Materials in the CaO-K2O-SO3-H2O System Based on Powder Mixtures including Calciolangbeinite K2Ca2(SO4)3 and Calcium Sulfate Anhydrite CaSO4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.1.1. Preparation of Powder of Calcium Sulfate Anhydrite CaSO4
2.1.2. Preparation of Powder of Calcium Langbenite K2Ca2(SO4)3
2.1.3. Preparation of Starting Powder Cement Mixtures
2.1.4. Preparation of Cement Stone Samples from Powder Cement Mixtures
2.2. Characterization
2.2.1. Linear Shrinkage and Geometric Density
- ΔLrel—linear shrinkage of the cement stone sample after hardening, %;
- Lcement sample—length of cement stone sample after hardening, cm;
- Lmold—length of the mold, cm.
- ρ—density of the sample, g/cm3;
- m—weight of the sample, g;
- L—length of the sample, cm.
- h—thickness of the sample, cm
- w—width of the sample, cm
2.2.2. Characterization of Phase Composition and Microstructure of Samples
2.2.3. Thermogravimetric and Mass Spectrometric Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambrose, C.G.; Clanton, T.O. Bioabsorbable implants: Review of clinical experience in orthopedic surgery. Ann. Biomed. Eng. 2004, 32, 171–177. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.-L. Common Implant-Related Advanced Bone Grafting Complications: Classification, Etiology, and Management. Implant Dent. 2008, 17, 389–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milinkovic, I.; Cordaro, L. Are there specific indications for the different alveolar bone augmentation procedures for implant placement? A systematic review. Int. J. Oral Maxillofac. Surg. 2014, 43, 606–625. [Google Scholar] [CrossRef]
- Zahari, M.A.A.; Lee, S.P.; Kasim, S.R. Synthesis of calcium sulphate as biomaterial. AIP Conf. Proc. 2020, 2267, 020081. [Google Scholar] [CrossRef]
- Bellucci, D.; Sola, A.; Cannillo, V. Hydroxyapatite and Tricalcium Phosphate Composites with Bioactive Glass as Second Phase: State of the Art and Current Applications. J. Biomed. Mater. Res. A 2016, 104, 1030–1056. [Google Scholar] [CrossRef]
- Arango-Ospina, M.; Boccaccini, A.R. Bioactive Glasses and Ceramics for Tissue Engineering. In Tissue Engineering Using Ceramics and Polymers; Elsevier: Amsterdam, The Netherlands, 2022; pp. 111–178. [Google Scholar] [CrossRef]
- Reza Rezaie, H.; Beigi Rizi, H.; Khamseh, R.M.M.; Öchsner, A. A Review on Dental Materials. Adv. Struct. Mater. 2020, 123. [Google Scholar] [CrossRef]
- Sventskaya, N.V.; Lukina, Y.S.; Larionov, D.S.; Andreev, D.V.; Sivkov, S.P. 3D-Matrix Based on Bioactive Glass and Calcium Phosphates with Controllable Resorption Rate for Bone Tissue Replacement. Glass Ceram. 2017, 73, 342–347. [Google Scholar] [CrossRef]
- Safronova, T.V. Inorganic materials for regenerative medicine. Inorg. Mater. 2021, 57, 443–474. [Google Scholar] [CrossRef]
- Safronova, T.V.; Shatalova, T.B.; Filippov, Y.Y. Na2O–CaO–SO3 Ceramics as Promising Inorganic Porogens. Glass Ceram. 2022, 79, 88–94. [Google Scholar] [CrossRef]
- Medvecky, L.; Giretova, M.; Stulajterova, R.; Luptakova, L.; Sopcak, T. Tetracalcium Phosphate/Monetite/Calcium Sulfate Hemihdrate Biocement Powder Mixtures Prepared by the One-Step Synthesis for Preparation of Nanocrystalline Hydroxyapatite Biocement-Properties and In Vitro Evaluation. Materials 2021, 14, 2137. [Google Scholar] [CrossRef]
- Khayrutdinova, D.R.; Goldberg, M.A.; Krokhicheva, P.A.; Antonova, O.S.; Tyut’kova, Y.B.; Smirnov, S.V.; Sergeeva, N.S.; Sviridova, I.K.; Kirsanova, V.A.; Akhmedova, S.A.; et al. Peculiarities of Solubility and Cytocompatibility In Vitro of Bone Cements on the Basis of Calcium Sulfate Containing Phosphate Ions. Inorg. Mater. Appl. Res. 2022, 13, 161–170. [Google Scholar] [CrossRef]
