Influence of Porosity on R-Curve Behaviour of Tetragonal Stabilized Zirconia
Abstract
:1. Introduction
1.1. Theory
1.1.1. Increase in Fracture Toughness from Transformation Toughening
1.1.2. R Curve Models
1.1.3. Our Model: Porosity-Dependent Model for R Curve Behaviour
2. Materials and Methods
2.1. Materials
2.2. Microstructural Characterization
2.3. Nano-Indentation Testing
2.4. Raman Spectroscopy
Procedure
2.5. Flexural Strength by Ball-on-Ring
2.6. Fracture Toughness by Double Cantilever Beam (DCB)
3. Results
3.1. Microstructural Characterization
3.2. Biaxial Flexural Strength
3.3. Double Cantilever Beam: R-Curve Behaviour Determination in 3YSZ Bodies
3.4. R-Curve Behaviour
3.5. SPI Imaging: Nano-Indentation
3.6. Raman Spectroscopy
3.6.1. Raman Spectra Measured with the Micro Raman Equipment
3.6.2. Raman Spectra Taken with Confocal Raman Set Up
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klemensø, T.; Boccaccini, D.N.; Brodersen, K.; Frandsen, H.L.; Hendriksen, P.V. Development of a novel ceramic support layer for planar solid oxide cells. Fuel Cells 2014, 14, 153–161. [Google Scholar] [CrossRef]
- Charlas, B.; Schmidt, C.G.; Frandsen, H.L.; Andersen, K.B.; Boccaccini, D.N.; Hansen, K.K.; Roosen, A.; Kaiser, A. Influence of pore former on porosity and mechanical properties of Ce0.9Gd0.1O1.95 electrolytes for flue gas purification. Ceram. Int. 2016, 42, 4546–4555. [Google Scholar] [CrossRef]
- Gil, V.; Gurauskis, J.; Campana, R.; Merino, R.I.; Larrea, A.; Orera, V.M. Anode-supported microtubular cells fabricated with gadolinia-doped ceria nanopowders. J. Power Sources 2011, 196, 1184–1190. [Google Scholar] [CrossRef]
- Hagen, A.; Caldogno, R.; Capotondo, F.; Sun, X. Metal Supported Electrolysis Cells. Energies 2022, 15, 2045. [Google Scholar] [CrossRef]
- Gil, V.; Gurauskis, J.; Deleebeeck, L.; Stamate, E.; Hansen, K.K. Cathode-supported hybrid direct carbon fuel cells. Int. J. Hydrogen Energy 2017, 42, 4311–4319. [Google Scholar] [CrossRef]
- Riegraf, M.; Bombarda, I.; Dömling, F.; Liensdorf, T.; Sitzmann, C.; Langhof, N.; Schafföner, S.; Han, F.; Sata, N.; Geipel, C.; et al. Enhancing the Mechanical Strength of Electrolyte-Supported Solid Oxide Cells with Thin and Dense Doped-Ceria Interlayers. ACS Appl. Mater. Interfaces 2021, 13, 49879–49889. [Google Scholar] [CrossRef]
- Klemensø, T.; Chatzichristodoulou, C.; Nielsen, J.; Bozza, F.; Thydén, K.; Kiebach, R.; Ramousse, S. Characterization of impregnated GDC nano structures and their functionality in LSM based cathodes. Solid State Ion. 2012, 224, 21–31. [Google Scholar] [CrossRef]
- Savoini, B.; Ballesteros, C.; Santiuste, J.M.; González, R.; Popov, A.I.; Chen, Y. Copper and iron precipitates in thermochemically reduced yttria-stabilized zirconia crystals. Philos. Mag. Lett. 2001, 81, 555–561. [Google Scholar] [CrossRef]
- Boccaccini, D.N.; Frandsen, H.L.; Soprani, S.; Cannio, M.; Klemensø, T.; Gil, V.; Hendriksen, P.V. Influence of porosity on mechanical properties of tetragonal stabilized zirconia. J. Eur. Ceram. Soc. 2018, 38, 1720–1735. [Google Scholar] [CrossRef]
- Boccaccini, D.N.; Boccaccini, A.R. Dependence of Ultrasonic Velocity on Porosity and Pore Shape in Sintered Materials. J. Nondestruct. Eval. 1997, 16, 187–192. [Google Scholar] [CrossRef]
