Analysis of the Structure and Durability of Refractory Castables Impregnated with Sodium Silicate Glass
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Impact of Impregnation on Refractory Castable Chemical and Mineral Composition and Microstructure after Firing at 1100 °C
3.2. The Impact of Impregnation on Physical and Mechanical Properties of Refractory Castables after Firing at 1100 °C
3.3. The Impact of Impregnation on Alkali Resistance at 1100 °C
3.4. The Impact of Impregnation on Elasticity Modulus and Thermal Shock Resistance at 1100 °C
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vares, V.; Kask, U.; Muiste, P.; Pihu, T.; Soosaar, S. Biofuel User Manual; TutPress: Singapore, 2005; p. 178. [Google Scholar]
- Rosendahl, L. Biomass Combustion Science, Technology and Engineering; Woodhead Publishing: Cham, The Netherland, 2013; Volume 40, p. 301. [Google Scholar]
- European Council—Conclusion, Brussels, Belgium, 2014. Available online: https://www.consilium.europa.eu/media/24561/145397.pdf (accessed on 15 September 2023).
- Klinger, W.; Weber, W.; Zimmermann, H. Application concepts of shaped and unshaped refractories for combustion plants. Proc. UNITECR 2007, 2007, 440–443. [Google Scholar]
- Antonovič, V. Refractory materials for biofuel boilers: Chapter 22. In Frontiers in Bioenergy and Biofuels; Antonovič, V., Szczerba, J., Kerienė, J., Stonys, R., Boris, R., Eds.; InTech: Rijeka, Croatia, 2017; pp. 443–464. [Google Scholar]
- Mahapatra, M.K. Review of corrosion of refractory in gaseous environment. Int. J. Appl. Ceram. Technol. 2020, 17, 606–615. [Google Scholar] [CrossRef]
- Alibasic, E.; Oldin, J.; Kannabiran, S. Design of castables and their relevance to alkali resistance applications. In Proceedings of the 57th International Colloquium on Refractories EUROGRESS, Aachen, Germany, 24–25 September 2014; pp. 67–69. [Google Scholar]
- Taylor, J.R.; Bull, A.C. Ceramics Glaze Technology; A. Wheaton & Co. Ltd.: Exeter, UK, 1986; 276p. [Google Scholar]
- Parr, C.; Simonin, F.; Touzo, B.; Wohrmeyer, C.; Valdelievre, B.; Namba, A. The impact of calcium aluminate cement hydration upon the properties of refractory castables. Kerneos Aluminate Technol. 2004, 64, 30–48. [Google Scholar]
- Scudeller, L.A.M.; Longo, E.; Varela, J.A. Potassium Vapor Attack in Refractories of the Alumina-Silica System. J. Am. Ceram. Soc. 1990, 73, 1413–1416. [Google Scholar] [CrossRef]
- Kerienė, J.; Boris, R.; Antonovič, V.; Stonys, R.; Škamat, J. Action of the products of biofuel combustion on the phase composition and structure of refractory material. Glass Ceram. 2016, 72, 345–350. [Google Scholar] [CrossRef]
- Carlborg, M.; Bostrom, D.; Ohman, M.; Backman, R. Reactions between ash and ceramic lining in entrained flow gasification of wood—Exposure studies and thermodynamic considerations. In Proceedings of the 21st European Biomass Conference and Exhibition, Copenhagen, Denmark, 3–7 June 2013; pp. 446–449. [Google Scholar]
- Brunk, F. Silica refractories. CN Refract. Special. Issues 2001, 5, 27–30. Available online: https://www.pd-refractories.com/files/Dokumente/Publikationen/Silica-Refractories_2001.pdf (accessed on 10 June 2021).
- Goswami, G.; Sanu, P.; Panigrahy, P.K. Estimation of thermal expansion of silica refractory based on its mineralogy. Interceram Refract. Man. 2015, 64, 174–176. [Google Scholar] [CrossRef]
- Baspinar, M.; Serhat, K.F. Optimization of the corrosion behaviour of mullite refractories against alkali vapour via ZrSiO4 addition to the binder phase. Ceram. Silik. 2009, 53, 242–249. Available online: https://www.ceramics-silikaty.cz/2009/pdf/2009_04_242.pdf (accessed on 11 December 2022).
