Porous Ceramic ZnO Nanopowders: Features of Photoluminescence, Adsorption and Photocatalytic Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Crystal Structure and Morphology
3.2. Spectroscopic Properties
3.3. Photoluminescence
3.4. Kinetics of Dye Adsorption
3.5. Photocatalytic Dye Decomposition
4. Discussion and Conclusions
- Small size of ZnO nanoparticles determines high material specific surface area and adsorption capacity.
- Some changes of the electronic structure of the nanomaterial and relatively high ratio between surface and volume structural defects compared with bulk ZnO.
- The kinetics of organic dye adsorption from solutions by the nanoporous material includes a fast covering of the external surface of porous particles by dye molecules and slow dye diffusion and adsorption inside nanopores.
- Photocatalytic dye decomposition is faster than its adsorption on the surface of nanoporous ZnO. Therefore, it is possible to suggest that the dye photodecomposition proceeds as on the surface of nanoporous ZnO as in the solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vela, N.; Calin, M.; Yáñez-Gascón, M.J.; Garrido, I.; Pérez-Lucas, G.; Fenoll, J.; Navarro, S. Solar reclamation of waste water effluent polluted with bisphenols, phthalates and parabens by photocatalytic treatment with TiO2/Na2S2O8 at pilot plant scale. Chemosphere 2018, 212, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Li, W.; Yan, Y.; Hamann, T.; Shih, I.; Wang, D.; Mi, Z. Roadmap on solar water splitting: Current status and future prospects. Nano Futures 2017, 1, 022001. [Google Scholar] [CrossRef]
- Gaya, V.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminations over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 1–12. [Google Scholar] [CrossRef]
- Das, A.; Malakar, P.; Nair, R.G. Engineering of ZnO nanostructures for efficient solar photocatalysis. Mater. Lett. 2019, 219, 76–80. [Google Scholar] [CrossRef]
- Das, A.; Nair, R.G. Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanorods. J. Alloys Compd. 2020, 817, 153227. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Y.; Heo, Y.-J.; Park, S.-J. Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. Catalysts 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Shen, L.; Zhang, Y.-C.; Huang, Q. Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity. Mater. Lett. 2011, 65, 1794–1796. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Zhao, S.; Han, L. A novel preparation method for ZnO/γ-Al2O3 nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles. Nanoscale 2018, 10, 6892–6899. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Lv, Y.; Zhang, M.; Liu, Y.; Zhu, Y.; Zong, P.; Zhu, Y. Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets. J. Mater. Chem. A 2014, 2, 15377–15388. [Google Scholar] [CrossRef]
- Khomutinnikova, L.L.; Evstropiev, S.K.; Danilovich, D.P.; Meshkovskii, I.K.; Bulyga, D.V. Structural engineering of photocatalytic ZnO-SnO2-Fe2O3 composites. J. Comp. Sci. 2022, 6, 331. [Google Scholar] [CrossRef]
- Pal, B.; Sharon, M. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process. Mater. Chem. Phys. 2002, 76, 82–87. [Google Scholar] [CrossRef]
- Ferreira, S.H.; Morais, M.; Nunes, D.; Oliveira, M.J.; Rovisco, A.; Pimentel, A.; Aguas, H.; Fortunato, E.; Martins, R. High UV and sunlight photocatalytic performance of porous ZnO nanostructutures synthesized by a facile and fast microwave hydrothermal method. Materials 2021, 14, 2385. [Google Scholar] [CrossRef] [PubMed]
- Teja, Y.N.; Prakash, R.M.; Murali, A.; Sahar, M. Chapter 5—Defective photocatalysts. In Photocatalytic Systems by Design: Materials, Mechanisms and Applications; Sakar, M., Balakrishna, R.G., Do, T., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 131–163. [Google Scholar]
- Saratovskii, A.S.; Bulyga, D.V.; Evstrop’ev, S.K.; Antropova, T.V. Adsorption and photocatalytic activity of the porous glass-ZnO-Ag composite and ZnO-Ag nanopowder. Glass Phys. Chem. 2022, 48, 10–17. [Google Scholar] [CrossRef]
