Superior Ceramics: Graphene and Carbon Nanotube (CNT) Reinforcements
Abstract
:1. Introduction
2. Ceramic Composites
3. Graphene and Carbon Nanotube (CNT)
4. Graphene/CNT Ceramic Composites
Property | Graphene Reinforcement | CNT Reinforcement | Combined Graphene and CNT Reinforcement |
---|---|---|---|
Fracture Toughness | Increased via crack deflection and crack bridging in B4C [51], Si3N4 [52] and Al2O3/TiC composite [53] | Improved through crack bridging and pull-out mechanisms in Si3N4 [54,55] | Significant enhancement due to synergistic effects in Al2O3 [56,57] |
Electrical Conductivity | High due to graphene’s excellent electron mobility in SiC [58,59] | Moderate; improvement in specific directions depending on CNT alignment Si3N4 [54] | Significantly improved with proper dispersion and orientation [60] |
Thermal Conductivity | Enhanced by reducing phonon scattering [41,49] | Improved thermal properties due to high aspect ratio and alignment in SiC [61] | Superior performance with proper ratio and dispersion in Al2O3 [15,62] |
Machinability | Improved due to enhanced toughness and reduced brittleness in Al2O3-SiCw ceramic composites [63] and alumina [64] | Increased due to better stress distribution and toughness B4C [65] | Optimized machinability through balanced reinforcement properties in Al2O3 [66] |
5. Previous Attempts at Reinforcing Ceramics with Graphene/CNT
5.1. Single-Reinforcement CNTs
5.2. Single-Reinforcement Graphene
5.3. Dual (Hybrid)-Reinforcement Graphene/CNTs
6. The Main Parameters Influencing CNT/Graphene Ceramic Reinforcement
6.1. Optimal Ratio of Graphene to CNTs in Ceramic Matrices
6.2. Dispersion and Distribution
6.3. Effects of Graphene Grain Sizes and Carbon Nanotube Sizes
7. Fabrication of Graphene/CNT Ceramic Composites
7.1. Ball Milling
7.2. Spark Plasma Sintering Method
7.3. Hot-Pressing Method
8. Machine Learning for Ceramic Composites
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, J.; Zhang, X.; Wang, L.; Zhang, J.; Liu, R.; Sun, Q.; Ye, X.; Ma, X. Fabrication and Applications of Ceramic-Based Nanofiber Materials Service in High-Temperature Harsh Conditions—A Review. Gels 2023, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kar, K.K. Carbon Nanotube-/Graphene-Reinforced Ceramic Composites. In Composite Materials; Kar, K.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 599–625. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, M.; Xiao, G.; Wang, C.; Qiao, R.; Zhang, F.; Bai, Y.; Li, Y.; Wu, Y.; Wang, Z. Preparation and corrosion resistance of high-entropy disilicate (Y0.25Yb0.25Er0.25Sc0.25)2Si2O7 ceramics. Corros. Sci. 2021, 192, 109786. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, J.; Cai, W.; Lai, Y.; Song, J.; Yu, J.; Ding, B. Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater. 2019, 23, 306–313. [Google Scholar] [CrossRef]
- Okada, A. Ceramic technologies for automotive industry: Current status and perspectives. Mater. Sci. Eng. B 2009, 161, 182–187. [Google Scholar] [CrossRef]
- Krishna Prasad, N.V.; Venkata Prasad, K.; Ramesh, S.; Phanidhar, S.V.; Venkata Ratnam, K.; Janardhan, S.; Manjunatha, H.; Sarma, M.S.S.R.K.N.; Srinivas, K. Ceramic Sensors: A mini-review of their applications. Front. Mater. 2020, 7, 593342. [Google Scholar] [CrossRef]