- Vargas, F.; Restrepo, E.; Rodríguez, J.E.; Vargas, F.; Arbeláez, L.; Caballero, P.; Arias, J.; López, E.; Latorre, G.; Duarte, G. Solid-state synthesis of mullite from spent catalysts for manufacturing refractory brick coatings. Ceram. Int. 2018, 44, 3556–3562. [Google Scholar] [CrossRef]
- Ren, B.; Shaobai, S.; Yawei, L.; Shengli, J. Correlation of pore structure and alkali vapor attack resistance of bauxite-SiC composite refractories. Ceram. Int. 2015, 41, 14674–14683. [Google Scholar] [CrossRef]
- Ren, B.; Shaobai, S.; Yawei, L.; Yibiao, X. Effects of oxidation of SiC aggregates on the microstructure and properties of bauxite-SiC composite refractories. Ceram. Int. 2015, 41, 2892–2899. [Google Scholar] [CrossRef]
- Butzbach, K. Hasle have a long tradition for producing highly alkali resistant refractory castables. Hasle Refract. 2019, 125, 20. [Google Scholar]
- Zawraah, M.F.M.; Khalil, N.M. Effect of mullite formation on properties of refractory castables. Ceram. Int. 2001, 27, 689–694. [Google Scholar] [CrossRef]
- Malaiškienė, J.; Antonovič, V.; Boris, R.; Stonys, R. Improving the physical and mechanical properties and alkali resistance of fireclay-based castables by modifying their structure with SiO2 sol. Ceram. Int. 2022, 48, 22575–22585. [Google Scholar] [CrossRef]
- Kobayashi, W.T.; Paulo, S.; Da Silva, E.L.; Carlos, S.; Paskocimas, C.A. Method for Producing Corrosion Resistant Refractories. U.S. Patent US 6,667,074 B2, 23 December 2003. [Google Scholar]
- Khlystov, A.; Konnov, M.; Shirokov, V. Resource and energy saving technologies of refractory linings of thermal units. MATEC Web Conf. 2017, 106, 06011. [Google Scholar] [CrossRef]
- Lianying, Z.; Bo, P.; Jiandong, W.; Xiaofeng, Y.; Lianwei, F. Waterproof Treatment Method for Magnesium Refractory Bricks. Patent No. CN103172405, 4 November 2013. [Google Scholar]
- Ben, D.; David, N. Refractory Brick. Patent No. US3489580, 13 January 1970. [Google Scholar]
- Moiseevich, L.A.; Yurevich, M.T.; Yarushina, T.; Aleksandrovich, O.M. Refractory Product and Method of Its Production. Patent No. RU2638065, 11 December 2017. [Google Scholar]
- Fard, F.G.; Talimian, A. Improving Corrosion Behaviour of Magnesia-Chrome Refractories by Addition of Nanoparticles. Refract. World Forum 2014, 6, 93–98. [Google Scholar]
- Malaiškienė, J.; Antonovič, V.; Boris, R.; Stonys, R. Effect of the impregnation with liquid glass on the properties of refractory castable. In The Carbon Challenge. Steps & Leaps to Master the Future, Proceedings of the Unified International Technical Conference on Refractories (UNITECR) 18th Biennial Worldwide Congress on Refractories, Frankfurt am Main, Germany, 26–29 September 2023; European Centre for Refractories gGmbH (ECREF): Höhr-Grenzhausen, Germany, 2023; pp. 834–838. ISBN 9783981581393. [Google Scholar]
