Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Features of the Crystal Structure of NZP Compound
References
- Orlova, A.I.; Ojovan, M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials 2019, 12, 2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlova, A.I. Crystalline phosphates for HLW immobilization–composition, structure, properties and production of ceramics. Spark Plasma Sintering as a promising sintering technology. J. Nucl. Mater. 2022, 559, 153407. [Google Scholar] [CrossRef]
- Kanunov, A.E.; Orlova, A.I. Phosphors based on phosphates of NaZr2(PO4)3 and langbeinite structural families. Rev. J. Chem. 2018, 8, 1–33. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, P.; Wang, J.; Wen, J.; Zhan, L.; Zhang, X.; Yang, S.; Wang, J. Microwave-sintering preparation, phase evolution and chemical stability of Na1-2xSrxZr2(PO4)3 ceramics for immobilizing simulated radionuclides. J. Nucl. Mater. 2020, 540, 152366. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Wang, Y.; Liao, Q.; Zhu, H.; Li, L.; Zhu, Y. Synthesis and characterization of iron phosphate based glass-ceramics containing sodium zirconium phosphate phase for nuclear waste immobilization. J. Nucl. Mater. 2020, 531, 151988. [Google Scholar] [CrossRef]
- Scheetz, B.E.; Agrawal, D.K.; Breval, E.; Roy, R. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review. Waste Manag. 1994, 14, 489–505. [Google Scholar] [CrossRef]
- Burakov, B.E.; Ojovan, M.I.; Lee, W.E. Crystalline Materials for Actinide Immobilisation; Imperial College Press: London, UK, 2010. [Google Scholar]
- Alamo, J. Chemistry and properties of solids with the [NZP] skeleton. Solid State Ion. 1993, 63–65, 547–561. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Y.; Wang, J.; Zhang, X.; Wang, Y.; Li, N. Simultaneous immobilization of radionuclides Sr and Cs sodium zirconium phosphate type ceramics and its chemical durability. Ceram. Int. 2022, 48, 12772–12778. [Google Scholar] [CrossRef]
- Orlova, A.I.; Volgutov, V.Y.; Mikhailov, D.A.; Bykov, D.M.; Skuratov, V.A.; Chuvil’deev, V.N.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V. Phosphate Ca1/4Sr1/4Zr2(PO4)3 of the NaZr2(PO4)3 structure type: Synthesis of a dense ceramic material and its radiation testing. J. Nucl. Mater. 2014, 446, 232–239. [Google Scholar] [CrossRef]
- Kryukova, A.I.; Kulikov, I.A.; Artem’eva, G.Y.; Demarin, V.T.; Pechnevskaya, O.V.; Alferov, V.A. Crystalline phosphates of sodium zirconium phosphate NaZr2(PO4)3 family. Radiation stability. Radiochemistry 1992, 34, 82–89. (In Russian) [Google Scholar]
- Orlova, A.I.; Volkov, Y.F.; Melkaya, R.F.; Masterova, L.Y.; Kulikov, I.A.; Alferov, V.A. Synthesis and radiation stability of NZP structure phosphates containing f-elements. Radiochemistry 1994, 36, 295–298. (In Russian) [Google Scholar]
- Orlova, A.I.; Zyryanov, V.N.; Kotel’nikov, A.R.; Demarin, V.T.; Rakitina, E.V. Ceramic phosphate matrixes for high-level wastes. Behavior under hydrothermal conditions. Radiochemistry 1993, 35, 120–126. (In Russian) [Google Scholar]
- Orlova, A.I.; Zyryanov, V.N.; Egor’kova, O.V.; Demarin, V.T. Long-term hydrothermal tests of NZP-type crystalline phosphates. Radiochemistry 1996, 38, 22–26. (In Russian) [Google Scholar]
- Oikonomou, P.; Dedeloudis, C.; Stournaras, C.J.; Ftikos, C. [NZP]: A new family of ceramics with low thermal expansion and tunable properties. J. Eur. Ceram. Soc. 2007, 27, 1253–1258. [Google Scholar] [CrossRef]
- Ahmadu, U.; Musa, A.O.; Jonah, S.A.; Rabiu, N. Synthesis and thermal characterization of NZP compounds Na1−xLixZr2(PO4)3 (x = 0.00–0.75). J. Therm. Anal. Calorim. 2010, 101, 175–179. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Asabina, E.A.; Lukuttsov, A.A.; Korchemkin, I.V.; Alekseev, A.A.; Demarin, V.T. Immobilization of cesium into mineral-like matrices of tridymite, kosnarite, and langbeinite structure. Radiochemistry 2015, 57, 632–639. [Google Scholar] [CrossRef]