- Zhu, D. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications. NASA/TM Patent 2018-219884, 1 May 2018. pp. 1–23. [Google Scholar]
- Guo, Y.; Zhan, J.; Lee, Y.J.; Lu, W.F.; Wang, H. Predictive modelling for enhanced scratching of brittle ceramics with magneto-plasticity. Int. J. Mech. Sci. 2023, 249, 108272. [Google Scholar] [CrossRef]
- Bai, R.; Sun, Q.; He, Y.; Peng, L.; Zhang, Y.; Zhang, L.; Lu, W.; Deng, J.; Zhuang, Z.; Yu, T.; et al. Ceramic Toughening Strategies for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 840372. [Google Scholar] [CrossRef]
- Bobylev, S.V.; Sheinerman, A.G. Effect of crack bridging on the toughening of ceramic/graphene composites. Rev. Adv. Mater. Sci. 2018, 57, 54–62. [Google Scholar] [CrossRef]
- Ramirez, C.; Osendi, M.I.; Miranzo, P.; Belmonte, M.; Figueiredo, F.; Castro-Beltrán, A.; Terrones, M. Graphene nanoribbon ceramic composites. Carbon N. Y. 2015, 90, 207–214. [Google Scholar] [CrossRef]
- Wang, P.; Huang, Z.; Morita, K.; Li, Q.; Yang, M.; Zhang, S.; Goto, T.; Tu, R. Influence of spark plasma sintering conditions on microstructure, carbon contamination, and transmittance of CaF2 ceramics. J. Eur. Ceram. Soc. 2022, 42, 245–257. [Google Scholar] [CrossRef]
- Monteverde, F. Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloys Compd. 2007, 428, 197–205. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Zhou, Y.; Zhai, P.; Yun, X.; Huang, Z.; Zhang, H.; Zhang, G. High-performance multifunctional (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)C high-entropy ceramic reinforced with low-loading 3D hybrid graphene–carbon nanotube. J. Adv. Ceram. 2023, 12, 341–356. [Google Scholar] [CrossRef]
- Shah, W.A.; Luo, X.; Yang, Y.Q. Microstructure, mechanical, and thermal properties of graphene and carbon nanotube-reinforced Al2O3 nanocomposites. J. Mater. Sci. Mater. Electron. 2021, 32, 13656–13672. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Q.; Shi, X.; Zhai, W.; Zhu, Q. Comparison of Tribological Properties of NiAl Matrix Composites Containing Graphite, Carbon Nanotubes, or Graphene. J. Mater. Eng. Perform. 2015, 24, 1926–1936. [Google Scholar] [CrossRef]
- Shin, J.H.; Choi, J.; Kim, M.; Hong, S.H. Comparative study on carbon nanotube- and reduced graphene oxide-reinforced alumina ceramic composites. Ceram. Int. 2018, 44, 8350–8357. [Google Scholar] [CrossRef]
- Rouway, M.; Boulahia, Z.; Chakhchaoui, N.; Cherkaoui, O.; Omari, L.H.; Fraija, F. Graphene and carbone nanotubes reinforced ceramic nanocomposite TiO2-MgO: Experimental and numerical study. Mater. Today Proc. 2019, 30, 809–815. [Google Scholar] [CrossRef]
- Byeong-Choon, G.; In-Sik, C. Microstructural analysis and wear performance of carbon-fiber-reinforced SiC composite for brake pads. Materials 2017, 10, 701. [Google Scholar] [CrossRef]
- Sharma, N.; Alam, S.N.; Ray, B.C.; Yadav, S.; Biswas, K. Wear behavior of silica and alumina-based nanocomposites reinforced with multi walled carbon nanotubes and graphene nanoplatelets. Wear 2019, 418–419, 290–304. [Google Scholar] [CrossRef]
- Borrell, A.; Rocha, V.G.; Torrecillas, R.; Fernández, A. Surface coating on carbon nanofibers with alumina precursor by different synthesis routes. Compos. Sci. Technol. 2011, 71, 18–22. [Google Scholar] [CrossRef]
- Konopka, K. Particle-Reinforced Ceramic Matrix Composites—Selected Examples. J. Compos. Sci. 2022, 6, 178. [Google Scholar] [CrossRef]
