A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media
Abstract
:1. State of the Art in Zinc Chalcogenide Active Media
2. Zinc Chalcogenide Optical Ceramic Technology
3. ZnSe- and ZnS-Based Laser Ceramics
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinogradov, E.A.; Mavrin, B.N.; Novikova, N.N.; Yakovlev, V.A.; Popova, D.M. Lattice dynamics of ZnSexS1−x semiconductor crystals. Laser Phys. 2009, 19, 162–170. [Google Scholar] [CrossRef]
- Popov, P.A.; Kuznetsov, S.V.; Krugovykh, A.A.; Mitroshenkov, N.V.; Balabanov, S.S.; Fedorov, P.P. Study of the thermal conductivity of PbS, CuFeS2, ZnS. Condens. Matter Interphases 2020, 22, 97–105. [Google Scholar] [CrossRef]
- Piao, M.; Cui, Q.; Zhu, H.; Xue, C.; Zhang, B. Diffraction efficiency change of multilayer diffractive optics with environmental temperature. J. Opt. 2014, 16, 035707. [Google Scholar] [CrossRef]
- Starobor, A.; Mironov, E.; Palashov, O.; Balabanov, S. Thermal lens in magneto-active ZnS, ZnSe and CdSe semiconductor media. Opt. Mater. 2023, 138, 113740. [Google Scholar] [CrossRef]
- Title, R.S. Electron Paramagnetic Resonance Spectra of Cr+, Mn++, and Fe3+ in Cubic ZnS. Phys. Rev. 1963, 131, 623–627. [Google Scholar] [CrossRef]
- Page, R.H.; DeLoach, L.D.; Wilke, G.D.; Payne, S.A.; Beach, R.J.; Krupke, W.F. Cr2+-doped II-VI crystals: New widely tunable, room-temperature mid-IR lasers Lasers and Electro-Optics Society Annual Meeting. In Proceedings of the 8th Annual Meeting Conference Proceedings, San Francisco, CA, USA, 30–31 October 1995; pp. 449–450. [Google Scholar]
- DeLoach, L.D.; Page, R.H.; Wilke, G.D.; Payne, S.A.; Krupke, W.F. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quantum Electron. 1996, 32, 885–895. [Google Scholar] [CrossRef]
- Adams, J.J.; Bibeau, C.; Page, R.H.; Krol, D.M.; Furu, L.H.; Payne, S.A. 4.0–4.5-µm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material. Opt. Lett. 1999, 24, 1720–1722. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim-Zadeh, M.; Sorokina, I.T. Mid-Infrared Coherent Sources and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 140206439X. [Google Scholar]
- Mirov, S.B.; Moskalev, I.S.; Vasilyev, S.; Smolski, V.; Fedorov, V.V.; Martyshkin, D.; Peppers, J.; Mirov, M.; Dergachev, A.; Gapontsev, V. Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1601829. [Google Scholar] [CrossRef]
- Kozlovsky, V.I.; Korostelin, Y.V.; Podmar’kov, Y.P.; Skasyrsky, Y.K.; Frolov, M.P. Middle infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe lasers: New results. J. Phys. Conf. Ser. 2016, 740, 012006. [Google Scholar] [CrossRef]
- Dormidonov, A.E.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Kotereva, T.V.; Savin, D.V.; Timofeeva, N.A. High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy. Appl. Phys. B 2016, 122, 211. [Google Scholar] [CrossRef]
- Shcherbakov, I.A. Laser physics in medicine. Phys.-Uspekhi 2010, 53, 631–635. [Google Scholar] [CrossRef]
- Ma, J.; Qin, Z.; Xie, G.; Qian, L.; Tang, D. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region. Appl. Phys. Rev. 2019, 6, 021317. [Google Scholar] [CrossRef]
- Ebrahim-Zadeh, M.; Helmy, A.S.; Leo, G.; Schunemann, P.G. Mid-infrared coherent sources and applications: Introduction. J. Opt. Soc. Am. B 2021, 38, MIC1. [Google Scholar] [CrossRef]
- Akimov, V.A.; Kozlovskii, V.I.; Korostelin, Y.V.; Landman, A.I.; Podmar’kov, Y.P.; Frolov, M.P. Intracavity laser spectroscopy using a Cr2+:ZnSe laser. Quantum Electron. 2004, 34, 185–188. [Google Scholar] [CrossRef]