- Haleem, A.; Shafiq, A.; Chen, S.-Q.; Nazar, M. A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules 2023, 28, 1081. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Weng, C.-H.; Tseng, J.-H.; Lin, Y.-T. Adsorption and photocatalytic kinetics of visible-light response N-doped TiO2 nanocatalyst for indoor acetaldehyde removal under dark and light conditions. Int. J. Photoenergy 2016, 2016, 3058429. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Tian, B.; Han, B.; Ma, D.; Sun, M.; Hanif, A.; Xia, D.; Shang, J. Recent advances on porous materials for synergetic adsorption and photocatalysis. Energy Environ. Mater. 2022, 5, 711–730. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, L.; Ma, H.; Zhang, H.; Guo, L.H. Quantitative analysis of reactive oxygen species photogenerated on metal oxide nanoparticles and their bacteria toxicity: The role of superoxide radicals. Environ. Sci. Technol. 2017, 51, 10137–10145. [Google Scholar] [CrossRef]
- Ranjbari, A.; Demeestere, K.; Verpoort, F.; Kim, K.-H.; Heynderickx, P.M. Novel kinetic modeling of triabendazole removal by adsorption and photocatalysis on porous organic polymers: Effect of pH and visible light intensity. Chem. Eng. J. 2022, 431 Pt 4, 133349. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Liu, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 2017, 12, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Yang, S.; Yang, C.; Yu, P.; Wang, J.; Ge, W.; Wong, G.K.L. Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Appl. Phys. Lett. 2020, 76, 2901–2903. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81 Pt 1, 536–551. [Google Scholar] [CrossRef]
- Gutul, T.; Rusu, E.; Condur, N.; Ursaki, V.; Goncearenco, E.; Vlasan, P. Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J. Nanotechnol. 2014, 5, 402–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahdat Vasei, H.; Masoudpanah, S.M. Structural, optical and photocatalytic properties of cuboid ZnO particles. J. Mater. Res. Technol. 2021, 11, 112–120. [Google Scholar] [CrossRef]
- Chandrinou, C.; Boukos, N.; Stogios, C.; Travlos, A. PL study of oxygen defect formation in ZnO nanorods. Microelectron. J. 2009, 40, 296–298. [Google Scholar] [CrossRef]
- Sin, J.-C.; Lam, S.-M.; Satoshi, I.; Lee, K.-T.; Mohamed, A.R. Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Appl. Catal. B Environ. 2014, 149, 258–268. [Google Scholar] [CrossRef]
- Xu, C.; Cao, L.; Su, G.; Liu, W.; Qu, X.; Yu, Y. Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 2010, 497, 373–376. [Google Scholar] [CrossRef]
- Saadi, H.; Benzarti, Z.; Sanguino, P.; Pina, J.; Abdelmoula, N. Enhancing the electrical conductivity and the dielectric features of ZnO nanoparticles through Co doping effect for energy storage applications. J. Mater. Sci. Mater. Electron. 2023, 34, 116. [Google Scholar] [CrossRef]
- Shelemanov, A.A.; Evstropiev, S.K.; Karavaeva, A.V.; Nikonorov, N.V.; Vasilyev, V.N.; Podruhin, Y.F.; Kiselev, V.M. Enhanced singlet oxygen generation by bactericidal ZnO-MgO-Ag nanocomposites. Mater. Chem. Phys. 2022, 276, 125204. [Google Scholar] [CrossRef]
- Boltenkov, I.S.; Kolobkova, E.V.; Evstropiev, S.K. Synthesis and characterization of transparent photocatalytic ZnO-Sm2O3 and ZnO-Er2O3 coatings. J. Photochem. Photobiol. A Chem. 2018, 367, 458–464. [Google Scholar] [CrossRef]
- Evstropiev, S.K.; Lesnykh, L.L.; Nikonorov, N.V.; Karavaeva, A.V.; Kolobkova, E.V.; Oreshkina, K.V.; Mironov, L.Y.; Bagrov, I.V. Transparent ZnO-SnO2 photocatalytic nanocoatings prepared by polymer-salt method. Opt. Spectrosc. 2019, 126, 431–438. [Google Scholar] [CrossRef]
- Khomutinnikova, L.; Evstropiev, S.; Meshkovskii, I.; Bagrov, I.; Kiselev, V. Ceramic ZnO-SnO2-Fe2O3 powders and coatings—Effective photogenerators of reactive oxygen species. Ceramics 2023, 6, 886–897. [Google Scholar] [CrossRef]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. R. Soc. Chem. 2015, 44, 17883–17905. [Google Scholar] [CrossRef] [Green Version]
- PubChem Release 2021.05.07. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 1 January 2020).