- Nakayama, S.; Itoh, K. Immobilization of strontium by crystalline zirconium phosphate. J. Eur. Ceram. Soc. 2003, 23, 1047–1052. [Google Scholar] [CrossRef]
- Kryukova, A.I.; Korshunov, I.A.; Vorob’eva, N.V.; Mitrofanova, V.A.; Skiba, O.V.; Kazantsev, G.N.; Zakharova, G.A. Double phosphates of alkali and rare earth elements and titanium, zirconium, and hafnium in alkali metal chloride melts. Radiochemistry 1978, 20, 818–822. (In Russian) [Google Scholar]
- Kryukova, A.I.; Artem’eva, G.Y.; Korshunov, I.A.; Skiba, O.V.; Klapshin, Y.P.; Denisova, M.S. Thermal stability of phosphates of titanium, zirconium, and hafnium and solubility in alkali-chloride melts. Russ. J. Inorg. Chem. 1986, 31, 193–197. (In Russian) [Google Scholar]
- Kryukova, A.I.; Artem’eva, G.Y.; Skiba, O.V.; Korshunov, I.A.; Polunina, M.V. Solubility and stability in chloride melts of alkaline earth group IV metal orthophosphates. Russ. J. Inorg. Chem. 1987, 32, 862–864. (In Russian) [Google Scholar]
- Kryukova, A.I.; Chernikov, A.A.; Skiba, O.V.; Kazantsev, G.N. Trends in chlorination of phosphates and tungstates of some actinide and fission elements in chloride melts. Radiochemistry 1988, 30, 622–628. (In Russian) [Google Scholar]
- Pet’kov, V.; Asabina, E.; Loshkarev, V.; Sukhanov, M. Systematic investigation of the strontium zirconium phosphate ceramic form for nuclear waste immobilization. J. Nucl. Mater. 2016, 471, 122–128. [Google Scholar] [CrossRef]
- Gregg, D.J.; Karatchevtseva, I.; Thorogood, G.J.; Davis, J.; Benjamin, D.C.B.; Jackson, M.; Dayal, P.; Ionescu, M.; Triani, G.; Short, K.; et al. Ion beam irradiation effects in strontium zirconium phosphate with NZP-structure type. J. Nucl. Mater. 2014, 446, 224–231. [Google Scholar] [CrossRef]
- Bohre, A.; Avasthi, K.; Pet’kov, V.I. Vitreous and crystalline phosphate high level waste matrices: Present status and future challenges. J. Ind. Eng. Chem. 2017, 50, 1–14. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Sukhanov, M.V.; Kurazhkovskaya, V.S. Molybdenum fixation in crystalline NZP matrices. Radiochemistry 2003, 45, 620–625. [Google Scholar] [CrossRef]
- Bykov, D.M.; Konings, R.J.M.; Apostolidis, C.; Hen, A.; Colineau, E.; Wiss, T.; Raison, P. Synthesis and investigation of neptunium zirconium phosphate, a member of the NZP family: Crystal structure, thermal behaviour and Mössbauer spectroscopy studies. Dalton Trans. 2017, 46, 11626–11635. [Google Scholar] [CrossRef] [Green Version]
- Bykov, D.M.; Orlova, A.I.; Tomilin, S.V.; Lizin, A.A.; Lukinykh, A.N. Americium and plutonium in trigonal phosphates (NZP type)Am1/3[Zr2(PO4)3] and Pu1/4[Zr2(PO4)3]. Radiochemistry 2006, 48, 234–239. [Google Scholar] [CrossRef]
- Ananthanarayanan, A.; Ambashta, R.D.; Sudarsan, V.; Ajithkumar, T.; Sen, D.; Mazumder, S.; Wattal, P.K. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste. J. Nucl. Mater. 2017, 487, 5–12. [Google Scholar] [CrossRef]
- Bohre, A.; Shrivastava, O.P. Crystal chemistry of immobilization of divalent Sr in ceramic matrix of sodium zirconium phosphates. J. Nucl. Mater. 2013, 433, 486–493. [Google Scholar] [CrossRef]
- Chourasia, R.; Bohre, A.; Ambastha, R.D.; Shrivastava, O.P.; Wattal, P.K. Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium. J. Mater. Sci. 2010, 45, 533–545. [Google Scholar] [CrossRef]
- Bohre, A.; Shrivastava, O.P. Crystallographic evaluation of sodium zirconium phosphate as a host structure for immobilization of cesium and strontium. Int. J. Appl. Ceram. Technol. 2013, 10, 552–563. [Google Scholar] [CrossRef]
- Ewing, R.C.; Lutze, W. High-level nuclear waste immobilization with ceramics. Ceram. Int. 1991, 17, 287–293. [Google Scholar] [CrossRef]
- Ivanets, A.; Shashkova, I.; Kitikova, N.; Radkevich, A.; Venhlinskaya, E.; Dzikaya, A.; Trukhanov, A.V.; Sillanpää, M. Facile synthesis of calcium magnesium zirconium phosphate adsorbents transformed into MZr4P6O24 (M: Ca, Mg) ceramic matrix for radionuclides immobilization. Sep. Purif. Technol. 2021, 272, 118912. [Google Scholar] [CrossRef]