- Akimov, V.A.; Voronov, A.A.; Kozlovskii, V.I.; Korostelin, Y.V.; Landman, A.I.; Podmar’kov, Y.P.; Frolov, M.P. Intracavity laser spectroscopy by using a Fe2+:ZnSe laser. Quantum Electron. 2007, 37, 1071–1075. [Google Scholar] [CrossRef]
- Zakharov, N.G.; Savikin, A.P.; Sharkov, V.V.; Eremeykin, O.N. Intracavity laser spectroscopy of CH4 and NH3 gases by using a pulse-periodic Cr2+:ZnSe laser. Opt. Spectrosc. 2012, 112, 32–35. [Google Scholar] [CrossRef]
- Fjodorow, P.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Schulz, C.; Leonov, S.O.; Skasyrsky, Y.K. Room-temperature Fe:ZnSe laser tunable in the spectral range of 3.7–5.3 µm applied for intracavity absorption spectroscopy of CO2 isotopes, CO and N2O. Opt. Express 2021, 29, 12033. [Google Scholar] [CrossRef]
- Komar, V.K.; Nalivaiko, D.P.; Sulima, S.V.; Zagoruiko, Y.A.; Fedorenko, O.A.; Kovalenko, N.O.; Chugai, O.N.; Terzin, I.S.; Gerasimenko, A.S.; Dubina, N.G. ZnSe:Cr2+ laser crystals grown by Bridgman method. Funct. Mater. 2009, 16, 192–196. [Google Scholar]
- Jelínková, H.; Doroshenko, M.E.; Jelínek, M.; Šulc, J.; Němec, M.; Kubeček, V.; Zagoruiko, Y.A.; Kovalenko, N.O.; Gerasimenko, A.S.; Puzikov, V.M.; et al. Fe:ZnSe and Fe:ZnMgSe lasers pumped by Er:YSGG radiation. Proc. SPIE 2015, 9342, 93421V. [Google Scholar]
- Doroshenko, M.E.; Jelínková, H.; Koranda, P.; Šulc, J.; Basiev, T.T.; Osiko, V.V.; Komar, V.K.; Gerasimenko, A.S.; Puzikov, V.M.; Badikov, V.V.; et al. Tunable mid-infrared laser properties of Cr2+:ZnMgSe and Fe2+:ZnSe crystals. Laser Phys. Lett. 2010, 7, 38–45. [Google Scholar] [CrossRef]
- Su, C.-H.; Feth, S.; Volz, M.P.; Matyi, R.; George, M.A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S.L. Vapor growth and characterization of Cr-doped ZnSe crystals. J. Cryst. Growth 1999, 207, 35–42. [Google Scholar] [CrossRef]
- Akimov, V.A.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Landman, A.I.; Podmar’kov, Y.P.; Voronov, A.A. Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers. Phys. Status Solidi C 2006, 3, 1213–1216. [Google Scholar] [CrossRef]
- Kozlovsky, V.I.; Akimov, V.A.; Frolov, M.P.; Korostelin, Y.V.; Landman, A.I.; Martovitsky, V.P.; Mislavskii, V.V.; Podmar’kov, Y.P.; Skasyrsky, Y.K.; Voronov, A.A. Room-temperature tunable mid-infrared lasers on transition-metal doped II-VI compound crystals grown from vapor phase. Phys. Status Solidi 2010, 247, 1553–1556. [Google Scholar] [CrossRef]
- Gavrishchuk, E.; Savin, D.; Tomilova, T.; Ikonnikov, V.; Kurashkin, S.; Mashin, A.; Nezhdanov, A.; Usanov, D. Spray pyrolysis deposited Cr and In doped CdS films for laser application. Opt. Mater. 2021, 117, 111153. [Google Scholar] [CrossRef]
- Demirbas, U.; Sennaroglu, A.; Kurt, A.; Somer, M. Preparation and Spectroscopic Investigation of Diffusion-Doped Fe2+:ZnSe and Cr2+:ZnSe. In Advanced Solid-State Photonics (TOPS); OSA: Washington, DC, USA, 2005; p. 63. [Google Scholar]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Rodin, S.A.; Savin, D.V.; Timofeeva, N.A. Room temperature Fe2+:ZnS laser. Proc. SPIE 2015, 9810, 98100W. [Google Scholar]
- Moskalev, I.; Mirov, S.; Mirov, M.; Vasilyev, S.; Smolski, V.; Zakrevskiy, A.; Gapontsev, V. 140 W Cr:ZnSe laser system. Opt. Express 2016, 24, 21090. [Google Scholar] [CrossRef]