- Gutiérrez-González, C.F.; Suarez, M.; Pozhidaev, S.; Rivera, S.; Peretyagin, P.; Solís, W.; Díaz, L.A.; Fernandez, A.; Torrecillas, R. Effect of TiC addition on the mechanical behaviour of Al2O3-SiC whiskers composites obtained by SPS. J. Eur. Ceram. Soc. 2016, 36, 2149–2152. [Google Scholar] [CrossRef]
- Shvydyuk, K.O.; Nunes-Pereira, J.; Rodrigues, F.F.; Silva, A.P. Review of Ceramic Composites in Aeronautics and Aerospace: A Multifunctional Approach for TPS, TBC and DBD Applications. Ceramics 2023, 6, 195–230. [Google Scholar] [CrossRef]
- Karadimas, G.; Salonitis, K. Ceramic Matrix Composites for Aero Engine Applications—A Review. Appl. Sci. 2023, 13, 3017. [Google Scholar] [CrossRef]
- Khan, F.; Hossain, N.; Mim, J.J.; Rahman, S.M.; Iqbal, M.J.; Billah, M.; Chowdhury, M.A. Advances of composite materials in automobile applications—A review. J. Eng. Res. 2024; in press. [Google Scholar] [CrossRef]
- Vaiani, L.; Boccaccio, A.; Uva, A.E.; Palumbo, G.; Piccininni, A.; Guglielmi, P.; Cantore, S.; Santacroce, L.; Charitos, I.A.; Ballini, A. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. J. Funct. Biomater. 2023, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, R.; Sun, X.; Chen, X.; Deng, G. Microstructure and mechanical properties of Al2O3/Al2O3 composite densified through a slurry infiltration and sintering process. J. Mater. Res. Technol. 2023, 25, 2925–2935. [Google Scholar] [CrossRef]
- Frolova, M.G.; Kargin, Y.F.; Lysenkov, A.S.; Perevislov, S.N.; Titov, D.D.; Kim, K.A.; Leonov, A.V.; Istomina, E.I.; Istomin, P.V.; Tomkovich, M.V. Silicon carbide ceramics reinforced SiC fibers. IOP Conf. Ser. Mater. Sci. Eng. 2019, 525, 6–10. [Google Scholar] [CrossRef]
- Chengxin, Z.; Feng, C.; Yang, X.; Zhihang, P. Effects of sintering temperature on mechanical properties of alumina fiber reinforced alumina matrix composites. J. Sol-Gel Sci. Technol. 2020, 93, 185–192. [Google Scholar] [CrossRef]
- Stojanovic, B.; Glisovic, J. Application of Ceramic Matrix Composite in Automotive Industry. Encycl. Mater. Compos. 2021, 2, 275–292. [Google Scholar] [CrossRef]
- Oguntuyi, S.D.; Johnson, O.; Shongwe, M.B. Spark Plasma Sintering of Ceramic Matrix Composite of TiC: Microstructure, Densification, and Mechanical Properties: A Review. Lect. Notes Mech. Eng. 2021, 116, 93–101. [Google Scholar] [CrossRef]
- Vignoles, G.L. Chemical vapor deposition/infiltration processes for ceramic composites. In Advances in Composites Manufacturing and Process Design; Elsevier: Amsterdam, The Netherlands, 2015; Volume 1964, pp. 147–176. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, S.; Mi, M.; Yu, L.; Xu, L.; Jiang, P.; Wang, Y. Improved Electrical and Thermal Conductivities of Graphene–Carbon Nanotube Composite Film as an Advanced Thermal Interface Material. Energies 2023, 16, 1378. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, M.C.; Shih, Y.H.; Lin, H.Y. Doping Effects of Carbon Nanotubes and Graphene on the Flexural Properties and Tribological Performance of Needle-Punched Carbon/Carbon Composites Prepared by Liquid-Phase Impregnation. Nanomaterials 2023, 13, 2686. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Feng, P.; Peng, S.; Shuai, C. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater. 2017, 61, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Krsihna, B.V.; Ravi, S.; Prakash, M.D. Recent developments in graphene based field effect transistors. Mater. Today Proc. 2021, 45, 1524–1528. [Google Scholar] [CrossRef]