- Roy, R.; Vance, E.R.; Alamo, J. [NZP], a new radiophase for ceramic waste forms. Mater. Res. Bull. 1982, 17, 585–589. [Google Scholar] [CrossRef]
- Alekseeva, L.S.; Nokhrin, A.V.; Karazanov, K.O.; Orlova, A.I.; Boldin, M.S.; Lantcev, E.A.; Murashov, A.A.; Chevil’deev, V.N. Mechanical properties and thermal shock resistance of fine-grained Nd:YAG/SiC ceramics. Inorg. Mater. 2022, 58, 199–204. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.Z.; Wang, Y.Y.; Zhou, C.L.; Liu, R.X.; Yang, L.P. Preparation and properties of NZP family ceramics. Solid State Phenom. 2018, 281, 450–455. [Google Scholar] [CrossRef]
- Agrawal, D.K.; Roy, R. Composite route to “zero” expansion ceramics. J. Mater. Sci. 1985, 20, 4617–4623. [Google Scholar] [CrossRef]
- Breval, E.; Mckinstry, H.A.; Agrawal, D.K. New [NZP] materials for protection coatings. Tailoring of thermal expansion. J. Mater. Sci. 2000, 35, 3359–3364. [Google Scholar] [CrossRef]
- Alekseeva, L.S.; Nokhrin, A.V.; Boldin, M.S.; Lantsev, E.A.; Orlova, A.I.; Chuvil’deev, V.N.; Sakharov, N.V. Fabrication of fine-grained CeO2-SiC ceramics for inert fuel matrices by Spark Plasma Sintering. J. Nucl. Mater. 2020, 539, 152225. [Google Scholar] [CrossRef]
- Golovkina, L.S.; Orlova, A.I.; Chuvil’deev, V.N.; Boldin, M.S.; Lantcev, E.A.; Nokhrin, A.V.; Sakharov, N.V.; Zelenov, A.Y. Spark Plasma Sintering of high-density fine-grained Y2.5Nd0.5Al5O12+SiC composite ceramics. Mater. Res. Bull. 2018, 103, 211–215. [Google Scholar] [CrossRef]
- Clark, B.M.; Tumurugoti, P.; Sundaram, S.K.; Amoroso, J.W.; Marra, J.C.; Shuthanandan, V.; Tang, M. Radiation damage of hollandite in multiphase ceramic waste forms. J. Nucl. Mater. 2017, 494, 61–66. [Google Scholar] [CrossRef]
- Chakraborty, N.; Basu, D.; Fischer, W. Thermal expansion of Ca1−xSrxZr4(PO4)6 ceramics. J. Eur. Ceram. Soc. 2005, 25, 1885–1893. [Google Scholar] [CrossRef]
- Limaye, S.Y.; Agrawal, D.K.; Mckinstry, H.A. Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba). J. Am. Ceram. Soc. 1987, 70, C-232–C-236. [Google Scholar] [CrossRef]
- Savinykh, D.O.; Khainakov, S.A.; Orlova, A.I.; Garcia-Granda, S.; Alekseeva, L.S. The synthesis and thermal expansion behavior of sodium and calcium zirconium copper phosphates. Inorg. Mater. 2020, 56, 388–394. [Google Scholar] [CrossRef]
- Savihykh, D.O.; Khainakov, S.A.; Orlova, A.I.; Garcia-Granda, S. New phosphate-sulfates with NZP structure. Russ. J. Inorg. Chem. 2018, 63, 714–724. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttzeva, A.K.; Lipatova, Y.V.; Zharinova, M.V.; Trubach, I.G.; Evseeva, Y.V.; Buchirina, N.V.; Kazantsev, G.N.; Samoilov, S.G.; Beskrovny, A.I. New NZP-based phosphates with low and controlled thermal expansion. J. Mater. Sci. 2005, 40, 2741–2743. [Google Scholar] [CrossRef]
- Kazantsev, G.N.; Orlova, A.I.; Zharinova, M.V.; Samoilov, S.G.; Pet’kov, V.I.; Kurazhkovskaya, V.S. Thermal expansion of mixed zirconium phosphates. Russ. J. Appl. Chem. 2004, 77, 369–375. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Orlova, A.I.; Kazantsev, G.N.; Samoilov, S.G.; Spiridonova, M.L. Thermal expansion in the Zr and 1-, 2-valent complex phosphates of NaZr2(PO4)3 structure. J. Therm. Anal. Calorim. 2001, 66, 623–632. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Asabina, E.A.; Shchelokov, I.A. Thermal expansion of NASICON materials. Inorg. Mater. 2013, 49, 502–506. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Su, C.; Tong, N.; Han, Z.; Liu, F. Effect of Mg3(PO4)2 addition on the crystal structure, mechanical and thermophysical properties of CaZr4P6O24 ceramics. J. Alloys Compd. 2019, 896, 302–309. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Lavrenov, D.A.; Kovalsky, A.M. Synthesis, characterization and thermal expansion of the zinc-containing phosphates with the mineral-like framework structure. J. Therm. Anal. Calorim. 2020, 139, 1791–1798. [Google Scholar] [CrossRef]
