Electrical Conductivity of Thin Film SrTi0.8Fe0.2O3−δ-Supported Sr0.98Zr0.95Y0.05O3−δ Electrolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Deposition
2.2. Preparation of SZY Bulk Samples
2.3. Sample Characterization
2.4. Measurement of Electrical Conductivity
3. Results and Discussion
3.1. Phase Composition of the Samples
3.2. Thermal Expansion of STF and SZY
3.3. Morphology and Gas-Tightness of the Films
3.4. Electrical Conductivity of SZY Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hossain, S.; Abdalla, A.M.; Jamain, S.N.B.; Zaini, J.H.; Azad, A.K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renew. Sustain. Energy Rev. 2017, 79, 750–764. [Google Scholar] [CrossRef]
- Irshad, M.; Siraj, K.; Raza, R.; Ali, A.; Tiwari, P.; Zhu, B.; Rafique, A.; Ali, A.; Ullah, M.K.; Usman, A. A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Appl. Sci. 2016, 6, 75. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, J.; Zhao, Z.; Amoroso, J.; Tong, J.; Brinkman, K.S. Review: Recent progress in low-temperature proton-conducting ceramics. J. Mater. Sci. 2019, 54, 9291–9312. [Google Scholar] [CrossRef]
- Demin, A.; Tsiakaras, P.; Gorbova, E.; Hramova, S. A SOFC based on a co-ionic electrolyte. J. Power Sources 2004, 131, 231–236. [Google Scholar] [CrossRef]
- Kreuer, K.-D. Proton conductivity: Materials and applications. Chem. Mater. 1996, 8, 610–641. [Google Scholar] [CrossRef]
- Balakireva, V.B.; Gorelov, V.P.; Dunyushkina, L.A.; Kuz’min, A.V. Impact of humidity on charge transport in proton-conducting perovskites AZr0.95Sc0.05O3−α (A = Ca, Sr, Ba) exposed to an oxidative atmosphere. Phys. Solid State 2019, 61, 515–522. [Google Scholar] [CrossRef]
- Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2010, 414, 345–352. [Google Scholar] [CrossRef]
- Ji, S.; Chang, I.; Lee, Y.H.; Park, J.; Paek, J.Y.; Lee, M.H.; Cha, S.W. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition. Nanoscale Res Lett. 2013, 8, 48. [Google Scholar] [CrossRef]
- Pergolesi, D.; Fabbri, E.; Traversa, E. Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem. Commun. 2010, 12, 977–980. [Google Scholar] [CrossRef]
- Tian, Z.; Ruan, F.; Bao, J.; Song, X.; An, S.; Wu, R.; Jing, Q.; Lv, H.D.; Zhou, F.; Xie, M. Preparation and electrochemical properties of CaZr1−xScxO3−α. J. Electrochem. Soc. 2019, 166, B441–B448. [Google Scholar] [CrossRef]
- Su, S.; Gao, X.; Zhang, Q.; Kong, W.; Chen, D. Anode- versus cathode-supported solid oxide fuel cell: Effect of cell design on the stack performance. Int. J. Electrochem. Sci. 2015, 10, 2487–2503. [Google Scholar]
- Agarkova, E.A.; Burmistrov, I.N.; Agarkov, D.A.; Zadorozhnaya, O.Y.; Shipilova, A.V.; Solovyev, A.A.; Nepochatov, Y.K.; Bredikhin, S.I. Bilayered anode supports for planar solid oxide fuel cells: Fabrication and electrochemical performance. Mater. Lett. 2021, 283, 128752. [Google Scholar] [CrossRef]
- Van Mol, A.M.B.; Chae, Y.; McDaniel, A.H.; Allendorf, M.D. Chemical vapor deposition of tin oxide: Fundamentals and applications. Thin Solid Film. 2006, 502, 72–78. [Google Scholar] [CrossRef]
- Swathi, S.; Babu, E.S.; Yuvakkumar, R.; Ravi, G.; Chinnathambi, A.; Alharbi, S.A.; Velauthapillai, D. Branched and unbranched ZnO nanorods grown via chemical vapor deposition for photoelectrochemical water-splitting applications. Ceram. Int. 2021, 47, 9785–9790. [Google Scholar] [CrossRef]
- Hermawan, E.; Lee, G.S.; Kim, G.S.; Ham, H.C.; Han, J.; Yoon, S.P. Densification of an YSZ electrolyte layer prepared by chemical/ electrochemical vapor deposition for metal-supported solid oxide fuel cells. Ceram. Int. 2017, 43, 10450–10459. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5. [Google Scholar] [CrossRef]
- Solovyev, A.A.; Sochugov, N.S.; Rabotkin, S.V.; Shipilova, A.V.; Ionov, I.V.; Kovalchuk, A.N.; Borduleva, A.O. Application of PVD methods to solid oxide fuel cells. Appl. Surf. Sci. 2014, 310, 272–277. [Google Scholar] [CrossRef]
- Solovyev, A.; Burmistrov, I.N.; Rabotkin, S.; Shipilova, A.; Yalovenko, D.V.; Semenov, V.; Bredikhin, S.I. Electrochemical characterization of intermediate-temperature solid oxide fuel cells with pvd-coated electrolyte. ECS Trans. 2021, 103, 105–112. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering physical vapour deposition (pvd) coatings: A critical review on process improvement and market trend demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef]