- Velikanov, S.D.; Gavrishchuk, E.M.; Zaretsky, N.A.; Zakhryapa, A.V.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Maneshkin, A.A.; Mashkovskii, D.A.; Saltykov, E.V.; et al. Repetitively pulsed Fe: ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element. Quantum Electron. 2017, 47, 303–307. [Google Scholar] [CrossRef]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Rodin, S.A.; Savin, D.V.; Timofeeva, N.A. High-energy room-temperature Fe2+: ZnS laser. Laser Phys. Lett. 2016, 13, 015001. [Google Scholar] [CrossRef]
- Timofeeva, N.A.; Gavrishchuk, E.M.; Savin, D.V.; Rodin, S.A.; Kurashkin, S.V.; Ikonnikov, V.B.; Tomilova, T.S. Fe2+ Diffusion in CVD ZnSe during Annealing in Different (Ar, Zn, and Se) Atmospheres. Inorg. Mater. 2019, 55, 1201–1205. [Google Scholar] [CrossRef]
- Gavrishuk, E.; Ikonnikov, V.; Kotereva, T.; Savin, D.; Rodin, S.; Mozhevitina, E.; Avetisov, R.; Zykova, M.; Avetissov, I.; Firsov, K.; et al. Growth of high optical quality zinc chalcogenides single crystals doped by Fe and Cr by the solid phase recrystallization technique at barothermal treatment. J. Cryst. Growth 2017, 468, 655–661. [Google Scholar] [CrossRef]
- Gavrishchuk, E.M.; Savin, D.V.; Tomilova, T.S.; Ikonnikov, V.B.; Kurashkin, S.V.; Rodin, S.A.; Kononov, I.G.; Podlesnykh, S.V.; Firsov, K.N. Laser properties of active media based on ZnSe doped with Fe and In from spray pyrolysis deposited films. Laser Phys. Lett. 2022, 19, 065801. [Google Scholar] [CrossRef]
- Kurashkin, S.V.; Martynova, O.V.; Savin, D.V.; Gavrishchuk, E.M.; Rodin, S.A.; Savikin, A.P. Doping profile influence on a polycrystalline Cr2+: ZnSe laser efficiency. Laser Phys. Lett. 2018, 15, 025002. [Google Scholar] [CrossRef]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Kotereva, T.V.; Savin, D.V.; Timofeeva, N.A. Room-temperature laser on a ZnSe: Fe2+ polycrystal with undoped faces, excited by an electrodischarge HF laser. Laser Phys. Lett. 2016, 13, 055002. [Google Scholar] [CrossRef]
- Kurashkin, S.V.; Martynova, O.V.; Savin, D.V.; Gavrishchuk, E.M.; Balabanov, S.S.; Ikonnikov, V.B.; Sharkov, V.V. Cr2+: ZnSe active media with complex profiles of internal doping. Laser Phys. Lett. 2019, 16, 075801. [Google Scholar] [CrossRef]
- Balabanov, S.S.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kononov, I.G.; Kurashkin, S.V.; Podlesnykh, S.V.; Savin, D.V.; Sirotkin, A.A. Room-temperature lasing on Fe2+: ZnSe with meniscus inner doped layer fabricated by solid-state diffusion bonding. Laser Phys. Lett. 2019, 16, 055004. [Google Scholar] [CrossRef]
- Alekseev, E.E.; Kazantsev, S.Y.; Podlesnikh, S.V. Potential of crystals with a nonuniform doping profile for a Fe2+: ZnSe laser. Opt. Mater. Express 2020, 10, 2075. [Google Scholar] [CrossRef]
- Dormidonov, A.E.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kononov, I.G.; Kurashkin, S.V.; Podlesnykh, S.V.; Savin, D.V. Suppression of Transverse Parasitic Oscillation in Fe:ZnSe and Fe:ZnS Lasers Based on Polycrystalline Active Elements: A Review. Phys. Wave Phenom. 2020, 28, 222–230. [Google Scholar] [CrossRef]
- Ruan, P.; Pan, Q.; Alekseev, E.E.; Kazantsev, S.Y.; Mashkovtseva, L.S.; Mironov, Y.B.; Podlesnikh, S.V. Performance improvement of a Fe2+:ZnSe laser pumped by non-chain pulsed HF laser. Optik 2021, 242, 167005. [Google Scholar] [CrossRef]
- Savin, D.V.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Eremeykin, O.N.; Egorov, A.S. Laser generation in polycrystalline Cr2+:ZnSe with undoped faces. Quantum Electron. 2015, 45, 8–10. [Google Scholar] [CrossRef]
