Differences in the Corrosive Spalling Behavior of Alumina-Rich Castables: Microstructural and Crystallographic Considerations of Alumina and Calcium Aluminate Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Refractory Materials
2.2. Slags
- -
- Quantitative analyses of the reaction extent using a simplified slag composition narrowed down to the three main components, SiO2, CaO and K2O—based on chemical compositions reviewed in [1].
- -
- Visual observations of the spalling comparing the effect of synthetic slag composition with natural wood ash (Figure 1) to validate the correlation.
2.3. Corrosion Testing
2.4. X-ray Diffraction
- -
- Space-resolved XRD to consider the influence of the microstructure on the reaction depth.
- -
- Quantitative XRD to evaluate the extent of reaction.
3. Results
3.1. Characterization of the Porosity
3.2. Resistance to Structural Spalling
3.3. Influence of the Porosity
3.4. Morphology of Calcium Hexa-Aluminate
4. Discussion
5. Conclusions
- -
- A lower permeability and a lower average pore diameter.
- -
- A better resistance to structural spalling induced by calcium aluminate precipitation.
- -
- A lower reactivity in contact with biomass ashes.
Author Contributions
Funding
Conflicts of Interest
References
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Bennett, J.P.; Kwong, K.-S.; Powell, C.A. Issues Impacting Refractory Service Life in Biomass/Waste Gasification; International Corrosion Conference Series; NETL: Pittsburgh, PA, USA; Morgantown, WV, USA; Albany, OR, USA, 2007.
- Vazquez, B.A.; Pena, P.; de Aza, A.H.; Sainz, M.A.; Caballero, A. Corrosion mechanism of polycristalline corundum and calcium hexaaluminate by calcium silicate slags. J. Eur. Ceram. Soc. 2009, 29, 1347–1360. [Google Scholar] [CrossRef]
- Gentile, A.L.; Foster, W.R. Calcium hexaaluminate and its stability relations in the system CaO-Al2O3-SiO2. J. Am. Ceram. Soc. 1963, 46, 74–76. [Google Scholar] [CrossRef]
- Criado, E.; Pena, P.; Caballero, A. Influence of processing method on microstructural and mechanical properties of calcium hexaaluminate compacts. J. Ceram. Sci. 1988, 14, 193–198. [Google Scholar]
- Dranchuk, P.M.; Kolada, L.J. Interpretation of Steady Linear Visco-Inertial Gas Flow Data. J. Can. Pet. Technol. 1968, 7, 36–40. [Google Scholar] [CrossRef]
- De Bilbao, E.; Loison, L.; Hbiriq, Y.; Orgeur, C.; Brassamin, S.; Tonnesen, T.; Poirier, J. Intrinsic permeability of refractories from gas permeability measurements: Comparison of results. Ceram. Int. 2018, 44, 2900–2910. [Google Scholar] [CrossRef]
- Loison, L.; de Bilbao, E.; Tonnesen, T.; Telle, R. Determination of permeability for refractories: From standard test methods to improved interpretation technique of the experimental data. Refract. Worldforum 2017, 9, 113–116. [Google Scholar]
- Schacht, C.A. Corrosion of refractories. In Refractory Handbook; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 39–77. [Google Scholar]
- Dickson, M.J. The significance of texture parameters in phase analysis by X-ray Diffraction. J. Appl. Crystallogr. 1969, 2, 176–180. [Google Scholar] [CrossRef]
- Dominguez, C.; Chevalier, J.; Torrecillas, R.; Gremillard, L.; Fantozzi, G. Thermochemical properties and fracture mechanisms of calcium hexaaluminate. J. Eur. Ceram. Soc. 2001, 21, 907–917. [Google Scholar] [CrossRef]
- Büchel, G.; Buhr, A.; Gierisch, D.; Racher, R.P. Alkali- and CO-resistance of dense calcium hexaaluminate Bonite. In Proceedings of the 48th International Colloquium on Refractories, Aachen, Germany, 28–29 September 2005; pp. 208–214. [Google Scholar]
a) | Matrix A | [wt.%] | |
Tabular alumina | 0-0.045 mm | 30.0 | |
Reactive alumina | PFR | 27.5 | |
Tabular alumina | 0-0.5 mm | 41.0 | |
Boehmite gel | 14.0 | ||
b) | Matrix CA6 | [wt.%] | |
Reactive alumina | PFR | 20.0 | |
Tabular alumina | 0-0.045 mm | 25.0 | |
Sintered calcium hexaaluminate | 0-0.5 mm | 40.0 | |
CA cement | Secar71 | 15.0 | |
Dispersant | FS65 | 0.15 | |
Water | 11.0 |
[g/cm3] | Before Corrosion with CSK 1400 °C/24h | After Corrosion with CSK 1400 °C/24h |
---|---|---|
Matrix A | 4.0 | 3.4 |
Matrix CA6 | 3.7 | 3.4 |
Water Amount | [wt.%] | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|
Median pore diameter | [µm] | 1.9 | 2.5 | 2.5 | 2.6 | 3.7 |
Average pore diameter | [µm] | 0.6 | 1.0 | 1.3 | 1.3 | 1.8 |
[wt.%] | Na2O | Al2O3 | SiO2 | K2O | CaO |
---|---|---|---|---|---|
Partial surface | 0.5 | 75.2 | 11.3 | 0.9 | 12.2 |
1 | 1.9 | 38.3 | 34.7 | 3.5 | 21.7 |
2 | 1.6 | 54.5 | 24.3 | 2.5 | 17.2 |
3 | - | 91.4 | - | - | 8.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loison, L.; Sassi, M.; Tonnesen, T.; De Bilbao, E.; Telle, R.; Poirier, J. Differences in the Corrosive Spalling Behavior of Alumina-Rich Castables: Microstructural and Crystallographic Considerations of Alumina and Calcium Aluminate Matrices. Ceramics 2020, 3, 223-234. https://doi.org/10.3390/ceramics3020020
Loison L, Sassi M, Tonnesen T, De Bilbao E, Telle R, Poirier J. Differences in the Corrosive Spalling Behavior of Alumina-Rich Castables: Microstructural and Crystallographic Considerations of Alumina and Calcium Aluminate Matrices. Ceramics. 2020; 3(2):223-234. https://doi.org/10.3390/ceramics3020020
Chicago/Turabian StyleLoison, Lise, Mouna Sassi, Thorsten Tonnesen, Emmanuel De Bilbao, Rainer Telle, and Jacques Poirier. 2020. "Differences in the Corrosive Spalling Behavior of Alumina-Rich Castables: Microstructural and Crystallographic Considerations of Alumina and Calcium Aluminate Matrices" Ceramics 3, no. 2: 223-234. https://doi.org/10.3390/ceramics3020020
APA StyleLoison, L., Sassi, M., Tonnesen, T., De Bilbao, E., Telle, R., & Poirier, J. (2020). Differences in the Corrosive Spalling Behavior of Alumina-Rich Castables: Microstructural and Crystallographic Considerations of Alumina and Calcium Aluminate Matrices. Ceramics, 3(2), 223-234. https://doi.org/10.3390/ceramics3020020