- Xiao, Y.; Waser, R.; Schneller, T. Highly-oriented proton conducting BaZr0.9Y0.1O3−x ceramic thin films prepared by chemical solution deposition. J. Eur. Ceram. Soc. 2022, 42, 3245–3253. [Google Scholar] [CrossRef]
- Dunyushkina, L.A.; Khaliullina, A.S.; Kuimov, V.M.; Osinkin, D.A.; Antonov, B.D.; Pankratov, A.A. Influence of modification of chemical solution deposition on morphology and conductivity of CaZr0.9Y0.1O3−δ films. Solid State Ion. 2019, 329, 1–7. [Google Scholar] [CrossRef]
- Dunyushkina, L.A.; Smirnov, S.V.; Plaksin, S.V.; Kuimov, V.M.; Gorelov, V.P. The across-plane conductivity and microstructure of SrZr0.95Y0.05O3−δ thin films. Ionics 2013, 19, 1715–1722. [Google Scholar] [CrossRef]
- Dunyushkina, L.A.; Kuimov, V.M.; Pankratov, A.A.; Reznitskikh, O.G.; Khaliullina, A.S. Synthesis, microstructure, and electric properties of CaZr0.9Y0.1O3−δ films obtained on porous SrTi0.8Fe0.2O3−δ supports. Russ. J. Electrochem. 2016, 52, 1057–1063. [Google Scholar] [CrossRef]
- Dunyushkina, L.A.; Pankratov, A.A.; Gorelov, V.P.; Brouzgou, A.; Tsiakaras, P. Deposition and characterization of Y-doped CaZrO3 electrolyte film on a porous SrTi0.8Fe0.2O3−δ substrate. Electrochim. Acta 2016, 202, 39–46. [Google Scholar] [CrossRef]
- Shkerin, S.N.; Tolkacheva, A.S.; Khrustov, V.R.; Kuz’min, A.V. Dilatometric study of a strontium ferrotitanate and calcium aluminate. Inorg. Mater. 2016, 52, 29–32. [Google Scholar] [CrossRef]
- Hongsong, Z.; Lei, S.; Yongde, Z.; Yongde, Z.; Gang, L.; Zhenjun, L. Thermal conductivities and thermal expansion coefficients of (Sm0.5Gd0.5)2(Ce1−x Zrx)2O7 ceramics. J. Mater. Eng. Perform. 2015, 24, 3394–3399. [Google Scholar] [CrossRef]
- Hayashi, H.; Saitou, T.; Maruyama, N.; Inaba, H.; Kawamura, K.; Mori, M. Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents. Solid State Ion. 2005, 176, 613–619. [Google Scholar] [CrossRef]
- Shi, C.; Morinaga, M. Doping effects on proton incorporation and conduction in SrZrO3. J. Comput. Chem. 2006, 27, 711–718. [Google Scholar] [CrossRef]
- Dunyushkina, L.; Khaliullina, A.; Meshcherskikh, A.; Pankratov, A.; Osinkin, D. Effect of A-site nonstoichiometry on defect chemistry and electrical conductivity of undoped and Y-doped SrZrO3. Materials 2019, 12, 1258. [Google Scholar] [CrossRef]
- Hasegawa, S.; Sugimoto, T.; Hashimoto, T. Investigation of structural phase transition behavior of SrZrO3 by thermal analyses and high-temperature X-ray diffraction. Solid State Ion. 2010, 181, 1091–1097. [Google Scholar] [CrossRef]
- Fagg, D.P.; Kharton, V.V.; Kovalevsky, A.V.; Viskup, A.P.; Naumovich, E.N.; Frade, J.R. The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. J. Eur. Ceram. Soc. 2001, 21, 1831–1835. [Google Scholar] [CrossRef]
- Heras-Juaristi, G.; Perez-Coll, D.; Mather, G.C. Effect of sintering conditions on the electrical-transport properties of the SrZrO3-based protonic ceramic electrolyser membrane. J. Power Sources 2016, 331, 435–444. [Google Scholar] [CrossRef]
Atmosphere | STF | SZY |
---|---|---|
air | 50–320 °C 11.3 × 10−6 | 50–750 °C 10.3 × 10−6 |
420–870 °C 14.0 × 10−6 | ||
H2 + 1% H2O | 50–320 °C 10.4 × 10−6 | 50–750 °C 10.4 × 10−6 |
420–870 °C 11.2 × 10−6 |
Number of Deposition/Annealing Cycles | Gas-Tightness, μm2 |
---|---|
10 | 9 × 10−5 |
20 | 3 × 10−5 |
25 | <1 × 10−5 |
30 | <1 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaliullina, A.; Pankratov, A.; Dunyushkina, L. Electrical Conductivity of Thin Film SrTi0.8Fe0.2O3−δ-Supported Sr0.98Zr0.95Y0.05O3−δ Electrolyte. Ceramics 2022, 5, 601-613. https://doi.org/10.3390/ceramics5030045
Khaliullina A, Pankratov A, Dunyushkina L. Electrical Conductivity of Thin Film SrTi0.8Fe0.2O3−δ-Supported Sr0.98Zr0.95Y0.05O3−δ Electrolyte. Ceramics. 2022; 5(3):601-613. https://doi.org/10.3390/ceramics5030045
Chicago/Turabian StyleKhaliullina, Adelya, Aleksander Pankratov, and Liliya Dunyushkina. 2022. "Electrical Conductivity of Thin Film SrTi0.8Fe0.2O3−δ-Supported Sr0.98Zr0.95Y0.05O3−δ Electrolyte" Ceramics 5, no. 3: 601-613. https://doi.org/10.3390/ceramics5030045
APA StyleKhaliullina, A., Pankratov, A., & Dunyushkina, L. (2022). Electrical Conductivity of Thin Film SrTi0.8Fe0.2O3−δ-Supported Sr0.98Zr0.95Y0.05O3−δ Electrolyte. Ceramics, 5(3), 601-613. https://doi.org/10.3390/ceramics5030045