colloquium on Refractories, Aachen, Germany, November 2012; pp. 95–98. [Google Scholar]
- Yan, W.; Li, N.; Miao, Z.; Liu, G.; Li, Y. Influence of the properties of corundum aggregates on the strength and slag resistance of refractory castables. J. Ceram. Process. Res. 2012, 13, 278–282. [Google Scholar]
- Fu, L.; Gu, H.; Huang, A.; Zhang, M.; Hong, X.; Jin, L. Possible improvements of alumina–magnesia castable by lightweight microporous aggregates. Ceram. Int. 2015, 41, 1263–1270. [Google Scholar] [CrossRef]
- Nagai, B.; Matsumoto, O.; Isobe, T.; Nishiumi, Y. Wear mechanism of castable for steel ladle by slag. Taikabutsu Overseas 1992, 12, 15–20. [Google Scholar]
- Wöhrmeyer, C.; Parr, C.; Szepizdyn, M.; Zetterström, C.; Touzo, B. Calcium magnesium aluminate aggregates for castables. In Proceedings of the Int. Colloquium on Refractories, Aachen, Germany, 16–17 September 2017. [Google Scholar]
- Wöhrmeyer, C.; Szepizdyn, M.; Mineau, R.-M.; Gao, J.; Zhu, Y. How to improve the bonding between used steel ladle castable substrate and dry-gunning repair mix. In Proceedings of the Int Colloquium on Refractories, Aachen, Germany, 25–26 September 2019. [Google Scholar]
- Aneziris, C.G.; Gehre, P. Effects of magnesium aluminate spinel raw materials on the material properties of MgO-C refractories. In Proceedings of the Int. Colloquium on Refractories, Aachen, Germany, 28–29 September 2016; pp. 242–245. [Google Scholar]
- Braulio, M.A.L.; Morbioli, G.G.; Guilherme, P.; Wöhrmeyer, C.; Szepizdyn, M.; Zetterström, C.; Pandolfelli, V.C.; Parr, C. Constraining Effects on High-Alumina Calcium Magnesium Aluminate-Bonded Castables for Steel Ladles. 2017. Available online: http://unitecr2017.mundodecongresos.com/abstracts/Paper_rbcbhfxcsopirpogsam.pdf (accessed on 18 March 2020).
Chemistry | Al2O3 | MgO | CaO |
---|---|---|---|
wt% | 70.5 | 20.5 | 9 |
Mineralogy | MA spinel | CA | CA2 |
wt% | 70 | 20 | 10 |
Raw Material (wt%) | A-MA-REF | A-MA-18MagA | A-MA-38MagA | |
---|---|---|---|---|
White Fused Alumina (WFA) | 5–8 mm | 15 | 11 | 5 |
Tabular Alumina (TA) | 0–6 mm | 55 | 54 | 40 |
MagArmour (MagA) | 0–10 mm | 0 | 18 | 38 |
Magnesium aluminate spinel (MA) | 0–1 mm | 13 | 0 | 0 |
Reactive alumina | D50 1.5 µm | 11 | 11 | 11 |
Calcium aluminate binder | Secar® 71 | 5 | 5 | 5 |
Polycarboxylate ether-based deflocculant | Refpac® 500 | 1 | 1 | 1 |
Water | +3.6 | +4.0 | +4.4 | |
Castable sieve analyses (wt%) | 5–10 mm | 15 | 15 | 15 |
3–5 mm | 20 | 20 | 20 | |
1–3 mm | 10 | 10 | 10 | |
0.1–1 mm | 19 | 18 | 19 | |
0–0.1 mm | 36 | 37 | 36 |
Al2O3 | CaO | MgO | SiO2 | |
---|---|---|---|---|
New dry-gunning mix: MagA-gun | 78.6 | 7.5 | 13.8 | 0.1 |
Reference dry-gunning mix: A-MA-gun | 87.6 | 4.5 | 7.8 | 0.1 |
Substrate castable: A-MA-cast | 90.7 | 0.8 | 7.5 | 1.0 |
CaO | Al2O3 | SiO2 | Fe2O3 | MgO | TiO2 | F |
---|---|---|---|---|---|---|
2.6 | 25.8 | 7.9 | 5.1 | 4.4 | 0.2 | 1 |
Points Indicated in Figure 9a | Points Indicated in Figure 9b | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt% | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |
