Fabrication of Dicarboxylic-Acid- and Silica-Substituted Octacalcium Phosphate Blocks with Stronger Mechanical Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of SH-Malate and Silica-Substituted Blocks through the Cement-Setting Reaction
2.2. Evaluation Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Safiri, S.; Kolahi, A.-A.; Smith, E.; Hill, C.; Bettampadi, D.; Mansournia, M.A.; Hoy, D.; Ashrafi-Asgarabad, A.; Sepidarkish, M.; Almasi-Hashiani, A.; et al. Global, regional and national burden of osteoarthritis 1990–2017: A systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 2020, 79, 819–828. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO’s Annual World Health Statistics Reports, 2020. In WHO’s Division for Data, Analytics and Delivery; WHO Press: Geneva, Switzerland, 2020. [Google Scholar]
- Simon, P.; Grüner, D.; Worch, H.; Pompe, W.; Lichte, H.; El-Khassawna, T.; Heiss, C.; Wenisch, S.; Kniep, R. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineral-ization. Sci. Rep. 2018, 8, 13696. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, O.; Kamakura, S.; Katagiri, T. Surface Chemistry and Biological Responses to Synthetic Octacalcium Phosphate. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77B, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; He, F.; Ye, J. Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: Effects of ionic charge and radius. J. Mater. Chem. B 2016, 4, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Sai, Y.; Shiwaku, Y.; Anada, T.; Tsuchiya, K.; Takahashi, T.; Suzuki, O. Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro. Acta Biomater. 2018, 69, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Kamakura, S.; Sasano, Y.; Homma, H.; Suzuki, O.; Kagayama, M.; Motegi, K. Implantation of Octacalcium Phosphate (OCP) in Rat Skull Defects Enhances Bone Repair. J. Dent. Res. 1999, 78, 1682–1687. [Google Scholar] [CrossRef]
- Sugiura, Y.; Munar, M.L.; Ishikawa, K. Fabrication of octacalcium phosphate foam through phase conversion and its histological evaluation. Mater. Lett. 2018, 212, 28–31. [Google Scholar] [CrossRef]
- Markovic, M.; Fowler, B.O.; Brown, W.E. Octacalcium phosphate carboxylates. 1. Preparation and identification. Chem. Mater. 1993, 5, 1401–1405. [Google Scholar] [CrossRef]
- Monma, H.; Goto, M. Thermal alteration of succinate-complexed octacalcium phosphate. J. Mater. Sci. Lett. 1980, 4, 147–150. [Google Scholar] [CrossRef]
- Yokoi, T.; Kamitakahara, M.; Ohtsuki, C. Continuous expansion of the interplanar spacing of octacalcium phosphate by incor-poration of dicarboxylate ions with a side chain. Dalton Trans. 2015, 44, 7943–7950. [Google Scholar] [CrossRef]
- Davies, E.; Müller, K.H.; Wong, W.C.; Pickard, C.J.; Reid, D.G.; Skepper, J.N.; Duer, M.J. Citrate bridges between mineral platelets in bone. Proc. Natl. Acad. Sci. USA 2014, 111, E1354–E1363. [Google Scholar] [CrossRef] [PubMed]
- Boanini, E.; Gazzano, M.; Rubini, K.; Bigi, A. Collapsed Octacalcium Phosphate Stabilized by Ionic Substitutions. Cryst. Growth Des. 2010, 10, 3612–3617. [Google Scholar] [CrossRef]
- Yamada, I.; Noda, D.; Shinozaki, K.; Galindo, T.G.P.; Tagaya, M. Synthesis of Luminescent Eu(III)-Doped Octacalcium Phosphate Particles Hybridized with Succinate Ions and Their Reactive Behavior in Simulated Body Fluid. Cryst. Growth Des. 2021, 21, 2005–2018. [Google Scholar] [CrossRef]
- Chickerur, N.S.; Tung, M.S.; Brown, W.E. A Mechanism for Incorporation of Carbonate into Apatite. Calcif. Tissue Int. 1980, 32, 55–62. [Google Scholar] [CrossRef]
- Sugiura, Y.; Ishikawa, K. Fabrication of carbonate apatite blocks from octacalcium phosphate blocks through different phase conversion mode depending on carbonate concentration. J. Solid State Chem. 2018, 267, 85–91. [Google Scholar] [CrossRef]