- Volkova, N.A.; Evstropiev, S.K.; Nikonorov, N.V.; Evstropyev, K.S. Features of interactions of polyvinylpyrrolidone molecules with zinc and silver ions in aqueous solutions according to IR spectroscopy data. Opt. Spectrosc. 2019, 127, 738–741. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Yang, Q.; Zhang, Z.; Fang, X. Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline. Carbon 2018, 136, 103–112. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Danilenko, I.; Gorban, O.; Maksimchuk, P.; Viagin, O.; Malyukin, Y.; Gorban, S.; Volkova, G.; Glasunova, V.; Mendez-Medrano, M.G.; Colbeau-Justin, C.; et al. Photocatalytic activity of ZnO nanopowders: The role of production techniques in the formation of structural defects. Catal. Today 2019, 328, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, Z.; Ren, T.; Ding, H.; Yao, W.; Zong, R.; Zhu, Y. Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 2014, 118, 15300–15307. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, S. Effect of particle size on photoluminescence emission intensity in ZnO. Acta Materialia 2011, 59, 3024–3031. [Google Scholar] [CrossRef]
- Rodnyi, P.A.; Chernenko, K.A.; Venevtsev, I.D. Mechanisms of ZnO luminescence in the visible spectral region. Opt. Spectrosc. 2018, 125, 372–378. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Kim, B.-S.; Lee, B.-T. Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient. Appl. Phys. Lett. 2003, 82, 2625. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Xu, D.; Tan, Y.; Liu, X. Blue luminescent center in ZnO films deposited on silicon substrates. Opt. Mater. 2004, 26, 239–242. [Google Scholar] [CrossRef]
- Xu, X.; Xu, C.; Dai, J.; Pan, J.; Hu, J. Evolution of defects and blue-green emissions in ZnO microwhiskers fabricated by vapor-phase transport. J. Phys. Chem. Solids 2012, 73, 858–862. [Google Scholar] [CrossRef]
- Vempati, S.; Mitra, J.; Dawson, P. One-step synthesis of ZnO nanosheets: A blue-white fluophore. Nano Res. Lett. 2012, 7, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanherusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef]
- Wang, D.; Reynolds, N. Photoluminescence of zinc oxide nanowires: The effect of surface band bending. ISRN Condens. Matter Phys. 2012, 2012, 950354. [Google Scholar] [CrossRef] [Green Version]
- Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO NWs. Phys. Rev. B 2004, 69, 245401. [Google Scholar] [CrossRef]
- Deng, Y. Developing a Langmuir-type excitation equilibrium equation to describe the effect of light intensity on the kinetics of the photocatalytic oxidation. Chem. Eng. J. 2018, 337, 220–237. [Google Scholar] [CrossRef]
- Puma, G.L.; Salvadό-Estivill, I.; Obee, T.N.; Hay, S.O. Kinetics rate model of the photocatalytic oxidation of trichloroethylene in air over TiO2 thin films. Sep. Purif. Technol. 2009, 67, 226–232. [Google Scholar] [CrossRef]
- Bell, S.; Will, G.; Bell, J. Light intensity effects on photocatalytic water splitting with a titania catalyst. Int. J. Hydrog. Energy 2013, 38, 6938–6947. [Google Scholar] [CrossRef]
- Marsh, H.; Reinoso, F.R. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006; pp. 182–183. [Google Scholar]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G.J.R.; et al. Microwave assist ed preparation of activated carbon from biomass: A review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Noreen, S.; Khalid, U.; Ibrahim, S.M.; Javed, T.; Ghani, A.; Naz, S.; Iqbal, M. ZnO, MgO and FeO adsorption efficiencies for direct Sky Blue dye: Equilibrium, kinetics and thermodynamics studies. J. Mater. Res. Technol. 2020, 9, 5881–5893. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Varshney, K.G.; Khan, A.A.; Gupta, U.; Maheshwari, S.M. Kinetics od adsorption of phoshamidon on antimony (V) phosphate cation exchanger: Evaluation of the order of reaction and some physical parameters. Coll. Surf. A Physicochem. Eng. Aspects 1996, 113, 19–23. [Google Scholar] [CrossRef]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. Kung Sven Veten Hand 1898, 24, 39–45. [Google Scholar]