- Boccaccini, D.N.; Maioli, M.; Cannio, M.; Romagnoli, M.; Veronesi, P.; Leonelli, C.; Boccaccini, A.R. A statistical approach for the assessment of reliability in ceramic materials from ultrasonic velocity measurement: Cumulative Flaw Length Theory. Eng. Fract. Mech. 2009, 76, 1750–1759. [Google Scholar] [CrossRef]
- Boccaccini, D.N.; Maioli, M.; Cannio, M.; Dlouhy, I.; Romagnoli, M.; Leonelli, C.; Boccaccini, A.R. A lifetime prediction method based on Cumulative Flaw Length Theory. J. Eur. Ceram. Soc. 2012, 32, 1175–1186. [Google Scholar] [CrossRef]
- Kelly, P.M.; Francis Rose, L.R. The martensitic transformation in ceramics—its role in transformation toughening. Prog. Mater. Sci. 2002, 47, 463–557. [Google Scholar] [CrossRef]
- McMeeking, R.M.; Evans, A.G. Mechanics of Transformation-Toughening in Brittle Materials. J. Am. Ceram. Soc. 1982, 65, 242–246. [Google Scholar] [CrossRef]
- Yu, C.S.; Shetty, D.K. Transformation yielding, plasticity and crack-growth-resistance (R-curve) behaviour of CeO2-TZP. J. Mater. Sci. 1990, 25, 2025–2035. [Google Scholar] [CrossRef]
- Perry, K.E.; May, G.B.; Epstein, J.S.; Okada, H.; Atluri, S.N. Experimental R-curve behavior in partially stabilized zirconia using moiré interferometry. Acta Metall. Mater. 1993, 41, 361–368. [Google Scholar] [CrossRef]
- Hom, C.L.; McMeeking, R.M. Numerical results for transformation toughening in ceramics. Int. J. Solids Struct. 1990, 26, 1211–1223. [Google Scholar] [CrossRef]
- Marshall, D.B. Strength Characteristics of Transformation-Toughened Zirconia. J. Am. Ceram. Soc. 1986, 69, 173–180. [Google Scholar] [CrossRef]
- Goutianos, S.; Frandsen, H.L.; Sørensen, B.F. Fracture properties of nickel-based anodes for solid oxide fuel cells. J. Eur. Ceram. Soc. 2010, 30, 3173–3179. [Google Scholar] [CrossRef]
- Kendall, K.; Alford, N.M.; Tan, S.R.; Birchall, J.D. Influence of toughness on Weibull modulus of ceramic bending strength. J. Mater. Res. 1986, 1, 120–123. [Google Scholar] [CrossRef]
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation Toughening in Zirconia-Containing Ceramics. J. Am. Ceram. Soc. 2004, 83, 461–487. [Google Scholar] [CrossRef]
- Budiansky, B.; Hutchinson, J.W.; Lambropoulos, J.C. Continuum theory of dilatant transformation toughening in ceramic. Int. J. Solids Struct. 1983, 19, 337–355. [Google Scholar] [CrossRef]
- Chevalier, J.; Olagnon, C.; Fantozzi, G. Subcritical Crack Propagation in 3Y-TZP Ceramics: Static and Cyclic Fatigue. J. Am. Ceram. Soc. 2004, 82, 3129–3138. [Google Scholar] [CrossRef]
- Radovic, M.; Curzio, E.L. Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen. Acta Mater. 2004, 52, 5747–5756. [Google Scholar] [CrossRef]
- Atkinson, A.; Selçuk, A. Mechanical behaviour of ceramic oxygen ion-conducting membranes. Solid State Ion. 2000, 134, 59–66. [Google Scholar] [CrossRef]
- Kumar, A.N.; Sørensen, B.F. Fracture Resistance and Stable Crack-Growth Behavior of 8-mol%-Yttria-Stabilized Zirconia. J. Am. Ceram. Soc. 2000, 83, 1199–1206. [Google Scholar] [CrossRef]