- Azizi, B.; Shariati, M.; Souq, S.S.M.N.; Hosseini, M. Bending and stretching behavior of graphene structures using continuum models calibrated with modal analysis. Appl. Math. Model. 2023, 114, 466–487. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.J.; Choi, J.W. Electrical property of graphene and its application to electrochemical biosensing. Nanomaterials 2019, 9, 297. [Google Scholar] [CrossRef]
- Pasadas, F.; Jiménez, D. Large-Signal Model of Graphene Field- Effect Transistors—Part II: Circuit Performance Benchmarking. IEEE Trans. Electron Devices 2016, 63, 2942–2947. [Google Scholar] [CrossRef]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, P.; Li, Y.; Li, R.; Zhang, K.; Tian, H.; Yu, K.; Bian, B.; Hao, L.; Xiao, X.; et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 2024, 625, 60–65. [Google Scholar] [CrossRef]
- Liu, J.; Bao, S.; Wang, X. Applications of Graphene-Based Materials in Sensors: A Review. Micromachines 2022, 13, 184. [Google Scholar] [CrossRef]
- Karanjikar, S.R.; Sena, A.S.; Manekar, P.; Mudagi, S.; Juneja, A.S. Utilization of graphene and its derivatives for air & water filtration: A review. Mater. Today Proc. 2022, 50, 2007–2017. [Google Scholar] [CrossRef]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 2014, 24, 3661–3682. [Google Scholar] [CrossRef]
- Jha, R.; Singh, A.; Sharma, P.K.; Fuloria, N.K. Smart carbon nanotubes for drug delivery system: A comprehensive study. J. Drug Deliv. Sci. Technol. 2020, 58, 101811. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M.; Aamir, M. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J. Alloys Compd. 2014, 603, 111–118. [Google Scholar] [CrossRef]
- Chen, F.; Yan, K.; Sun, J.; Hong, J.; Zhu, Y.; Huang, Z. From the research state of the thermal properties of graphene reinforced ceramics to the future of computer simulation. Ceram. Int. 2020, 46, 18428–18445. [Google Scholar] [CrossRef]
- Hou, Z.; Xue, J.; Wei, H.; Fan, X.; Ye, F.; Fan, S.; Cheng, L.; Zhang, L. Tailorable microwave absorption properties of RGO/SiC/CNT nanocomposites with 3D hierarchical structure. Ceram. Int. 2020, 46, 18160–18167. [Google Scholar] [CrossRef]
- Yin, Z.; Yuan, J.; Chen, M.; Si, D.; Xu, C. Mechanical property and ballistic resistance of graphene platelets/B4C ceramic armor prepared by spark plasma sintering. Ceram. Int. 2019, 45, 23781–23787. [Google Scholar] [CrossRef]
- Bódis, E.; Cora, I.; Németh, P.; Tapasztó, O.; Mohai, M.; Tóth, S.; Károly, Z.; Szépvölgyi, J. Toughening of silicon nitride ceramics by addition of multilayer graphene. Ceram. Int. 2019, 45, 4810–4816. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Wan, T.; Yin, Z.; Wang, J. Mechanical properties and toughening mechanisms of graphene platelets reinforced Al2O3/TiC composite ceramic tool materials by microwave sintering. Mater. Sci. Eng. A 2017, 680, 190–196. [Google Scholar] [CrossRef]
- Kovalčikova, A.; Balázsi, C.; Dusza, J.; Tapasztó, O. Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite. Ceram. Int. 2012, 38, 527–533. [Google Scholar] [CrossRef]