- Safronova, T.V.; Khantimirov, A.S.; Shatalova, T.B.; Filippov, Y.Y.; Kolesnik, I.V.; Knotko, A.V. Powders Synthesized from Solutions of Calcium Chloride, Sodium Hydrogen Phosphate, and Sodium Sulfate for Bioceramics Production. Ceramics 2023, 6, 561–583. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Z.; Li, X.; Di, L.Z.; Zhao, H. A study of hydroxyapatite/calcium sulphate bioceramics. Ceram. Int. 2005, 31, 1021–1023. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Ren, H.; Wang, B.; Li, X.; Peng, S.; Zhang, Q.; Yan, Y. Effects of ATP on the Physicochemical Properties and Cytocompatibility of Calcium Sulfate/Calcium Citrate Composite Cement. Materials 2023, 16, 3947. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, C.; Plank, J. Mechanochemical syngenite as hydration accelerator for anhydrite-based self-levelling floor screeds. Constr. Build. Mater. 2021, 308, 124982. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Hickey, L.; Duong, L.V.; Martens, W.N.; Frost, R.L. Synthesis and characterization of K2Ca5(SO4)6H2O, the equivalent of görgeyite, a rare evaporite mineral. Am. Mineral. 2004, 89, 266–272. [Google Scholar] [CrossRef]
- Hirsch, T.; Matschei, T.; Stephan, D. The hydration of tricalcium aluminate (Ca3Al2O6) in Portland cement-related systems: A review. Cem. Concr. Res. 2023, 168, 107150. [Google Scholar] [CrossRef]
- Buldyzhova, E.N.; Galtseva, N.A.; Fischer, H.-B.; Morozov, I.V. Investigation of the Properties of a Material Based on a Modified Anhydrite Binder. Inz. Vestn. Dona 2021, 3, 428–438. Available online: https://www.ivdon.ru/ru/magazine/archive/n3y2021/6887 (accessed on 31 May 2023). (In Russian).
- Klimenko, V.G. On the Issue of Designing the Composition of Multiphase Gypsum Binders. In High-Tech Technologies and Innovations: Electronic Collection of Reports of the International Scientific and Practical Conference; Publishing House of Belgorod State Technological University: Belgorod, Russia, 2019; Part 1; pp. 74–78. ISBN 978-5-361-00698-4. Available online: https://www.elibrary.ru/item.asp?id=38190871 (accessed on 31 May 2023). (In Russian)
- Klimenko, V.G. The role of Na+, K+, Ca2+, NH4+ Sulfates-Based Double Salts in Derivation of Anhydrite Binders. Bull. Belgorod State Technol. Univ. 2017, 2, 119–125. Available online: https://naukaru.ru/en/nauka/article/19218/view (accessed on 31 May 2023). (In Russian).
- Klimenko, V.G.; Hasanov, S.K.; Mamin, S.N. Influence of the Phase Composition of Calcium Sulfate on Syngent Formation in Gypsum Systems. In Energy- and Resource-Saving Environmentally Friendly Chemical and Technological Processes of Environmental Protection; Publishing House of Belgorod State Technological University: Belgorod, Russia, 2015; Volume III, pp. 124–130. ISBN 978-5-361-00323-5. Available online: https://www.elibrary.ru/item.asp?id=25971472 (accessed on 31 May 2023). (In Russian)
- Choubeya, S.K.; Sharma, S.P.L.; Kanjilal, D. Effect of ion irradiation on the thermoluminescence properties of K2Ca2(SO4)2 phosphor. Radiat. Eff. Defects Solids 2011, 166, 487–500. [Google Scholar] [CrossRef]
- Salah, N.; Sahare, P.D.; Nawaz, S.; Lochab, S.P. Luminescence characteristics of K2Ca2(SO4)3: Eu, Tb micro-and nanocrystalline phosphor. Radiat. Eff. Defects Solids 2004, 159, 321–334. [Google Scholar] [CrossRef]
- Smirnov, V.V.; Goldberg, M.A.; Khairutdinova, D.R.; Antonova, O.S.; Smirnov, V.S.; Konovalov, A.A.; Barinov, S.M. Synthesis and Properties of Bone Cement Materials in the Calcium Phosphate–Calcium Sulfate System. Inorg. Mater. 2017, 53, 1075–1079. [Google Scholar] [CrossRef]
- Chen, J.; Gao, J.; Yin, H.; Liu, F.; Wang, A.; Zhu, Y.; Sun, M. Size-controlled preparation of α-calcium sulphate hemihydrate starting from calcium sulphate dihydrate in the presence of modifiers and the dissolution rate in simulated body fluid. Mater. Sci. Eng. C 2013, 33, 3256–3262. [Google Scholar] [CrossRef]
- Mori, T. Thermal Behavior of the Gypsum Binder in Dental Casting Investments. J. Dent. Res. 1986, 65, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Flowers, P.; Theopold, K.; Langley, R.; Robinson, W.R. Chemistry 2e, 3rd ed.; OpenStax, Rice University: Houston, TX, USA, 2022; ISBN -13 978-1-947172-61-6. Available online: https://openstax.org/details/books/chemistry-2e (accessed on 31 May 2023).