- Antonovič, V.; Stonys, R.; Zdanevičius, P.; Mačiulaitis, R.; Boris, R.; Malaiškienė, J. Analysis of the formed protective layer inhibiting alkali corrosion in aluminosilicate refractory castables. Ceram. Spec. Issue Adv. Ceram. 2022, 5, 1051–1065. [Google Scholar] [CrossRef]
- Antonovich, V.; Shyukshta, M.; Pundene, I.; Stonis, R. Procedural elements in estimation of the thermal shock resistance of different types of refractory concrete based on chamotte filler. Refract. Industr. Ceram. 2011, 52, 70–74. [Google Scholar] [CrossRef]
- Niyogi, S.K.; Das, A.C. Prediction of thermal shock behaviour of castable refractories by sonic measurements. Refractories 1994, 43, 453–457. [Google Scholar]
- Csaki, S.; Lukac, F.; Húlan, T.; Veverka, J.; Knapek, M. Preparation of anorthite ceramics using SPS. J. Eur. Ceram. Soc. 2021, 41, 4618–4624. [Google Scholar] [CrossRef]
- Nishikawa, A. Technology of Monolithic Refractories; Japan by Toppan Printing Company: Tokyo, Japan, 1984; 598p. [Google Scholar]
- Malaiškienė, J.; Antonovič, V.; Boris, R.; Stonys, R. The analysis of the change in the structure and properties of refractory concrete impregnated with SiO2 sol. In The UNITECR 2022 Proceedings, Proceedings of the 17th Unified International Technical Conference on Refractories (UNITECR 2022), Chicago, IL, USA, 15–18 March 2022; The American Ceramic Society: Westerville, OH, USA, 2022; pp. 1–6. [Google Scholar]
- Magliano, M.V.M.; Prestes, E.; Medeiros, J.; Veiga, J.L.B.C.; Pandolfelli, V.C. Colloidal silica selection for nanobonded refractory castables. Refract. Appl. News 2010, 15, 14–17. [Google Scholar]
- Li, N.; Vainio, E.; Hupa, L.; Hupa, M.; Zabetta, E.C. Interaction of high Al2O3 refractories with alkaline salts containing potassium and sodium in biomass and waste combustion. Energy Fuels 2018, 32, 12971–12980. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, Z.; Zhu, Y.; Zhang, X.; Tan, H.; Hui, S. Experimental evaluation of additives an K2O-SiO2-Al2O3 diagrams on high temperature silicate melt-induced slagging during biomass combustion. Fuel 2016, 179, 52–59. [Google Scholar] [CrossRef]
- Ulbricht, J.; Dudczig, S.; Tomšu, F.; Palco, S. Technological measures to improve the thermal shock resistance of refractory materials. Interceram Refract. Man 2012, 2, 103–106. [Google Scholar]
- Szczerba, J.; Pedzicha, Z.; Nikiel, M.; Kapuscinska, D. Influence of raw materials morphology on properties of magnesia-spinel refractories. J. Eur. Ceram. Soc. 2007, 27, 1683–1689. [Google Scholar] [CrossRef]
Mark | Standard | Calcium Aluminate Cement | Reactive and Calcined Alumina | Microsilica RW-Fuller | Fireclay | Milled Quartz Sand | |||
---|---|---|---|---|---|---|---|---|---|
Górkal 70 | Istra-40 | CTC 20 | CT 19 | Bos 135 | Bos 145 | ||||
Producer | - | Górka Cement | Calucem GmbH | Almatis | RW Silicon GmbH | Tabex-Ozmo | AB Anykščių kvarcas | ||
Country | - | Poland | Germany | Poland | Lithuania | ||||
Abbreviation | - | G70 | ISTR | RA | CA | MS | FA35 | FA45 | MQS |
Specific surface area, m2/kg | ASTM C204-18 | 450 | 295 | 2100 | 400 | - | - | - | 490 |