- Sukhanov, M.V.; Pet’kov, V.I.; Firsov, D.V.; Kurazhkovskaya, V.S.; Borovikova, E.Y. Synthesis, structure, and thermal expansion of sodium zirconium arsenate phosphates. Russ. J. Inorg. Chem. 2011, 56, 1351. [Google Scholar] [CrossRef]
- Orlova, A.I.; Kanunov, A.E.; Samoilov, S.G.; Kazakova, A.Y.; Kazantsev, G.N. Study of calcium-containing orthophosphates of NaZr2(PO4)3 structural type by high-temperature X-ray diffraction. Crystallogr. Rep. 2013, 58, 204–209. [Google Scholar] [CrossRef]
- Orlova, A.I.; Pet’kov, V.I.; Zharinova, M.V.; Koryttseva, A.K.; Sukhanov, M.V.; Kazantsev, G.N.; Samoilov, G.S.; Kurazhkovskaya, V.S. Synthesis and thermal expansion of complex niobium(IV) phosphates with bivalent elements. Russ. J. Appl. Chem. 2003, 76, 12–16. [Google Scholar] [CrossRef]
- Sato, I.; Ichikawa, Y.; Sakanoue, J.; Mizutani, M.; Adachi, N.; Ota, T. Flexible ceramics in the system KZr2(PO4)3-KAlSi2O6 prepared by mimicking the microstructure of itacolumite. J. Am. Ceram. Soc. 2008, 91, 607–610. [Google Scholar] [CrossRef]
- Oota, T.; Yamai, I. Thermal expansion behavior of NaZr2(PO4)3 type compounds. J. Am. Ceram. Soc. 1986, 69, 1–6. [Google Scholar] [CrossRef]
- Lenain, G.E.; McKinstry, H.A.; Alamo, J.; Agraval, D.K. Structural model for thermal expansion in MZr2P3O12 (M = Li, Na, K, Rb, Cs). J. Mater. Sci. 1987, 22, 17–22. [Google Scholar] [CrossRef]
- Lenain, G.E.; McKinstry, H.A.; Limaye, S.Y.; Woodward, D.A. Low thermal expansion of alkali-zirconium phosphates. Mater. Res. Bull. 1984, 19, 1451–1456. [Google Scholar] [CrossRef]
- Orlova, A.I.; Kemenov, D.V.; Samoilov, S.G.; Kazantsev, G.N.; Pet’kov, V.I. Thermal expansion of NZP-family alkali-metal (Na, K) zirconium phosphates. Inorg. Mater. 2000, 36, 830–834. [Google Scholar] [CrossRef]
- Volgutov, V.Y.; Orlova, A.I. Thermal expansion of phosphates with the NaZr2(PO4)3 structure containing lanthanides and zirconium: R0.33Zr2(PO4)3 (R = Nd, Eu, Er) and Er0.33(1–x)Zr0.25xZr2(PO4)3. Crystallogr. Rep. 2015, 60, 721–728. [Google Scholar] [CrossRef]
- Tantri, S.; Ushadevi, S.; Ramasesha, S.K. High-temperature X-ray studies on barium and strontium phosphate based low thermal expansion materials. Mater. Res. Bull. 2002, 37, 1141–1147. [Google Scholar] [CrossRef]
- Kierkegaard, P. The Crystal Structure of NaMeIV2(PO4)3; MeIV = Ge, Ti, Zr. Acta Chemica Scandinavica 1968, 22, 1822–1832. [Google Scholar] [CrossRef]
- Govindan Kutty, K.V.; Asuvathraman, R.; Sridharan, R. Thermal expansion studies on the sodium zirconium phosphate family of compounds A1/2M2(PO4)3: Effect of interstitial and framework cations. J. Mater. Sci. 1998, 33, 4007–4013. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Shipilov, A.S.; Dmitrienko, A.S.; Alekseev, A.A. Characterization and controlling thermal expansion of materials with kosnarite- and langbeinite-type structure. J. Ind. Eng. Chem. 2018, 57, 236–243. [Google Scholar] [CrossRef]
- Bortsova, Y.V.; Koryttseva, A.K.; Orlova, A.I.; Kurazhkovskaya, V.S.; Kazantsev, G.N.; Samoilov, S.G.; Karuchkina, Y.A. New NZP-phosphates B0.5FeTa(PO4)3 (where B—Ca, Sr, Ba): Synthesis, crystallochemical investigation and thermal expansion. J. Alloys Compd. 2009, 475, 74–78. [Google Scholar] [CrossRef]
- Orlova, A.I. Isomorphism in Crystalline Phosphates of the NaZr2(PO4)3 Structural Type and Radiochemical Problems. Radiochemistry 2002, 44, 385–403. (In Russian) [Google Scholar]
- Volkov, Y.F.; Orlova, A.I. Systematics and Crystallochemical Aspect of Inorganic Compounds with One-Core Tetrahedral Oxoanions; NIIAR: Dimitrovgrad, Russia, 2004; 286p. (In Russian) [Google Scholar]
- Roy, R.; Agrawal, D.K.; Alamo, J.; Roy, R.A. [CTP]: A New Structural Family of Near-Zero Expansion Ceramics. Mater. Res. Bull. 1984, 19, 471–477. [Google Scholar] [CrossRef]
- Alamo, J.; Roy, R. Ultralow-Expansion Ceramics in the System Na2O–ZrO2–P2O5–SiO2. J. Am. Ceram. Soc. 1984, 67, 78–80. [Google Scholar] [CrossRef]