- Nitsuk, Y.A. Diffusion of chromium and impurity absorption in ZnS crystals. Funct. Mater. 2013, 20, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Yudin, N.; Antipov, O.; Balabanov, S.; Eranov, I.; Getmanovskiy, Y.; Slyunko, E. Effects of the Processing Technology of CVD-ZnSe, Cr2+:ZnSe, and Fe2+:ZnSe Polycrystalline Optical Elements on the Damage Threshold Induced by a Repetitively Pulsed Laser at 2.1 µm. Ceramics 2022, 5, 459–471. [Google Scholar] [CrossRef]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Rodin, S.A.; Savin, D.V.; Timofeeva, N.A. Characteristics of a polycrystalline ZnSe:Fe2+ laser at room temperature. Proc. SPIE 2015, 9810, 98101R. [Google Scholar]
- Balabanov, S.S.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Kotereva, T.V.; Savin, D.V.; Timofeeva, N.A. Laser properties of Fe2+: ZnSe fabricated by solid-state diffusion bonding. Laser Phys. Lett. 2018, 15, 045806. [Google Scholar] [CrossRef]
- Rodin, S.A.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Savin, D.V. Effect of Annealing Atmosphere on Chromium Diffusion in CVD ZnSe. Inorg. Mater. 2018, 54, 21–25. [Google Scholar] [CrossRef]
- Ikonnikov, V.B.; Kotereva, T.V.; Savin, D.V.; Gavrishchuk, E.M. Diffusion of chromium in zinc chalcogenides during hot isostatic pressing. Opt. Mater. 2021, 117, 111200. [Google Scholar] [CrossRef]
- Gafarov, O.; Martinez, A.; Fedorov, V.; Mirov, S. Enhancement of Cr and Fe diffusion in ZnSe/S laser crystals via annealing in vapors of Zn and hot isostatic pressing. Opt. Mater. Express 2017, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Steinmeyer, G.; Tomm, J.W.; Fuertjes, P.; Griebner, U.; Balabanov, S.S.; Elsaesser, T. Efficient Electronic Excitation Transfer via Phonon-Assisted Dipole-Dipole Coupling in Fe2+:Cr2+:ZnSe. Phys. Rev. Appl. 2023, 19, 054043. [Google Scholar] [CrossRef]
- Fürtjes, P.; Tomm, J.W.; Griebner, U.; Steinmeyer, G.; Balabanov, S.S.; Gavrishchuk, E.M.; Elsaesser, T. Kinetics of excitation transfer from Cr2+ to Fe2+ ions in co-doped ZnSe. Opt. Lett. 2022, 47, 2129. [Google Scholar] [CrossRef] [PubMed]
- Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Rodin, S.A.; Savin, D.V.; Sirotkin, A.A.; Timofeeva, N.A. CVD-grown Fe2+: ZnSe polycrystals for laser applications. Laser Phys. Lett. 2017, 14, 055805. [Google Scholar] [CrossRef]
- Avetisov, R.I.; Balabanov, S.S.; Firsov, K.N.; Gavrishchuk, E.M.; Gladilin, A.A.; Ikonnikov, V.B.; Kalinushkin, V.P.; Kazantsev, S.Y.; Kononov, I.G.; Zykova, M.P.; et al. Hot-pressed production and laser properties of ZnSe:Fe2+. J. Cryst. Growth 2018, 491, 36–41. [Google Scholar] [CrossRef]
- Ikesue, A. Processing of Ceramics: Breakthroughs in Optical Materials; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 1119538815. [Google Scholar]
- Li, J.; Pan, Y.; Zeng, Y.; Liu, W.; Jiang, B.; Guo, J. The history, development, and future prospects for laser ceramics: A review. Int. J. Refract. Met. Hard Mater. 2013, 39, 44–52. [Google Scholar] [CrossRef]
- Sanghera, J.; Kim, W.; Villalobos, G.; Shaw, B.; Baker, C.; Frantz, J.; Sadowski, B.; Aggarwal, I. Ceramic laser materials: Past and present. Opt. Mater. 2013, 35, 693–699. [Google Scholar] [CrossRef]
- Gallian, A.; Fedorov, V.V.; Mirov, S.B.; Badikov, V.V.; Galkin, S.N.; Voronkin, E.F.; Lalayants, A.I. Hot-pressed ceramic Cr2+:ZnSe gain-switched laser. Opt. Express 2006, 14, 11694. [Google Scholar] [CrossRef] [Green Version]