- Lawn, B. Fracture of Brittle Solids, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Wiederhorn, S.M. Crack Propagation in Soda-Lime Glass. J. Am. Ceram. Soc. 1966, 50, 407–414. [Google Scholar] [CrossRef]
- Freiman, S.W.; Mulville, D.R.; Mast, P.W. Crack propagation studies in brittle materials. J. Mater. Sci. 1973, 8, 1527–1533. [Google Scholar] [CrossRef]
- Michalske, T.A.; Bunker, B.C. Slow fracture model based on strained silicate structures. J. Appl. Phys. 1984, 56, 2686. [Google Scholar] [CrossRef]
- Riva, V.; Boccaccini, D.; Cannio, M.; Maioli, M.; Valle, M.; Romagnoli, M.; Mortalò, C.; Leonelli, C. Insight into t->m transition of MW treated 3Y-PSZ ceramics by grazing incidence X-ray diffraction. J. Eur. Ceram. Soc. 2022, 42, 227–237. [Google Scholar] [CrossRef]
- Kim, B.K.; Hahn, J.W.; Han, K.R. Quantitative Phase Analysis in Tetragonal-Rich-Tetragonal/Monoclinic Two Phase Zirconia by Raman Spectroscopy. J. Mater. Sci. Lett. 1997, 16, 669–671. [Google Scholar] [CrossRef]
- Evans, A.G. Toughening Mechanisms in Zirconia Alloys. In Advances in Ceramics, Science and Technology of Zirconia 11; Claussen, N., Riihle, M., Heuer, A.H., Eds.; American Ceramic Society: Columbus, OH, USA, 1984; Volume 12, pp. 193–212. [Google Scholar]
- Kelly, J.R.; Denry, I. Stabilized zirconia as a structural ceramic: An overview. Dent. Mater. 2008, 24, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Khajavi, P.; Hendriksen, P.V.; Chevalier, J.; Gremillard, L.; Frandsen, H.L. Improving the fracture toughness of stabilized zirconia-based solid oxide cells fuel electrode supports: Effects of type and concentration of stabilizer(s). J. Eur. Ceram. Soc. 2020, 40, 5670–5682. [Google Scholar] [CrossRef]
- Shetty, D.K.; Wang, J.S. Crack Stability and Strength Distribution of Ceramics That Exhibit Rising Crack-Growth-Resistance (R-Curve) Behavior. J. Am. Ceram. Soc. 1989, 72, 1158–1162. [Google Scholar] [CrossRef]
- Boccaccini, D.N.; Boccaccini, A.R. Effect of pore shape on the ultrasonic velocity-porosity correlation in sintered materials. J. Mater. Sci. Lett. 1997, 16, 623–625. [Google Scholar] [CrossRef]
- Sprigs, R.M. Expression for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Aluminum Oxide. J. Am. Ceram. Soc. 1961, 44, 628–629. [Google Scholar] [CrossRef]
- Klym, H.; Karbovnyk, I.; Piskunov, S.; Popov, A.I. Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics. Nanomaterials 2021, 11, 3373. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Horsewell, A.; Jørgensen, O.; Kumar, A.N.; Engbaek, P. Fracture Resistance Measurement Method for in situ Observation of Crack Mechanisms. J. Am. Ceram. Soc. 2005, 81, 661–669. [Google Scholar] [CrossRef]
- Frandsen, H.L.; Ramos, T.; Faes, A.; Pihlatie, M.; Brodersen, K. Optimization of the strength of SOFC anode supports. J. Eur. Ceram. Soc. 2012, 32, 1041–1052. [Google Scholar] [CrossRef]
- Frandsen, H.L. The small displacement elastic solution to the ball-on-ring testing method. Mech. Mater. 2012, 55, 33–40. [Google Scholar] [CrossRef]
- Sørensen, B.F.; Brethe, P.; Skov-Hansen, P. Controlled crack growth in ceramics: The DCB specimen loaded with pure moments. J. Eur. Ceram. Soc. 1996, 16, 1021–1025. [Google Scholar] [CrossRef]