O | 42.0 | 43.1 | 41.1 | 41.2 | 42.8 | 43.4 | 42.3 | 40.4 | 40.1 | 42.0 | 41.8 | 44.2 | 44.4 | 44.1 |
F | 0.6 | 0.7 | nd | nd | nd | nd | nd | nd | nd | 1.4 | 1.1 | nd | nd | nd |
Na | 0.2 | 0.3 | 0.1 | 0.2 | nd | nd | nd | 0.3 | 0.2 | 0.4 | 0.3 | nd | nd | nd |
Mg | 0.5 | 0.8 | 0.2 | 0.3 | 6.2 | 11.8 | 8.6 | 0.2 | 0.4 | 0.6 | 0.8 | 0.4 | 0.4 | 0.3 |
Al | 17.6 | 18.0 | 18.8 | 18.8 | 25.9 | 37.5 | 35.2 | 19.0 | 19.9 | 18.4 | 24.0 | 48.6 | 48.5 | 49.0 |
Si | 14.1 | 15.9 | 11.3 | 11.4 | 7.9 | nd | 1.8 | 11.3 | 12.0 | 16.5 | 14.4 | 0.5 | 0.5 | 0.4 |
K | 0.2 | 0.3 | nd | nd | 0.2 | nd | nd | nd | nd | 0.3 | 0.2 | nd | nd | nd |
Ca | 22.9 | 18.2 | 27.9 | 27.4 | 13.0 | 0.1 | 2.9 | 28.3 | 26.2 | 17.0 | 14.0 | 6.3 | 6.2 | 6.2 |
Ti | 0.6 | 0.8 | 0.2 | 0.2 | 0.5 | nd | 0.1 | nd | 0.2 | 0.7 | 0.7 | nd | nd | nd |
Cr | nd | nd | nd | nd | nd | nd | 0.3 | nd | nd | nd | nd | nd | nd | nd |
Mn | 1.3 | 2.1 | 0.5 | 0.5 | 3.3 | 6.1 | 7.6 | 0.5 | 1.0 | 2.8 | 2.6 | nd | nd | nd |
Fe | nd | nd | nd | nd | 0.4 | 1.1 | 1.2 | nd | nd | nd | nd | nd | nd | nd |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Supposed phase | Glassy phase | C2AS Gehlenite | Glassy phase | (Mg,Mn)Al-Spinel | C2AS Gehlenite | Glassy phase | CA6 Hibonite |
Zone | a | b | c | d | e | f | g |
---|---|---|---|---|---|---|---|
Distance from Hot Face (mm) | 0–2 | 2–9 | 9–16 | 16–20 | 20–23 | 23–42 | 42–45 |
Hot Face | Infiltration and Corrosion | Less Infiltration and Little Corrosion | Little or No Infiltration and No Visible Corrosion | Fracture Zone | No Infiltration | Inter-Face to Substrate | |
MA | x | xxx | xxx | xxx | xxx | xxx | xxx |
CA | - | - | - | - | x | x | - |
CA2 | - | x | xx | xx | xx | xxx | xx |
CA6 | x | xx | xx | x | x | x | - |
α-Al2O3 | x | x | x | xx | xxx | xxx | xx |
β-alumina | - | x | x | xx | x | x | - |
C2AS | - | xxx | xxx | x | - | - | - |
Fe3O4 | xxx | - | - | - | - | - | x |
FeO | xx | - | - | - | - | - | xx |
Fe | xx | - | - | - | - | - | - |
FeAl2O4 | - | - | - | - | - | - | xxx |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wöhrmeyer, C.; Gao, J.; Parr, C.; Szepizdyn, M.; Mineau, R.-M.; Zhu, J. Corrosion Mechanism of A Density-Reduced Steel Ladle Lining Containing Porous Spinel-Calcium Aluminate Aggregates. Ceramics 2020, 3, 155-170. https://doi.org/10.3390/ceramics3010015
Wöhrmeyer C, Gao J, Parr C, Szepizdyn M, Mineau R-M, Zhu J. Corrosion Mechanism of A Density-Reduced Steel Ladle Lining Containing Porous Spinel-Calcium Aluminate Aggregates. Ceramics. 2020; 3(1):155-170. https://doi.org/10.3390/ceramics3010015
Chicago/Turabian StyleWöhrmeyer, Christoph, Jianying Gao, Christopher Parr, Magali Szepizdyn, Rose-Marie Mineau, and Junhui Zhu. 2020. "Corrosion Mechanism of A Density-Reduced Steel Ladle Lining Containing Porous Spinel-Calcium Aluminate Aggregates" Ceramics 3, no. 1: 155-170. https://doi.org/10.3390/ceramics3010015
APA StyleWöhrmeyer, C., Gao, J., Parr, C., Szepizdyn, M., Mineau, R. -M., & Zhu, J. (2020). Corrosion Mechanism of A Density-Reduced Steel Ladle Lining Containing Porous Spinel-Calcium Aluminate Aggregates. Ceramics, 3(1), 155-170. https://doi.org/10.3390/ceramics3010015