- Moskalev, I.S.; Fedorov, V.V.; Mirov, S.B. CW Single-Frequency Tunable, CW Multi-Watt Polycrystalline, and CW Hot-Pressed-Ceramic Cr2+:ZnSe Lasers. In Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007; pp. 1–2. [Google Scholar]
- Mirov, S.B.; Fedorov, V.V.; Moskalev, I.S.; Martyshkin, D.V. Recent Progress in Transition-Metal-Doped II–VI Mid-IR Lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 810–822. [Google Scholar] [CrossRef]
- Carnall, J.E.; Mauer, P.B.; Parsons, W.F.; Roy, D.W. Zinc sulfide optical element. Patent US 3131025, 28 April 1964. [Google Scholar]
- Harris, D.C. Development of hot-pressed and chemical-vapor-deposited zinc sulfide and zinc selenide in the United States for optical windows. Proc. SPIE 2007, 6545, 654502. [Google Scholar]
- Chlique, C.; Merdrignac-Conanec, O.; Hakmeh, N.; Zhang, X.; Adam, J.-L. Transparent ZnS Ceramics by Sintering of High Purity Monodisperse Nanopowders. J. Am. Ceram. Soc. 2013, 96, 3070–3074. [Google Scholar] [CrossRef]
- Hakmeh, N.; Merdrignac-Conanec, O.; Zhang, X. Method of Manufacturing a Sulfide-Based Ceramic Element, Particularly for IR-Optics Applications. Patent application US 2017/0144934, 25 May 2017. [Google Scholar]
- Durand, G.R.; Hakmeh, N.; Dorcet, V.; Demange, V.; Cheviré, F.; Merdrignac-Conanec, O. New insights in structural characterization of transparent ZnS ceramics hot-pressed from nanocrystalline powders synthesized by combustion method. J. Eur. Ceram. Soc. 2019, 39, 3094–3102. [Google Scholar] [CrossRef]
- Chen, W.W.; Dunn, B. Characterization of Pore Size Distribution by Infrared Scattering in Highly Dense ZnS. J. Am. Ceram. Soc. 1993, 76, 2086–2092. [Google Scholar] [CrossRef]
- Choi, B.; Kim, D.; Lee, K.; Kim, B.; Kang, J.; Nahm, S. Highly IR transparent ZnS ceramics sintered by vacuum hot press using hydrothermally produced ZnS nanopowders. J. Am. Ceram. Soc. 2020, 103, 2663–2673. [Google Scholar] [CrossRef]
- Yeo, S.-Y.; Kwon, T.-H.; Park, C.-S.; Kim, C.-I.; Yun, J.-S.; Jeong, Y.-H.; Hong, Y.-W.; Cho, J.-H.; Paik, J.-H. Sintering and optical properties of transparent ZnS ceramics by pre-heating treatment temperature. J. Electroceramics 2018, 41, 1–8. [Google Scholar] [CrossRef]
- Lee, K.-T.; Choi, B.-H.; Woo, J.-U.; Kang, J.-S.; Paik, J.-H.; Chu, B.-U.; Nahm, S. Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders. J. Eur. Ceram. Soc. 2018, 38, 4237–4244. [Google Scholar] [CrossRef]
- Zhou, G.; Calvez, L.; Delaizir, G.; Zhang, X.; Rocherullé, J. Comparative study of ZnSe powders synthesized by two different methods and sintered by Hot-Pressing. Optoelectron. Adv. Mater. Rapid Commun. 2014, 8, 436–441. [Google Scholar]
- Gao, J.L.; Liu, P.; Zhang, J.; Xu, X.D.; Tang, D.Y. Fabrication of High Dense ZnSe Ceramic by Spark Plasma Sintering: The Effect of the Powder Process Method. Solid State Phenom. 2018, 281, 661–666. [Google Scholar] [CrossRef]
- Baláẑ, P.; Bálintová, M.; Bastl, Z.; Briančin, J.; Šepelák, V. Characterization and reactivity of zinc sulphide prepared by mechanochemical synthesis. Solid State Ionics 1997, 101–103, 45–51. [Google Scholar] [CrossRef]
- Achimovičová, M.; Bujňáková, Z.; Fabián, M.; Zorkovská, A. Study of de-aggregation of mechanochemically synthesized ZnSe nanoparticles by re-milling in the presence of ZnCl2 solution. Acta Montan. Slovaca Ročník 2013, 18, 119–124. [Google Scholar]