- Tian, C.; Zhao, H.; Sun, H.; Xiao, K.; Wong, P.K. Enhanced adsorption and photocatalytic activities of ultrathin graphitic carbon nitride nanosheets: Kinetics and mechanism. Chem. Eng. J. 2020, 381, 122760. [Google Scholar] [CrossRef]
- Venkatesha, T.C.; Viswanatha, R.; Arthoba Nayaka, Y.; Chthana, B.K. Kinetics and thermodynamics of reactive and vat adsorption on MgO nanoparticles. Chem. Eng. J. 2012, 198–199, 1–10. [Google Scholar] [CrossRef]
- Mahato, T.H.; Prasad, C.K.; Singh, B.; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R. Nanocrystalline zinc oxide for the decontamination of sarin. J. Hazard. Mater. 2009, 165, 928–932. [Google Scholar] [CrossRef]
- Shelemanov, A.; Tincu, A.; Evstropiev, S.; Nikonorov, N.; Vasilyev, V. Cu-doped porous ZnO-ZnAl2O4 nanocomposites synthesized by polymer-salt method for photocatalytic water purification. J. Comp. Sci. 2023, 7, 263. [Google Scholar] [CrossRef]
- Bulyga, D.V.; Evstropiev, S.K. Kinetics of adsorption and photocatalytic decomposition of a diazo dye by nanocomposite ZnO-MgO. Opt. Spectrosc. 2022, 130, 1176–1184. [Google Scholar] [CrossRef]
- Mohammad, A.; Kapoor, K.; Mobin, S.M. Improved photocatalytic degradation of organic dyes by ZnO-nanoflowers. ChemistrySelect 2016, 1, 3483–3490. [Google Scholar] [CrossRef]
Powder Sample | Average Crystal Size, nm | Lattice Strain, % | |
---|---|---|---|
Scherer Equation | Williamson–Hall Method | ||
1 | 48 | 71.0 ± 2.4 | 0.081 ± 0.005 |
2 | 30 | 35.5 ± 1.1 | 0.066 ± 0.008 |
Sample | Powder 1 | Powder 2 | ||
---|---|---|---|---|
Weight of powder sample, g | 0.01 | 0.01 | ||
Duration of adsorption t, hours | Optical density of solution D | CSB content, mol/L | Optical density of solution D | CSB content, mol/L |
0 | 2.953 | 0.0042 | 2.953 | 0.0042 |
12 | 2.447 | 0.0042 | 2.950 | 0.0035 |
97 | 1.833 | 0.0041 | 2.884 | 0.0026 |
Sample | Rate Constants of CSB Photodecomposition kapp, min−1 | References |
---|---|---|
Powder 1 | 0.025 | Present study |
Powder 2 | 0.042 | Present study |
Powder ZnO 80.16 mol.% + ZnAl2O4 19.83 mol.% + CuO 0.04 mol.% | 0.021 | [63] |
Powder ZnO 20.81 mol.% + ZnAl2O4 79.18 mol.% + CuO 0.01 mol.% | 0.005 | [63] |
ZnO-MgO | 0.062 | [64] |
ZnO nanoflowers | 0.032 | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilova, M.; Gavrilova, D.; Evstropiev, S.; Shelemanov, A.; Bagrov, I. Porous Ceramic ZnO Nanopowders: Features of Photoluminescence, Adsorption and Photocatalytic Properties. Ceramics 2023, 6, 1667-1681. https://doi.org/10.3390/ceramics6030103
Gavrilova M, Gavrilova D, Evstropiev S, Shelemanov A, Bagrov I. Porous Ceramic ZnO Nanopowders: Features of Photoluminescence, Adsorption and Photocatalytic Properties. Ceramics. 2023; 6(3):1667-1681. https://doi.org/10.3390/ceramics6030103
Chicago/Turabian StyleGavrilova, Marianna, Diana Gavrilova, Sergey Evstropiev, Andrey Shelemanov, and Igor Bagrov. 2023. "Porous Ceramic ZnO Nanopowders: Features of Photoluminescence, Adsorption and Photocatalytic Properties" Ceramics 6, no. 3: 1667-1681. https://doi.org/10.3390/ceramics6030103
APA StyleGavrilova, M., Gavrilova, D., Evstropiev, S., Shelemanov, A., & Bagrov, I. (2023). Porous Ceramic ZnO Nanopowders: Features of Photoluminescence, Adsorption and Photocatalytic Properties. Ceramics, 6(3), 1667-1681. https://doi.org/10.3390/ceramics6030103