Particle size, µm | ISO 13320 EN 12620 | <63 | <90 | <20 | <63 | 0.15 | <4000 | <4000 | <50 |
The refractoriness, °C | ISO 1893 | 1630 | 1250 | - | - | - | 1710 | 1750 | - |
Oxides | Chemical analysis, % | ||||||||
Al2O3 | 71.0 | 40.8 | 99.7 | 99.8 | 0.2 | 36.6 | 44.3 | 0.6 | |
CaO | 28.5 | 38.5 | 0.02 | 0.02 | 0.25 | 3.1 | 0.6 | - | |
SiO2 | 0.3 | 4.5 | 0.03 | 0.05 | 96.06 | 53.7 | 49.5 | 99.2 | |
Fe2O3 | 0.2 | 15.0 | 0.03 | 0.04 | 0.05 | 3.3 | 2.1 | 0.05 | |
MgO | - | 1.2 | 0.01 | - | 0.4 | 0.7 | 0.9 | - | |
K2O | - | - | - | - | 1.2 | 1.0 | 0.7 | - | |
TiO2 | - | - | - | - | - | 1.3 | 1.4 | 0.1 |
Composition, % | G70 | ISTR | MS | FA35 <0.14 mm | FA45 <0.14 mm | FA35 <4 mm | FA45 <4 mm | RA | CA | MQS | Water |
---|---|---|---|---|---|---|---|---|---|---|---|
CC-1 | - | 25 | 2.5 | 10 | - | 60 | - | - | - | 2.5 | 11.3 |
CC-2 | - | 25 | 2.5 | - | 10 | - | 60 | - | - | 2.5 | 7.4 |
MCC-1 | 12 | - | 5 | 8 | - | 60.5 | - | 5 | 7 | 2.5 | 8.9 |
MCC-2 | 12 | - | 5 | - | 8 | - | 60.5 | 5 | 7 | 2.5 | 7.1 |
Composition of Castable | Chemical Composition, Mass % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | SiO2 | CaO | Fe2O3 | K2O | Na2O | MgO | ZrO2 | TiO2 | P2O5 | |
Control samples | ||||||||||
CC-1 | 29.3 | 35.4 | 22.6 | 9.20 | 0.27 | 0.20 | 0.51 | 0.09 | 1.59 | 0.43 |
CC-2 | 29.2 | 32.1 | 25.5 | 10.3 | 0.30 | 0.12 | 0.55 | 0.04 | 1.24 | 0.14 |
MCC-1 | 51.1 | 36.2 | 8.36 | 1.27 | 1.14 | 0.55 | 0.30 | 0.03 | 0.40 | 0.24 |
MCC-2 | 52.8 | 34.6 | 8.15 | 1.10 | 0.64 | 0.46 | 0.40 | 0.02 | 0.77 | 0.73 |
Impregnated samples | ||||||||||
CC-1 | 15.3 | 40.0 | 33.1 | 7.42 | 0.22 | 0.91 | 1.34 | 0.11 | 1.00 | 0.28 |
CC-2 | 11.5 | 41.3 | 35.2 | 8.41 | 0.19 | 0.63 | 1.20 | 0.06 | 0.93 | 0.36 |
MCC-1 | 30.2 | 51.7 | 12.2 | 1.15 | 1.10 | 2.60 | 0.37 | 0.05 | 0.00 | 0.14 |
MCC-2 | 22.0 | 58.6 | 12.6 | 1.42 | 2.11 | 1.96 | 0.53 | 0.02 | 0.23 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malaiškienė, J.; Antonovič, V.; Boris, R.; Kudžma, A.; Stonys, R. Analysis of the Structure and Durability of Refractory Castables Impregnated with Sodium Silicate Glass. Ceramics 2023, 6, 2320-2332. https://doi.org/10.3390/ceramics6040142
Malaiškienė J, Antonovič V, Boris R, Kudžma A, Stonys R. Analysis of the Structure and Durability of Refractory Castables Impregnated with Sodium Silicate Glass. Ceramics. 2023; 6(4):2320-2332. https://doi.org/10.3390/ceramics6040142
Chicago/Turabian StyleMalaiškienė, Jurgita, Valentin Antonovič, Renata Boris, Andrius Kudžma, and Rimvydas Stonys. 2023. "Analysis of the Structure and Durability of Refractory Castables Impregnated with Sodium Silicate Glass" Ceramics 6, no. 4: 2320-2332. https://doi.org/10.3390/ceramics6040142
APA StyleMalaiškienė, J., Antonovič, V., Boris, R., Kudžma, A., & Stonys, R. (2023). Analysis of the Structure and Durability of Refractory Castables Impregnated with Sodium Silicate Glass. Ceramics, 6(4), 2320-2332. https://doi.org/10.3390/ceramics6040142