- Gotor, F.J.; Achimovicova, M.; Real, C.; Balaz, P. Influence of the milling parameters on the mechanical work intensity in planetary mills. Powder Technol. 2013, 233, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.-Y.; Choi, W.J.; Lee, S.Y.; Ju, B.-K.; Cho, S.-H. Mechanochemical synthesis of ZnS for fabrication of transparent ceramics. Res. Chem. Intermed. 2018, 44, 4721–4731. [Google Scholar] [CrossRef]
- Kozitskii, S.V.; Pisarskii, V.P.; Polishchuk, D.D.; Chaus, I.S.; Kompanichenko, N.M.; Andreichenko, V.G. Chemical-composition and some properties of zinc-sulfide synthesized in a combustion wave. Inorg. Mater. 1990, 26, 2126–2129. [Google Scholar]
- Kovalenko, A.V. The peculiarities of the properties of ZnSxSe1-x nanocrystals obtained by self-propagating high-temperature synthesis. Funct. Mater. 2018, 25, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Kozitskii, S.V.; Vaksman, Y.F. Luminescence of zinc selenide obtained by the method of self-propagating high-temperature synthesis. J. Appl. Spectrosc. 1997, 64, 345–349. [Google Scholar] [CrossRef]
- Bulaniy, M.F.; Kovalenko, A.V.; Morozov, A.S.; Khmelenko, O.V. Obtaining of nanocrystals ZnS: Mn by means of self-propagating high-temperature synthesis. J. Nano-Electron. Phys. 2017, 9, 2001–2007. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Fedorov, V.V.; Mirov, S.B.; Wu, Y. Hot-pressed chromium doped zinc sulfide infrared transparent ceramics. Scr. Mater. 2016, 125, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xie, T.; Kou, H.; Pan, Y.; Li, J. Hot-pressing and post-HIP treatment of Fe2+: ZnS transparent ceramics from co-precipitated powders. J. Eur. Ceram. Soc. 2017, 37, 2253–2257. [Google Scholar] [CrossRef]
- Shizen, Z.; Hongli, M.A.; Jean, R.; Odile, M.C.; Jean-Luc, A.; Jacques, L.; Xianghua, Z. Preparation and hot pressing of ZnS nano powders for producing transparent ceramics. Optoelectron Adv Mater 2007, 1, 667–671. [Google Scholar]
- Chlique, C.; Delaizir, G.; Merdrignac-Conanec, O.; Roucau, C.; Dollé, M.; Rozier, P.; Bouquet, V.; Zhang, X.H. A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS). Opt. Mater. 2011, 33, 706–712. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y. Transparent and Luminescent ZnS Ceramics Consolidated by Vacuum Hot Pressing Method. J. Am. Ceram. Soc. 2015, 98, 2972–2975. [Google Scholar] [CrossRef]
- Li, Y. Photoluminescent Zinc Sulfide Optical Ceramics; New York State College of Ceramics at Alfred University, Kazuo Inamori School of Engineering: Alfred Station, NY, USA, 2015. [Google Scholar]
- Li, C.; Pan, Y.; Kou, H.; Chen, H.; Wang, W.; Xie, T.; Li, J. Densification Behavior, Phase Transition, and Preferred Orientation of Hot-Pressed ZnS Ceramics from Precipitated Nanopowders. J. Am. Ceram. Soc. 2016, 99, 3060–3066. [Google Scholar] [CrossRef]
- Merdrignac-Conanec, O.; Hakmeh, N.; Durand, G.; Zhang, X.-H. Manufacturing of transparent ZnS ceramics by powders sintering. Proc. SPIE 2016, 9822, 982203. [Google Scholar]
- Li, C.; Chen, H.; Ivanov, M.; Xie, T.; Dai, J.; Kou, H.; Pan, Y.; Li, J. Large-scale hydrothermal synthesis and optical properties of Cr2+:ZnS nanocrystals. Ceram. Int. 2018, 44, 13169–13175. [Google Scholar] [CrossRef]
- Yu, S.; Wu, Y. Synthesis of Fe:ZnSe nanopowders via the co-precipitation method for processing transparent ceramics. J. Am. Ceram. Soc. 2019, 102, 7089–7097. [Google Scholar] [CrossRef]
- Yu, S.; Carloni, D.; Wu, Y. Microstructure development and optical properties of Fe:ZnSe transparent ceramics sintered by spark plasma sintering. J. Am. Ceram. Soc. 2020, 103, 4159–4166. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhang, J.; Liu, P.; Zhou, T.; Zhang, H.; Gong, D.; Tang, D.; Shen, D. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process. Opt. Mater. 2015, 50, 36–39. [Google Scholar] [CrossRef]