- Horváthová, R.; Müller, L.; Helebrant, A.; Greil, P.; Müller, F.A. In vitro transformation of OCP into carbonated HA under physiological conditions. Mater. Sci. Eng. C 2008, 28, 1414–1419. [Google Scholar] [CrossRef]
- Ito, N.; Kamitakahara, M.; Yoshimura, M.; Ioku, K. Importance of nucleation in transformation of octacalcium phosphate to hydroxyapatite. Mater. Sci. Eng. C 2014, 40, 121–126. [Google Scholar] [CrossRef]
- Yokoi, T.; Goto, T.; Kitaoka, S. Formation of Hydroxyapatite Crystals from Octacalcium Phosphate with Incorporated Succinate Ion under Hydrothermal Conditions. Chem. Lett. 2019, 48, 855–858. [Google Scholar] [CrossRef]
- Sugiura, Y.; Makita, Y. Intercalated molecule releasing process of thiomalate substituted octacalcium phosphate crystals during phase conversion. J. Cryst. Growth 2022, 583, 126545. [Google Scholar] [CrossRef]
- Yokoi, T.; Goto, T.; Kato, T.; Takahashi, S.; Nakamura, J.; Sekino, T.; Ohtsuki, C.; Kawashita, M. Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism. Bull. Chem. Soc. Jpn. 2020, 93, 701–707. [Google Scholar] [CrossRef]
- Sugiura, Y.; Horie, M. Fabrication of silver-doped apatite powders from silver-substituted octacalcium phosphate powders via solid–solid phase-conversion process. Ceram. Int. 2021, 47, 25614–25621. [Google Scholar] [CrossRef]
- Carlisle, E.M. Silicon: An Essential Element for the Chick. Science 1972, 178, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Xynos, I.D.; Edgar, A.J.; Buttery, L.D.; Hench, L.L.; Polak, J.M. Ionic Products of Bioactive Glass Dissolution Increase Proliferation of Human Osteoblasts and Induce Insulin-like Growth Factor II mRNA Expression and Protein Synthesis. Biochem. Biophys. Res. Commun. 2000, 276, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Reffitt, D.M.; Ogston, N.; Jugdaohsingh, R.; Cheung, H.F.J.; Evans, B.A.J.; Thompson, R.P.H.; Powell, J.J.; Hampson, G.N. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003, 32, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Obata, A.; Tokuda, S.; Kasuga, T. Enhanced in vitro cell activity on silicon-doped vaterite/poly(lactic acid) composites. Acta Biomater. 2009, 5, 57–62. [Google Scholar] [CrossRef]
- Kasuga, T.; Maeda, H.; Kato, K.; Nogami, M.; Hata, K.-I.; Ueda, M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials 2003, 24, 3247–3253. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, J.; Kasuga, T. Enhancement of crystalline plane orientation in silsesquioxane-containing vaterite particles towards tuning of calcium ion release. J. Mater. Chem. B 2014, 2, 1250–1254. [Google Scholar] [CrossRef] [PubMed]
- Obata, A.; Ozasa, H.; Kasuga, T.; Jones, J.R. Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. J. Mater. Sci. Mater. Med. 2013, 24, 1649–1658. [Google Scholar] [CrossRef]
- Manchón, A.; Alkhraisat, M.; Rueda-Rodriguez, C.; Torres, J.; Prados-Frutos, J.C.; Ewald, A.; Gbureck, U.; Cabrejos-Azama, J.; Rodriguez-González, A.; López-Cabarcos, E. Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. J. Biomed. Mater. Res. Part A 2014, 103, 479–488. [Google Scholar] [CrossRef]
- Dong, G.; He, L.; Wu, G.; Deng, C. The effect of silicon doping on the transformation of amorphous calcium phos-phate to silicon-substituted α-tricalcium phosphate by heat treatment. Ceram. Int. 2016, 42, 883–890. [Google Scholar] [CrossRef]
- Huang, S.-H.; Chen, Y.-J.; Kao, C.-T.; Lin, C.-C.; Huang, T.-H.; Shie, M.-Y. Physicochemical properties and biocompatibility of silica doped b-tricalcium phosphate for bone cement. J. Dent. Sci. 2015, 10, 282–290. [Google Scholar] [CrossRef]
- Ha, S.-W.; Viggeswarapu, M.; Habib, M.M.; Beck, G.R., Jr. Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomater. 2018, 82, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Niitsu, K.; Saito, Y.; Endo, T.; Horie, M. Inorganic process for wet silica-doping of calcium phosphate. RSC Adv. 2021, 11, 12330–12335. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Ono, F.; Nohara, M.; Takechi, A.; Kutara, K.; Kanda, T.; Saito, Y.; Yamada, E.; Oowada, K.; Endo, T.; et al. Inorganic silica hybrid octacalcium phosphate bone substitute: Harmonics to acceleration in biological metabolism and its curing process. Materialia 2023, 28, 101771. [Google Scholar] [CrossRef]