- Yadhukulakrishnan, G.B.; Rahman, A.; Karumuri, S.; Stackpoole, M.M.; Kalkan, A.K.; Singh, R.P.; Harimkar, S.P. Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Mater. Sci. Eng. A 2012, 552, 125–133. [Google Scholar] [CrossRef]
- Duntu, S.H.; Eliasu, A.; Ahmad, I.; Islam, M.; Boakye-Yiadom, S. Synergistic effect of graphene and carbon nanotubes on wear behaviour of alumina-zirconia nanocomposites. Mater. Charact. 2021, 175, 111056. [Google Scholar] [CrossRef]
- Asiq Rahman, O.S.; Sribalaji, M.; Mukherjee, B.; Laha, T.; Keshri, A.K. Synergistic effect of hybrid carbon nanotube and graphene nanoplatelets reinforcement on processing, microstructure, interfacial stress and mechanical properties of Al2O3 nanocomposites. Ceram. Int. 2018, 44, 2109–2122. [Google Scholar] [CrossRef]
- Román-Manso, B.; Figueiredo, F.M.; Achiaga, B.; Barea, R.; Pérez-Coll, D.; Morelos-Gómez, A.; Terrones, M.; Osendi, M.I.; Belmonte, M.; Miranzo, P. Electrically functional 3D-architectured graphene/SiC composites. Carbon N. Y. 2016, 100, 318–328. [Google Scholar] [CrossRef]
- Hanzel, O.; Lenčéš, Z.; Tatarko, P.; Sedlák, R.; Dlouhý, I.; Dusza, J.; Šajgalík, P. Preparation and properties of layered sic-graphene composites for edm. Materials 2021, 14, 2916. [Google Scholar] [CrossRef] [PubMed]
- Balázsi, K.; Furkó, M.; Balázsi, C. Ceramic Matrix Graphene and Carbon Nanotube Composites. Encycl. Mater. Tech. Ceram. Glas. 2021, 2, 243–259. [Google Scholar] [CrossRef]
- Chaudhury, P.; Samantaray, S. Modelling and Optimization of Machining of SiC-CNT Conductive Ceramic Composite used for Micro and Nano Sensor by Electrical Discharge Machining. J. Inst. Eng. Ser. D 2021, 102, 437–452. [Google Scholar] [CrossRef]
- Shah, W.A.; Luo, X.; Rabiu, B.I.; Huang, B.; Yang, Y.Q. Toughness enhancement and thermal properties of graphene-CNTs reinforced Al2O3 ceramic hybrid nanocomposites. Chem. Phys. Lett. 2021, 781, 138978. [Google Scholar] [CrossRef]
- Grigoriev, S.; Peretyagin, P.; Smirnov, A.; Solís, W.; Díaz, L.A.; Fernández, A.; Torrecillas, R. Effect of graphene addition on the mechanical and electrical properties of Al2O3-SiCw ceramics. J. Eur. Ceram. Soc. 2017, 37, 2473–2479. [Google Scholar] [CrossRef]
- Nasr, M.M.; Anwar, S.; Al-Samhan, A.M.; Alqahtani, K.N.; Dabwan, A.; Alhaag, M.H. Sustainable Microfabrication Enhancement of Graphene Nanoplatelet-Reinforced Biomedical Alumina Ceramic Matrix Nanocomposites. Nanomaterials 2023, 13, 1032. [Google Scholar] [CrossRef]
- Karagedov, G.R.; Shutilov, R.A.; Kolesov, B.A.; Kuznetsov, V.L. The effect of carbon nanotubes introduction on the mechanical properties of reaction bonded boron carbide ceramics. J. Eur. Ceram. Soc. 2021, 41, 5782–5790. [Google Scholar] [CrossRef]
- Sung, J.-W.; Kim, N.-K.; Kang, M.-C. Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining. J. Korean Soc. Manuf. Process Eng. 2013, 12, 3–9. [Google Scholar] [CrossRef]
- Xu, M.; Girish, Y.R.; Rakesh, K.P.; Wu, P.; Manukumar, H.M.; Byrappa, S.M.; Udayabhanu; Byrappa, K. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Mater. Today Commun. 2021, 28, 102533. [Google Scholar] [CrossRef]
- Sun, D.; Jiang, X.; Su, L.; Sun, H.; Hu, C.; Song, T.; Luo, Z. Fabrication and mechanical properties of Al2O3–TiC ceramic composites synergistically reinforced with multi-walled carbon nanotubes and graphene nanoplates. Ceram. Int. 2020, 46, 20068–20080. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Fan, Z.; Yan, J.; Wei, T. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 2011, 46, 315–318. [Google Scholar] [CrossRef]