- Liu, Y.; Molokeev, M.S.; Liu, Q.; Xia, Z. Crystal structure, phase transitions and thermal expansion properties NaZr2(PO4)3-SrZr4(PO4)6 solid solutions. Inorg. Chem. Front. 2018, 5, 619–625. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Tong, N.; Han, Z.; Liu, F. Crystal structure, mechanical and thermophysical properties of Ca0.5Sr0.5Zr4−xSnxP6O24 ceramics. J. Alloys Compd. 2019, 784, 8–15. [Google Scholar] [CrossRef]
- Roy, R.; Agrawal, D.K.; McKinstry, H.A. Very Low Thermal Expansion Coefficient Materials. Annu. Rev. Mater. Sci. 1989, 19, 59–81. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Orlova, A.I. Crystal-Chemical Approach to Predicting the Thermal Expansion of Compounds in the NZP Family. Inorg. Mater. 2003, 39, 1013–1023. [Google Scholar] [CrossRef]
- Roy, S.; Padma Kumar, P. Framework Flexibility of Sodium Zirconium Phosphate: Role of Disorder, and Polyhedral Distortions from Monte Carlo Investigation. J. Mater. Sci. 2012, 47, 4949–4954. [Google Scholar] [CrossRef]
- Orlova, A.; Kazantsev, G.; Samoilov, S. Ultralow thermal expansion in the Cs-Ln-Zr and M-Hf phosphates (Ln = Pr, Sm, Gd; M = Na, K, Rb, Cs). High Temp.-High Press. 1999, 31, 105–111. [Google Scholar] [CrossRef]
- Savinykh, D.O.; Khainakov, S.A.; Boldin, M.S.; Orlova, A.I.; Aleksandrov, A.A.; Lantsev, E.A.; Sakharov, N.V.; Murashov, A.A.; Garcia-Granda, S.; Nokhrin, A.V.; et al. Preparation of NZP-Type Ca0.75+0.5xZr1.5Fe0.5(PO4)3–x(SiO4)x Powders and Ceramic, Thermal Expansion Behavior. Inorg. Mater. 2018, 54, 1267–1273. [Google Scholar] [CrossRef]
- Tokita, M. Progress in Spark Plasma Sintering (SPS) method, system, ceramics applications and industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Olevsky, E.A.; Dudina, D.V. Field-Assisted Sintering: Science and Application; Springer Nature: Cham, Switzerland, 2018; 425p. [Google Scholar] [CrossRef]
- Hu, Z.-Y.; Zhang, Z.-H.; Cheng, X.-W.; Wang, F.-C.; Zhang, Y.-F.; Li, S.-L. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater. Des. 2020, 191, 108662. [Google Scholar] [CrossRef]
- Lantcev, E.; Nokhrin, A.; Malekhonova, N.; Boldin, M.; Chuvil’deev, V.; Blagoveshchenskiy, Y.; Isaeva, N.; Andreev, P.; Smetanina, K.; Murashov, A. A study of the impact of graphite on the kinetics of SPS in nano- and submicron WC-10%Co powder composition. Ceramics 2021, 4, 331–363. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttseva, A.K.; Kanunov, A.E.; Chuvil’deev, V.N.; Moskvicheva, A.V.; Sakharov, N.V.; Boldin, M.S.; Nokhrin, A.V. Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering. Inorg. Mater. 2012, 48, 313–317. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Papynov, E.K.; Maiorov, V.Y.; Belov, A.A.; Modin, E.B.; Buravlev, I.Y.; Azarova, Y.A.; Golub, A.V.; Gridasova, E.A.; Sukhodara, A.E.; et al. Spark Plasma Sintering of Aluminosilicate Ceramic Matrices for Immobilization of Cesium Radionuclides. Radiochemistry 2019, 61, 185–191. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Buravlev, I.Y.; Portnyagin, A.S.; Mayorov, V.Y.; Belov, A.A.; Sukhorada, A.E.; Gridasova, E.A.; Tananaev, I.G.; Sergienko, V.I. UO2-Eu2O3 compound fuel fabrication via spark plasma sintering. J. Alloys Compd. 2021, 854, 155904. [Google Scholar] [CrossRef]
- Papynov, E.K.; Belov, A.A.; Shichalin, O.O.; Buralev, I.Y.; Azon, S.A.; Gridasova, E.A.; Parotkina, Y.A.; Yagofarov, V.Y.; Dankov, A.N.; Golub, A.V.; et al. Synthesis of perovskite-like SrTiO3 ceramics for radioactive strontium immobilization by Spark Plasma Sintering-Reactive Synthesis. Russ. J. Inorg. Chem. 2021, 66, 645–653. [Google Scholar] [CrossRef]
- Papynov, E.K.; Belov, A.A.; Shichalin, O.O.; Buravlev, I.Y.; Azon, S.A.; Golub, A.V.; Gerasimenko, A.V.; Parotkina, Y.A.; Zavjalov, A.P.; Tananaev, I.G.; et al. SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis. Nucl. Eng. Technol. 2021, 53, 2289–2294. [Google Scholar] [CrossRef]