- Sugiura, Y.; Saito, Y.; Yamada, E.; Endo, T.; Horie, M.; Makita, Y. Fabrication of silica-substituted carbonate apatite blocks through phase transformation process from silica-substituted octacalcium phosphate blocks. J. Ceram. Soc. Jpn. 2023, 131, 458–465. [Google Scholar] [CrossRef]
- Sugiura, Y.; Yamada, E.; Horie, M. Fabrication of Octacalcium Phosphate Block through the Reaction between CaCO3 Powder and Phosphate Acid. Chem. Lett. 2022, 51, 851–853. [Google Scholar] [CrossRef]
- Sugiura, Y.; Yamada, E.; Horie, M. Fabrication of dicarboxylic-acid-substituted octacalcium phosphate blocks via cementing. Ceram. Int. 2023, 49, 9719–9724. [Google Scholar] [CrossRef]
- Berry, E.; Baddiel, C. Some assignments in the infra-red spectrum of octacalcium phosphate. Spectrochim. Acta Part A Mol. Spectrosc. 1967, 23, 1781–1792. [Google Scholar] [CrossRef]
- Tsai, T.W.T.; Chan, J.C.C. Recent Progress in the Solid-State NMR Studies of Biomineralization. Ann. Rep. NMR Spectros. 2011, 73, 1–61. [Google Scholar]
- Sugiura, Y.; Makita, Y. Tris(hydroxymethyl)aminomethane Substitution into Octacalcium Phosphate. Chem. Lett. 2019, 48, 1304–1307. [Google Scholar] [CrossRef]
- Bigi, A.; Boanini, E.; Borghi, M.; Cojazzi, G.; Panzavolta, S.; Roveri, N. Synthesis and hydrolysis of octacalcium phosphate: Effect of sodium polyacrylate. J. Inorgn. Biochem. 1999, 75, 145–151. [Google Scholar] [CrossRef]
- Sugiura, Y.; Yamada, E.; Horie, M. Interlayer expansion of octacalcium phosphate via forced oxidation of the intercalated molecules within its interlayers. Phys. Chem. Chem. Phys. 2023, 25, 26640. [Google Scholar] [CrossRef] [PubMed]
- Ince, D.E.; Johnston, C.T.; Moudgil, B.M. Fourier transform infrared spectroscopic study of adsorption of oleic acid/oleate on surfaces of apatite and dolomite. Langmuir 1991, 7, 1453–1457. [Google Scholar] [CrossRef]
- Dong, L.; Wei, Q.; Qin, W.; Jiao, F. Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite. Sep. Purif. Technol. 2020, 241, 116415. [Google Scholar] [CrossRef]
- Tsai, T.W.T.; Chou, F.-C.; Tseng, Y.-H.; Chan, J.C.C. Solid-state P-31 NMR study of octacalcium phosphate incorporated with succinate. Phys. Chem. Chem. Phys. 2010, 12, 6692–6697. [Google Scholar] [CrossRef]
- Li, Y.; Reid, D.G.; Duer, M.J.; Chan, J.C.C. Solid state NMR—An indispensable tool in organic-inorganic biocomposite character-ization; refining the structure of octacalcium phosphate composites with the linear metabolic di-acids succinate and adipate. Solid State Nucl. Magn. Reson. 2018, 95, 1–5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugiura, Y.; Saito, Y.; Yamada, E.; Horie, M. Fabrication of Dicarboxylic-Acid- and Silica-Substituted Octacalcium Phosphate Blocks with Stronger Mechanical Strength. Ceramics 2024, 7, 796-806. https://doi.org/10.3390/ceramics7020052
Sugiura Y, Saito Y, Yamada E, Horie M. Fabrication of Dicarboxylic-Acid- and Silica-Substituted Octacalcium Phosphate Blocks with Stronger Mechanical Strength. Ceramics. 2024; 7(2):796-806. https://doi.org/10.3390/ceramics7020052
Chicago/Turabian StyleSugiura, Yuki, Yasuko Saito, Etsuko Yamada, and Masanori Horie. 2024. "Fabrication of Dicarboxylic-Acid- and Silica-Substituted Octacalcium Phosphate Blocks with Stronger Mechanical Strength" Ceramics 7, no. 2: 796-806. https://doi.org/10.3390/ceramics7020052
APA StyleSugiura, Y., Saito, Y., Yamada, E., & Horie, M. (2024). Fabrication of Dicarboxylic-Acid- and Silica-Substituted Octacalcium Phosphate Blocks with Stronger Mechanical Strength. Ceramics, 7(2), 796-806. https://doi.org/10.3390/ceramics7020052