- Li, Y.; Tan, W.; Wu, Y. Phase transition between sphalerite and wurtzite in ZnS optical ceramic materials. J. Eur. Ceram. Soc. 2020, 40, 2130–2140. [Google Scholar] [CrossRef]
- Huang, F.; Banfield, J.F. Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS. J. Am. Chem. Soc. 2005, 127, 4523–4529. [Google Scholar] [CrossRef]
- Aven, M.; Parodi, J.A. Study of the crystalline transformations in ZnS:Cu, ZnS:Ag and ZnS:Cu, Al. J. Phys. Chem. Solids 1960, 13, 56–64. [Google Scholar] [CrossRef]
- Volynets, F.K.; Gorokhova, E.I.; Qashqai, A.D. Kinetics of collective recrystallization of doped ZnS. Inorg. Mater. 1982, 18, 733–737. [Google Scholar]
- Gorokhova, E.I.; Ananyeva, G.V.; Volynets, F.K. Influence of alloying impurities on the phase composition of zinc sulfide ceramics. Inorg. Mater. 1987, 23, 142–144. [Google Scholar]
- Król, A.; Kozielski, M.J.; Nazarewicz, W. Infrared Studies of Al Complexes in Zinc Sulphide. Phys. Status Solidi 1978, 90, 649–656. [Google Scholar] [CrossRef]
- Osipov, V.V.; Platonov, V.V.; Tikhonov, E.V.; Lisenkov, V.V. Investigation of obtaining ZnSe nanopowders by means of a fiber ytterbium laser. In Proceedings of the 2022 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 20–24 June 2022; p. 1. [Google Scholar]
- Kolesnikov, N.N.; James, R.B.; Berzigiarova, N.S.; Kulakov, M.P. HPVB and HPVZM shaped growth of CdZnTe, CdSe, and ZnSe crystals. Proc. SPIE 2003, 4784, 93–104. [Google Scholar]
- Gavrushchuk, E.M. Polycrystalline Zinc Selenide for IR Optical Applications. Inorg. Mater. 2003, 39, 883–899. [Google Scholar] [CrossRef]
- Mironov, E.A.; Palashov, O.V.; Balabanov, S.S. High-purity CVD-ZnSe polycrystal as a magneto-active medium for a multikilowatt Faraday isolator. Opt. Lett. 2021, 46, 2119. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yin, M.; Chen, L.; Yu, S.; Kang, B. Hot-pressed Fe2+:ZnSe ceramics with powders fabricated via grinding chemical vapor deposition ZnSe polycrystalline. Opt. Mater. Express 2021, 11, 2744. [Google Scholar] [CrossRef]
- Andreev, V.M.; Gusakova, V.V.; Thomson, A.S.; Pogorelova, N.N.; Danilkov, N.K.; Sidorov, N.G.; Kartushina, A.A. Method for Obtaining Sulfides and Selenides of Metals. Patent SU 212238, 29 November 1968. [Google Scholar]
- Antipov, P.I.; Vladyko, M.N.; Grinberg, E.E.; Dernovsky, V.I.; Movum-Zade, A.A. Method for Producing Zinc Selenide Powder. Patent SU 1148832, 7 April 1985. [Google Scholar]
- Kiro, S.A.; Bezrodnykh, A.K.; Ageyev, N.D. Method of Producing Zinc Sulfide. Patent RU 1790550, 23 January 1993. [Google Scholar]
- Luo, Y.; Yin, M.; Chen, L.; Kang, B.; Yu, S. Hot-pressed Fe2+:ZnSe transparent ceramics with different doping concentrations. Ceram. Int. 2022, 48, 3473–3480. [Google Scholar] [CrossRef]
- Fujita, Y.; Nitta, T. Sintering of ZnS with a Small Amount of Ba2ZnS3. J. Am. Ceram. Soc. 1982, 65, C-18–C-19. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, L.; Yang, H.; Zhou, T.; Wong, C.; Zhang, Q.; Chen, H. Preliminary study of 3D ball-milled powder processing and SPS-accelerated densification of ZnSe ceramics. Opt. Mater. Express 2017, 7, 1131. [Google Scholar] [CrossRef]
- Hong, J.; Jung, W.K.; Choi, D.H. Effect of porosity and hexagonality on the infrared transmission of spark plasma sintered ZnS ceramics. Ceram. Int. 2020, 46, 16285–16290. [Google Scholar] [CrossRef]