- Feinberg, A.; Perry, C.H. Structural disorder and phase transitions in ZrO2-Y2O3 system. J. Phys. Chem. Solids. 1981, 42, 513–518. [Google Scholar] [CrossRef]
- Baudín, C.; Gurauskis, J.; Sánchez-Herencia, A.J.; Orera, V.M. Indentation Damage and Residual Stress Field in Alumina-Y2O3-Stabilized Zirconia Composites. J. Am. Ceram. Soc. 2009, 92, 152–160. [Google Scholar] [CrossRef]
- Selçuk, A.; Atkinson, A. Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC). J. Eur. Ceram. Soc. 1997, 17, 1523–1532. Available online: http://www.sciencedirect.com/science/article/pii/S0955221996002476 (accessed on 27 January 2014). [CrossRef]
- Faes, A.; Frandsen, H.L.; Pihlatie, M.; Kaiser, A.; Goldstein, D.R. Curvature and Strength of Ni-YSZ Solid Oxide Half-Cells After Redox Treatments. J. Fuel Cell Sci. Technol. 2010, 7, 051011. [Google Scholar] [CrossRef]
- Alcalá, J. Instrumented micro-indentation of zirconia ceramics. J. Am. Ceram. Soc. 2000, 83, 1977–1984. [Google Scholar] [CrossRef]
Sample Name | Average Pore Diameter (µm) | Open Porosity (%) | Closed Porosity (%) |
---|---|---|---|
BB05 | - | 2.8 | - |
BB06 | 0.32 | 13 | 11 |
BB07 | 0.85 | 47 | 5 |
Sample | Thickness (mm) | Number of Samples | σ0 (MPa) | m | E (GPa) | Veff (mm3) | σ0,corr (Veff = 1 mm3) |
---|---|---|---|---|---|---|---|
BB05 | 0.3 ± 0.01 | 29 | 676 ± 55 | 5.5 | 214 ± 20 | 0.443 | 583 ± 47 |
BB06 | 0.34 ± 0.01 | 31 | 264 ± 44 | 6.2 | 112 ± 18 | 0.3505 | 223 ± 37 |
BB07 | 0.35 ± 0.01 | 40 | 143 ± 20 | 8 | 55 ± 8 | 0.214 | 118 ± 16 |
Parameter | Value | Unit | Ref. | |
---|---|---|---|---|
η | a factor depending on the zone shape at the crack tip and the nature of the stress field in that zone | 0.21 | / | [21] |
E | effective modulus of the material | 220,000 | MPa | [21] |
bM | porosity dependence constant | 2.3 | / | [38] |
dilatational strain | 0.05 | / | [21] | |
Vfh | transformed volume fraction of particles | 0.0015 | m0.5 | This paper |
ν | Poisson’s ratio | 0.3 | / | [9] |
d | width of the transformation zone from the crack surface | 1.35 × 10−6 | M | This paper |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boccaccini, D.N.; Gil, V.; Gurauskis, J.; Merino, R.I.; Pellacani, A.; Mortalò, C.; Soprani, S.; Romagnoli, M.; Cannio, M. Influence of Porosity on R-Curve Behaviour of Tetragonal Stabilized Zirconia. Ceramics 2022, 5, 533-549. https://doi.org/10.3390/ceramics5030040
Boccaccini DN, Gil V, Gurauskis J, Merino RI, Pellacani A, Mortalò C, Soprani S, Romagnoli M, Cannio M. Influence of Porosity on R-Curve Behaviour of Tetragonal Stabilized Zirconia. Ceramics. 2022; 5(3):533-549. https://doi.org/10.3390/ceramics5030040
Chicago/Turabian StyleBoccaccini, Dino N., Vanesa Gil, Jonas Gurauskis, Rosa I. Merino, Andrea Pellacani, Cecilia Mortalò, Stefano Soprani, Marcello Romagnoli, and Maria Cannio. 2022. "Influence of Porosity on R-Curve Behaviour of Tetragonal Stabilized Zirconia" Ceramics 5, no. 3: 533-549. https://doi.org/10.3390/ceramics5030040
APA StyleBoccaccini, D. N., Gil, V., Gurauskis, J., Merino, R. I., Pellacani, A., Mortalò, C., Soprani, S., Romagnoli, M., & Cannio, M. (2022). Influence of Porosity on R-Curve Behaviour of Tetragonal Stabilized Zirconia. Ceramics, 5(3), 533-549. https://doi.org/10.3390/ceramics5030040