- Van Driessche, A.E.S.; Stawski, T.M.; Benning, L.G.; Kellermeier, M. Calcium Sulfate Precipitation Throughout Its Phase Diagram. New Perspect. Mineral. Nucleation Growth 2016, 2016, 227–256. [Google Scholar] [CrossRef]
- Jurišová, J.; Danielik, V.; Fellner, P.; Lencsés, M.; Králik, M. Phase diagram of the system CaSO4-K2SO4-KNO3-Ca(NO3)2-H2O. Acta Chim. Slov. 2014, 7, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Rowe, J.J.; Morey, G.W.; Silber, C.C. The ternary system K2SO4 MgSO4 CaSO4. J. Inorg. Nucl. Chem. 1967, 29, 925–942. [Google Scholar] [CrossRef]
- Smillie, S.; Moulin, E.; Macphee, D.E.; Glasser, F.P. Freshness of cement: Conditions for syngenite CaK2(SO4)2 H2O formation. Adv. Cem. Res. 1993, 19, 93–96. [Google Scholar] [CrossRef]
- Stoytcheva, M.; Montero, G. (Eds.) Biodiesel: Feedstocks and processing technologies. BoD—Books on Demand, 9 November 2011. 472p. ISBN 978-953-307-713-0, Hard cover, 458 pages, Publisher: InTech, Publication Date: November 2011. Available online: http://www.intechopen.com/books/show/title/biodiesel-feedstocks-and-processing-technologies (accessed on 31 May 2023).
- Kloprogge, J.T.; Ding, Z.; Martens, W.N.; Schuiling, R.D.; Duong, L.V.; Frost, R.L. Thermal decomposition of syngenite, K2Ca(SO4) 2H2O. Thermochim. Acta 2004, 417, 143–155. [Google Scholar] [CrossRef] [Green Version]
- García-Florentino, C.; Gomez-Nubla, L.; Huidobro, J.; Torre-Fdez, I.; Ruíz-Galende, P.; Aramendia, J.; Madariaga, J.M. Interrelationships in the gypsum–syngenite–görgeyite system and their possible formation on mars. Astrobiology 2021, 21, 332–344. [Google Scholar] [CrossRef]
- Safronova, T.V.; Akhmedov, M.M.; Shatalova, T.B.; Tikhonova, S.A.; Kazakova, G.K. Ceramics in the K2O–CaO–SO3–P2O5 System. Russ. J. Inorg. Chem. 2021, 66, 1057–1066. [Google Scholar] [CrossRef]
- Safronova, T.V.; Belokozenko, M.A.; Yahyoev, S.O.; Shatalova, T.B.; Kazakova, G.K.; Peranidze, K.K.; Toshev, O.U.; Khasanova, S.S. Ceramics Based on CaSO4⋅2H2O Powder Synthesized from Ca(NO3)2 and (NH4)2SO4. Inorg. Mater. 2021, 57, 867–873. [Google Scholar] [CrossRef]
- ICDD. International Centre for Diffraction Data; PDF-4+ 2010 (Database); Kabekkodu, S., Ed.; ICDD: Newtown Square, PA, USA, 2010; Available online: https://www.icdd.com/pdf-2/ (accessed on 31 May 2023).