- Yazdani, B.; Porwal, H.; Xia, Y.; Yan, H.; Reece, M.J.; Zhu, Y. Role of synthesis method on microstructure and mechanical properties of graphene/carbon nanotube toughened Al2O3 nanocomposites. Ceram. Int. 2015, 41, 9813–9822. [Google Scholar] [CrossRef]
- Shu, R.; Jiang, X.; Shao, Z.; Sun, D.; Zhu, D.; Luo, Z. Fabrication and mechanical properties of MWCNTs and graphene synergetically reinforced Cu–graphite matrix composites. Powder Technol. 2019, 349, 59–69. [Google Scholar] [CrossRef]
- Othman, N.E.F.; Abdullah, Y.; Purwanto, H.; Zaini, K.H. Effect of Electron Beam Irradiation on the Morphology of Alumina Ceramic. Adv. Mater. Res. 2015, 1115, 142–145. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, J.; Yang, F.; Chen, G.; Zhang, L.; Yang, Z. Microstructural evolution of polymer derived SiC ceramics and SiC/SiC composite under 1.8MeV electron irradiation. J. Nucl. Mater. 2023, 580, 154408. [Google Scholar] [CrossRef]
- Xu, M.; Fujita, D.; Hanagata, N. Monitoring electron-beam irradiation effects on graphenes by temporal Auger electron spectroscopy. Nanotechnology 2010, 21, 265705. [Google Scholar] [CrossRef]
- Qadir, A.; Balazsi, K.; Balazsi, C.; Ivor, M.; Dusza, J. Properties of MWCNTs added Si3N4 composites processed from oxidized silicon nitride powders. Process. Appl. Ceram. 2020, 14, 25–31. [Google Scholar] [CrossRef]
- Balázsi, C.; Shen, Z.; Kónya, Z.; Kasztovszky, Z.; Wéber, F.; Vértesy, Z.; Biró, L.P.; Kiricsi, I.; Arató, P. Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Compos. Sci. Technol. 2005, 65, 727–733. [Google Scholar] [CrossRef]
- Balázsi, C.; Fényi, B.; Hegman, N.; Kövér, Z.; Wéber, F.; Vértesy, Z.; Kónya, Z.; Kiricsi, I.; Biró, L.P.; Arató, P. Development of CNT/Si3N4 composites with improved mechanical and electrical properties. Compos. Part B Eng. 2006, 37, 418–424. [Google Scholar] [CrossRef]
- Schlüter, B.; Schröder, C.; Zhang, W.; Mülhaupt, R.; Degenhardt, U.; Sedlák, R.; Dusza, J.; Balázsi, K.; Balázsi, C.; Kailer, A. Influence of Graphene Type and Content on Friction and Wear of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment. Materials 2022, 15, 7755. [Google Scholar] [CrossRef]
- Maros, B.M.; Németh, A.K.; Károly, Z.; Bódis, E.; Maros, Z.; Tapasztó, O.; Balázsi, K. Tribological characterisation of silicon nitride/multilayer graphene nanocomposites produced by HIP and SPS technology. Tribol. Int. 2015, 93, 269–281. [Google Scholar] [CrossRef]
- Yazdani, B.; Xu, F.; Ahmad, I.; Hou, X.; Xia, Y.; Zhu, Y. Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites. Sci. Rep. 2015, 5, 11579. [Google Scholar] [CrossRef]
- Mukherjee, B.; Asiq Rahman, O.S.; Islam, A.; Sribalaji, M.; Keshri, A.K. Plasma sprayed carbon nanotube and graphene nanoplatelets reinforced alumina hybrid composite coating with outstanding toughness. J. Alloys Compd. 2017, 727, 658–670. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Y.; Wang, K. Preparation high-performance SiC ceramic reinforced with 3D hybrid graphene oxide-carbon nanotube by direct ink writing and liquid silicon infiltration. J. Eur. Ceram. Soc. 2024, 44, 5612–5622. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, P.; Chen, Y.; Zhao, J.; Huang, Z. Hierarchical toughening of laminated nanocomposites with three-dimensional graphene/carbon nanotube/SiC nanowire. Mater. Today Nano 2022, 18, 100180. [Google Scholar] [CrossRef]