- Chuvil’deev, V.N.; Boldin, M.S.; Nokhrin, A.V.; Popov, A.A. Advanced Materials Obtained by Spark Plasma Sintering. Acta Astronaut. 2017, 135, 192–197. [Google Scholar] [CrossRef]
- Sukhanov, M.V.; Pet’kov, V.I.; Firsov, D.V. Sintering mechanism for high-density NZP ceramics. Inorg. Mater. 2011, 47, 674–678. [Google Scholar] [CrossRef]
- Wang, J.; Luo, P.; Wang, J.; Zhan, L.; Wei, Y.; Zhu, Y.; Yang, S.; Zhang, K. Microwave-sintering preparation and densification behavior of sodium zirconium phosphate ceramics with ZnO additive. Ceram. Int. 2020, 46, 3023–3027. [Google Scholar] [CrossRef]
- Golovkina, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Chuvil’deev, V.N.; Sakharov, N.V.; Belkin, O.A.; Shotin, S.V.; Zelenov, A.Y. Spark Plasma Sintering of fine-grain ceramic-metal composites based on garnet-structure oxide Y2.5Nd0.5Al5O12 for Inert Matrix Fuel. Mater. Chem. Phys. 2018, 214, 516–526. [Google Scholar] [CrossRef]
- O’Brien, R.C.; Ambrosi, R.M.; Bannister, N.P.; Howe, S.D.; Atkinson, H.V. Spark Plasma Sintering of simulated radioisotope materials within tungsten cermets. J. Nucl. Mater. 2009, 393, 108–119. [Google Scholar] [CrossRef]
- O’Brien, R.C.; Jerred, N.D. Spark Plasma Sintering of W-UO2 cermets. J. Nucl. Mater. 2013, 433, 50–54. [Google Scholar] [CrossRef]
- Tucker, D.S.; Barnes, M.W.; Hone, L.; Cook, S. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion. J. Nucl. Mater. 2017, 486, 246–249. [Google Scholar] [CrossRef]
- Cureton, W.F.; Zilinger, J.; Rosales, J.; Wilkerson, R.P.; Lang, M.; Barnes, M. Microstructural evolution of Mo-UO2 cermets under high temperature hydrogen environments. J. Nucl. Mater. 2020, 538, 152297. [Google Scholar] [CrossRef]
- Alekseeva, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Lantsev, E.A.; Chuvil’deev, V.N.; Murashov, A.A.; Sakharov, N.V. Spark Plasma Sintering of fine-grained YAG:Nd+MgO composite ceramics based on garnet-type oxide Y2.5Nd0.5Al5O12 for inert fuel matrices. Mater. Chem. Phys. 2019, 226, 323–330. [Google Scholar] [CrossRef]
- Mikhailov, D.A.; Orlova, A.I.; Malanina, N.V.; Nokhrin, A.V.; Potanina, E.A.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Belkin, O.A.; Kalenova, M.Y.; et al. A study of fine-grained ceramics based oxides ZrO2-Ln2O3 (Ln = Sm, Yb) obtained by Spark Plasma Sintering for inert matrix fuel. Ceram. Int. 2018, 44, 18595–18608. [Google Scholar] [CrossRef]
- Potanina, E.A.; Orlova, A.I.; Mikhailov, D.A.; Nokhrin, A.V.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Lantcev, E.A.; Tokarev, M.G.; Murashov, A.A. Spark Plasma Sintering of fine-grained SrWO4 and NaNd(WO4)2 tungstates ceramics with the scheelite structure for nuclear waste immobilization. J. Alloys Compd. 2019, 774, 182–190. [Google Scholar] [CrossRef]
- Alekseeva, L.S.; Nokhrin, A.V.; Orlova, A.I.; Boldin, M.S.; Lantsev, E.A.; Murashov, A.A.; Korchenkin, K.K.; Ryabkov, D.V.; Chuvil’deev, V.N. Ceramics based on the NaRe2(PO4)3 phosphate with kosnarite structure as waste forms for technetium immobilization. Inorg. Mater. 2022, 58, 325–332. [Google Scholar] [CrossRef]
- Bernard-Granger, G.; Benameur, N.; Guizard, C.; Nygren, M. Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr. Mater. 2009, 60, 164–167. [Google Scholar] [CrossRef]
- Nečina, V.; Pabst, W. Reduction on temperature gradient and carbon contamination in electric current assisted sintering (ECAS/SPS) using a “saw-tooth” heating schedule. Ceram. Int. 2019, 45, 22987–22990. [Google Scholar] [CrossRef]
- Hammoud, H.; Garnier, V.; Fantozzi, G.; Lachaud, E.; Tadier, S. Mechanism of carbon contamination in transparent MgAl2O4 and Y3Al5O12 ceramics sintered by Spark Plasma Sintering. Ceramics 2019, 2, 612–619. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Z.; Morita, K.; Li, Q.; Yang, M.; Zhang, S.; Goto, T.; Tu, R. Influence of spark plasma sintering conditions on microstructure, carbon contamination, and transmittance of CaF2 ceramics. J. Eur. Ceram. Soc. 2022, 42, 245–257. [Google Scholar] [CrossRef]