- Sveshnikova, V.N. Investigation of solubitity in the reciprocal system CaSO4–KCl–H2O at 55. Bull. Acad. Sci. USSR Div. Chem. Sci. 1952, 1, 45–53. [Google Scholar] [CrossRef]
- Li, D.C.; Fan, R.; Yuan, J.S.; Yang, S.N.; Ji, Z.Y. Study on the Solid-Liquid Phase Equilibrium of the Calcium-Containing Brine System. Mater. Sci. Forum 2016, 873, 79–83. [Google Scholar] [CrossRef]
Labeling | Target Phase Composition of Samples of Cement Stones, mol% | Composition of Starting Powder Cement Mixtures, mol% | Bulk Density, g/cm3 | W/P Ratio | L/S Ratio | Reactions for Calculation | |||
---|---|---|---|---|---|---|---|---|---|
K2Ca(SO4)2·H2O | CaSO4·2H2O | CaSO4 | K2Ca2(SO4)3 | K2SO4 | |||||
Syn-25 | 25 | 75 | 50 | 50 | - | 0.697 | 0.9 | 0.9 | (8), (9) |
Syn-50 | 50 | 50 | - | 100 | - | 0.798 | 0.5 | 0.5 | (9) |
Syn-75 | 75 | 25 | - | 66 | 33 | 0.746 | 0.8 | 0.9 | (9), (10) |
Syn-100 | 100 | 0 | - | 50 | 50 | 0.835 | 0.6 | 0.8 | (10) |
Cement Samples | Dissolution–Crystallization Is Prefarable for the Phase | Shape of the Particles |
---|---|---|
Syn-25 | Calcium sulfate dihydrate CaSO4·2H2O | Pillar |
Syn-50 | Syngenite K2Ca(SO4)2·H2O | Plate |
Syn-75 | Calcium sulfate dihydrate CaSO4·2H2O | Pillar |
Syn-100 | Syngenite K2Ca(SO4)2·H2O | Plate |
Sample | Theoretical Residual Mass as a Result of Thermal Decomposition, wt% | Residual Mass According TA as a Result of Thermal Decomposition, wt% |
---|---|---|
Syn-25 | 85.1 | 85.5 |
Syn-50 | 89.2 | 89.0 |
Syn-75 | 92.2 | 91.9 |
Syn-100 | 94.5 | 94.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsov, A.I.; Safronova, T.V.; Shatalova, T.B.; Filippov, Y.Y.; Vaymugin, L.A.; Vlasenko, V.S.; Likhanov, M.S. Materials in the CaO-K2O-SO3-H2O System Based on Powder Mixtures including Calciolangbeinite K2Ca2(SO4)3 and Calcium Sulfate Anhydrite CaSO4. Ceramics 2023, 6, 1434-1448. https://doi.org/10.3390/ceramics6030088
Kuznetsov AI, Safronova TV, Shatalova TB, Filippov YY, Vaymugin LA, Vlasenko VS, Likhanov MS. Materials in the CaO-K2O-SO3-H2O System Based on Powder Mixtures including Calciolangbeinite K2Ca2(SO4)3 and Calcium Sulfate Anhydrite CaSO4. Ceramics. 2023; 6(3):1434-1448. https://doi.org/10.3390/ceramics6030088
Chicago/Turabian StyleKuznetsov, Alexander I., Tatiana V. Safronova, Tatiana B. Shatalova, Yaroslav Y. Filippov, Leonid A. Vaymugin, Vyacheslav S. Vlasenko, and Maxim S. Likhanov. 2023. "Materials in the CaO-K2O-SO3-H2O System Based on Powder Mixtures including Calciolangbeinite K2Ca2(SO4)3 and Calcium Sulfate Anhydrite CaSO4" Ceramics 6, no. 3: 1434-1448. https://doi.org/10.3390/ceramics6030088
APA StyleKuznetsov, A. I., Safronova, T. V., Shatalova, T. B., Filippov, Y. Y., Vaymugin, L. A., Vlasenko, V. S., & Likhanov, M. S. (2023). Materials in the CaO-K2O-SO3-H2O System Based on Powder Mixtures including Calciolangbeinite K2Ca2(SO4)3 and Calcium Sulfate Anhydrite CaSO4. Ceramics, 6(3), 1434-1448. https://doi.org/10.3390/ceramics6030088