- Zahabi, S.; Jamali, H.; Bakhshi, S.R.; Ashkian, A.; Loghman-Estarki, M. Comparing infrared transmission of zinc sulfide nanostructure ceramic produced via hot pressure and spark plasma sintering methods. Int. J. Appl. Ceram. Technol. 2022, 19, 1319–1327. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Kou, H.; Jiang, B.; Pan, Y. Hot-pressed Cr:ZnSe ceramic as mid-infrared laser material. In Proceedings of the Pacific Rim Laser Damage 2013: Optical Materials for High Power Lasers, Shanghai, China, 19–22 May 2013; Shao, J., Jitsuno, T., Rudolph, W., Eds.; SPIE: Bellingham, WA, USA, 2013; Volume 8786, p. 87860L. [Google Scholar]
- Wei, Y.; Liu, C.; Ma, E.; Lu, Z.; Wang, F.; Song, Y.; Sun, Q.; Jie, W.; Wang, T. The optical spectra characterization of Cr2+:ZnSe polycrystalline synthesized by direct reaction of Zn–Cr alloy and element Se. Ceram. Int. 2020, 46, 21136–21140. [Google Scholar] [CrossRef]
- Karki, K.; Yu, S.; Fedorov, V.; Martyshkin, D.; Subedi, S.; Wu, Y.; Mirov, S. Hot-pressed ceramic Fe:ZnSe gain-switched laser. Opt. Mater. Express 2020, 10, 3417. [Google Scholar] [CrossRef]
- Velikanov, S.D.; Zaretsky, N.A.; Zotov, E.A.; Kazantsev, S.Y.; Kononov, I.G.; Korostelin, Y.V.; Maneshkin, A.A.; Firsov, K.N.; Frolov, M.P.; Yutkin, I.M. Room-temperature 1.2-J Fe2+: ZnSe laser. Quantum Electron. 2016, 46, 11–12. [Google Scholar] [CrossRef]
- Fedorov, V.V.; Mirov, M.S.; Mirov, S.B.; Gapontsev, V.P.; Erofeev, A.V.; Smirnov, M.Z.; Altshuler, G.B. Compact 1J mid-IR Cr:ZnSe Laser. In Frontiers in Optics 2012/Laser Science XXVIII; OSA: Washington, DC, USA, 2012; p. FW6B.9. [Google Scholar]
Reference, Year | [113], 2016 | [30], 2017 | [38], 2019 | [112], 2020 | [114], 2012 | [57], 2006 |
---|---|---|---|---|---|---|
Active element | Fe2+:ZnSe | Fe2+:ZnSe | Fe2+:ZnSe | Fe2+:ZnSe | Cr2+:ZnSe | Cr2+:ZnSe |
Synthesis method | PVD | CVD + HIP | CVD + SSDB * + HIP | Ceramic | Ceramic | |
Effective dopant concentration, at/cm3 | 2.6 × 1018 | (7–9) × 1018 | 9.0 × 1018 | |||
Doping | homogeneous | external, inhomogeneous | internal (meniscus), inhomogeneous | homogeneous | homogeneous | |
Active element dimensions, mm | d = 27, l = 15 | d = 64, l = 4 | d = 20, l = 7.5 | d = 18, l = 3.2 | d = 15, l = 10.5 | |
Pump laser | HF | HF | HF | Er:YAG | Er:Glass | Nd:YAG |
Pump diameter, mm | 17 | 14 × 16 (ellip-tical) | 8.8 | 2 | 6.5 | |
Output energy, J | 1.2 | 1.67 | 0.48 | 0.041 | 1.1 | 0.002 |
ηslope, % (with respect to the in-cident energy) | 25 | 27 | ||||
ηabs, % (with respect to the ab-sorbed energy) | 43 | 38 | 25 | 15 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, N.; Balabanov, S.; Li, J. A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media. Ceramics 2023, 6, 1517-1530. https://doi.org/10.3390/ceramics6030094
Timofeeva N, Balabanov S, Li J. A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media. Ceramics. 2023; 6(3):1517-1530. https://doi.org/10.3390/ceramics6030094
Chicago/Turabian StyleTimofeeva, Natalia, Stanislav Balabanov, and Jiang Li. 2023. "A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media" Ceramics 6, no. 3: 1517-1530. https://doi.org/10.3390/ceramics6030094
APA StyleTimofeeva, N., Balabanov, S., & Li, J. (2023). A Review of Cr2+ or Fe2+ Ion-Doped Zinc Sulfide and Zinc Selenide Ceramics as IR Laser Active Media. Ceramics, 6(3), 1517-1530. https://doi.org/10.3390/ceramics6030094