- Wang, P.; Yang, M.; Zhang, S.; Tu, R.; Goto, T.; Zhang, L. Suppression of carbon contamination in SPSed CaF2 transparent ceramics by Mo foil. J. Eur. Ceram. Soc. 2017, 37, 4103–4107. [Google Scholar] [CrossRef]
- Nokhrin, A.; Andreev, P.; Boldin, M.; Chuvil’deev, V.; Chegurov, M.; Smetanina, K.; Gryaznov, M.; Shotin, S.; Nazarov, A.; Shcherbak, G.; et al. Investigation of microstructure and corrosion resistance of Ti-Al-V titanium alloys obtained by Spark Plasma Sintering. Metals 2021, 11, 945. [Google Scholar] [CrossRef]
- Mikhailov, D.A.; Potanina, E.A.; Nokhrin, A.V.; Orlova, A.I.; Yunin, P.A.; Sakharov, N.V.; Boldin, M.S.; Belkin, O.A.; Skuratov, V.A.; Issatov, A.T.; et al. Investigation of microstructure of fine-grained YPO4:Gd ceramics with xenotime structure after Xe irradiation. Ceramics 2022, 5, 237–252. [Google Scholar] [CrossRef]
- Young, W.S.; Cutler, I.B. Initial sintering with constant rates of heating. J. Am. Ceram. Soc. 1970, 53, 659–663. [Google Scholar] [CrossRef]
- Nanda Kumar, A.K.; Watabe, M.; Kurokawa, K. The sintering kinetics of ultrafine tungsten carbide powders. Ceram. Int. 2011, 37, 2643–2654. [Google Scholar] [CrossRef]
- Potanina, E.A.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Sakharov, N.V.; Belkin, O.A.; Chuvil’deev, V.N.; Tokarev, M.G.; Shotin, S.V.; Zelenov, A.Y. Characterization of Nax(Ca/Sr)1-2xNdxWO4 complex tungstates fine-grained ceramics obtained by Spark Plasma Sintering. Ceram. Int. 2018, 44, 4033–4044. [Google Scholar] [CrossRef]
- Golovkina, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Lantsev, E.A.; Chuvil’deev, V.N.; Sakharov, N.V.; Shotin, S.V.; Zelenov, A.Y. Spark Plasma Sintering of fine-grained ceramic-metal composites YAG:Nd-(W,Mo) based on garnet-type oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. J. Nucl. Mater. 2018, 511, 109–121. [Google Scholar] [CrossRef]
- Chuvil’deev, V.N.; Boldin, M.S.; Dyatlova, Y.G.; Rumyantsev, V.I.; Ordan’yan, S.S. Comparative study of hot pressing and high-speed Spark Plasma Sintering of Al2O3/ZrO2/Ti(C,N) powders. Russ. J. Inorg. Chem. 2015, 60, 987–993. [Google Scholar] [CrossRef]
- Boldin, M.S.; Popov, A.A.; Lantsev, E.A.; Nokhrin, A.V.; Chuvil’deev, V.N. Investigation of the densification behavior of alumina during Spark Plasma Sintering. Materials 2022, 15, 2167. [Google Scholar] [CrossRef]
- Boldin, M.S.; Popov, A.A.; Nokhrin, A.V.; Murashov, A.A.; Shotin, S.V.; Chuvil’deev, V.N.; Tabachkova, N.Y.; Smetanina, K.E. Effect of grain boundary state and grain size on the microstructure and mechanical properties of alumina obtained by SPS: A case of the amorphous layer on particle surface. Ceram. Int. 2022, 48, 25723–25740. [Google Scholar] [CrossRef]
- Lantsev, E.; Malekhonova, N.; Nokhrin, A.; Chuvil’deev, V.; Boldin, M.; Blagoveshchenskiy, Y.; Andreev, P.; Smetanina, K.; Isaeva, N.; Shotin, S. Influence of oxygen on densification kinetics of WC nanopowders during SPS. Ceram. Int. 2021, 47, 4294–4309. [Google Scholar] [CrossRef]
- Lantsev, E.A.; Malekhonova, N.V.; Nokhrin, A.V.; Chuvil’deev, V.N.; Boldin, M.S.; Andreev, P.V.; Smetanina, K.E.; Blagoveshchenskiy, Y.V.; Isaeva, N.V.; Shotin, S.V. Spark Plasma Sintering of fine-grained WC hard alloys with ultra-low cobalt content. J. Alloys Compd. 2021, 857, 157535. [Google Scholar] [CrossRef]
- Pelleg, J. Diffusion in Ceramics; Springer International Publishing: Cham, Switzerland, 2016; 448p. [Google Scholar]
- Smirnova, E.S.; Chuvil’deev, V.N.; Nokhrin, A.V. A theoretical model of lattice diffusion in oxide ceramics. Phys. B Condens. Matter 2018, 545, 297–304. [Google Scholar] [CrossRef]
- Chadwick, A.V. Diffusion in Non-Metallic Solids (Part 1); Landolt-Börnstein— Group III. Condensed Matter; Beke, D.L., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 33B1, Available online: http://link.springer.com/book/10.1007/b59654 (accessed on 29 September 2022).
- Volgutov, V.Y. Development of New Phosphate-Based Materials with NZP Structure, Resistant to High Temperatures, Thermal Stresses and Radiation. Ph.D. Thesis, Nizhny Novgorod State University, Nizhny Novgorod, Russia, 12 December 2013. [Google Scholar]
- Kohler, H.; Shulz, H. NASICON solid electrolytes Part II—X-ray diffraction experiments on sodium-zirconium-phosphate single crystals at 295 K and at 993 K. Mater. Res. Bull. 1986, 21, 23–31. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttseva, A.K. Phosphates of pentavalent elements: Structure and properties. Crystallogr. Rep. 2004, 49, 724–732. [Google Scholar] [CrossRef]
- Pet’kov, V.I.; Dorokhova, G.I.; Orlova, A.I. Architecture of phosphates with {[L2(PO4)3]p−}3∞ frameworks. Crystallogr. Rep. 2001, 46, 69–74. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B 1969, 25, 925–945. [Google Scholar] [CrossRef]
- Egor’kova, O.V.; Orlova, A.I.; Pet’kov, V.I. Preparation and study of complex alkali earth, rare earth and zirconium orthophosphates. Radiochemistry 1997, 39, 491–495. (In Russian) [Google Scholar]
- Petkov, V.I.; Orlova, A.I.; Egorkova, O.V. On the existence of phases with a structure of NaZr2(PO4)3 in series of binary orthophosphates with different alkaline element to zirconium ratios. J. Struct. Chem. 1996, 37, 933–940. [Google Scholar] [CrossRef]
- Voklkov, Y.F.; Tomilin, S.V.; Orlova, A.I.; Lizin, A.A.; Spiryako, V.I.; Lukinykh, A.N. Rhombohedral actinide phosphates AIM2IV(PO4)3 (MIV = U, Np, Pu; AI − Na, K, Rb). Radiochemistry 2003, 45, 319–328. [Google Scholar] [CrossRef]
- Abmamouch, R.; Arsalane, S.; Kasimi, M.; Zijad, M. Synthesis and properties of copper-hafnium triphosphate CuIHf2(PO4)3. Mater. Res. Bull. 1997, 32, 755–766. [Google Scholar] [CrossRef]
x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
---|---|---|---|---|---|
a, Å | 8.807 (8) | 8.818 (9) | 8.824 (9) | 8.831 (9) | 8.852 (7) |
c, Å | 22.880 (4) | 22.862 (3) | 22.834 (3) | 22.790 (4) | 22.760 (0) |
αa × 106, °C−1 | −2.271 | −1.022 | −0.682 | −2.272 | −1.136 |
αc × 106, °C−1 | 17.490 | 17.496 | 17.512 | 21.939 | 22.048 |
αav × 106, °C−1 | 4.316 | 5.151 | 5.383 | 5.798 | 6.592 |
β × 106, °C−1 | 14.253 | 14.742 | 16.109 | 18.577 | 17.894 |
∆α × 106, °C−1 | 19.761 | 18.518 | 18.194 | 24.211 | 23.184 |
Ceramics | Co, wt.% | Density, g/cm3 | Theoretical Density, g/cm3 | Relative Density, % | Hv, GPa | KIC, MPa·m1/2 |
---|---|---|---|---|---|---|
Na1.2Zr1.9Co0.1(PO4)3 | 1.20 | 3.151 | 3.187 | 98.87 | 4.7 ± 0.2 | 1.1 ± 0.2 |
Na1.5Zr1.75Co0.25(PO4)3 | 2.98 | 3.088 | 3.200 | 96.50 | 5.8 ± 0.4 | 0.7 ± 0.2 |
Na2Zr1.5Co0.5(PO4)3 | 5.93 | 3.006 | 3.222 | 93.30 | 3.0 ± 0.5 | 1.0 ± 0.2 |
Ceramics | Chemical Compositions, wt.% | ||||
---|---|---|---|---|---|
O | Na | P | Co | Zr | |
Na1.2Zr1.9Co0.1(PO4)3 | 38.08 | 5.40 | 16.60 | 0.84 | 38.87 |
Na1.5Zr1.75Co0.25(PO4)3 | 37.84 | 6.98 | 16.71 | 2.79 | 35.47 |
Na2Zr1.5Co0.5(PO4)3 | 38.30 | 7.92 | 16.65 | 5.30 | 31.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksandrov, A.A.; Orlova, A.I.; Savinykh, D.O.; Boldin, M.S.; Khainakov, S.A.; Murashov, A.A.; Popov, A.A.; Shcherbak, G.V.; Garcia-Granda, S.; Nokhrin, A.V.; et al. Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research. Ceramics 2023, 6, 278-298. https://doi.org/10.3390/ceramics6010017
Aleksandrov AA, Orlova AI, Savinykh DO, Boldin MS, Khainakov SA, Murashov AA, Popov AA, Shcherbak GV, Garcia-Granda S, Nokhrin AV, et al. Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research. Ceramics. 2023; 6(1):278-298. https://doi.org/10.3390/ceramics6010017
Chicago/Turabian StyleAleksandrov, A. A., A. I. Orlova, D. O. Savinykh, M. S. Boldin, S. A. Khainakov, A. A. Murashov, A. A. Popov, G. V. Shcherbak, S. Garcia-Granda, A. V. Nokhrin, and et al. 2023. "Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research" Ceramics 6, no. 1: 278-298. https://doi.org/10.3390/ceramics6010017
APA StyleAleksandrov, A. A., Orlova, A. I., Savinykh, D. O., Boldin, M. S., Khainakov, S. A., Murashov, A. A., Popov, A. A., Shcherbak, G. V., Garcia-Granda, S., Nokhrin, A. V., Chuvil’deev, V. N., & Tabachkova, N. Y. (2023). Spark Plasma Sintering of Ceramics Based on Solid Solutions of Na1+2xZr2−xCox(PO4)3 Phosphates: Thermal Expansion and Mechanical Properties Research. Ceramics, 6(1), 278-298. https://doi.org/10.3390/ceramics6010017