- Jiang, X.; Song, T.; Shao, Z.; Liu, W.; Zhu, D.; Zhu, M. Synergetic Effect of Graphene and MWCNTs on Microstructure and Mechanical Properties of Cu/Ti3SiC2/C Nanocomposites. Nanoscale Res. Lett. 2017, 12, 607. [Google Scholar] [CrossRef]
- Tapasztó, O.; Tapasztó, L.; Markó, M.; Kern, F.; Gadow, R.; Balázsi, C. Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 2011, 511, 340–343. [Google Scholar] [CrossRef]
- Yazdani, B.; Xia, Y.; Ahmad, I.; Zhu, Y. Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Ceram. Soc. 2015, 35, 179–186. [Google Scholar] [CrossRef]
- Shahedi Asl, M.; Farahbakhsh, I.; Nayebi, B. Characteristics of multi-walled carbon nanotube toughened ZrB2-SiC ceramic composite prepared by hot pressing. Ceram. Int. 2016, 42, 1950–1958. [Google Scholar] [CrossRef]
- Ahmad, I.; Islam, M.; Subhani, T.; Zhu, Y. Toughness enhancement in graphene nanoplatelet/SiC reinforced Al2O3 ceramic hybrid nanocomposites. Nanotechnology 2016, 27, 425704. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Cai, P.; Long, L. Effect of content and size of reinforcements on the grain evolution of graphene-reinforced aluminum matrix composites. Nanomaterials 2021, 11, 2550. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Cui, E.; Sun, Z.; Yu, H. Nano/microstructures and mechanical properties of Al2O3-WC-TiC ceramic composites incorporating graphene with different sizes. Mater. Sci. Eng. A 2021, 812, 141132. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Huang, K.; Liang, D.; Zhao, D.; Jiang, Z. Effect of ball milling speed on the quality of Al2O3 stripped graphene in a wet milling medium. Ceram. Int. 2022, 48, 17171–17177. [Google Scholar] [CrossRef]
- Guo, W.; He, Q.; Wang, A.; Tian, T.; Liu, C.; Hu, L.; Wang, H.; Wang, W.; Fu, Z. Effects of ball milling on the densification behavior, microstructure, and mechanical properties of TiB2–SiC ceramics. J. Mater. Res. Technol. 2021, 15, 6700–6712. [Google Scholar] [CrossRef]
- Ding, M.; Sahebgharani, N.; Musharavati, F.; Jaber, F.; Zalnezhad, E.; Yoon, G.H. Synthesis and properties of HA/ZnO/CNT nanocomposite. Ceram. Int. 2018, 44, 7746–7753. [Google Scholar] [CrossRef]
- Cho, J.; Boccaccini, A.R.; Shaffer, M.S.P. Ceramic matrix composites containing carbon nanotubes. J. Mater. Sci. 2009, 44, 1934–1951. [Google Scholar] [CrossRef]
- Zhao, W.; Sun, J.; Huang, Z. Three-dimensional graphene-carbon nanotube reinforced ceramics and computer simulation. Ceram. Int. 2021, 47, 33941–33955. [Google Scholar] [CrossRef]
- Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 2014, 16, 830–849. [Google Scholar] [CrossRef]
- Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.; Kessel, U.H.; Hennicke, J.; Kirchner, R.; Kessel, T. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. Sinter. Appl. 2013, 13, 319–342. [Google Scholar] [CrossRef]
- Wang, J.; Kou, H.; Liu, X.; Pan, Y.; Guo, J. Reinforcement of mullite matrix with multi-walled carbon nanotubes. Ceram. Int. 2007, 33, 719–722. [Google Scholar] [CrossRef]
- Hanzel, O.; Singh, M.A.; Marla, D.; Sedlák, R.; Šajgalík, P. Wire electrical discharge machinable SiC with GNPs and GO as the electrically conducting filler. J. Eur. Ceram. Soc. 2019, 39, 2626–2633. [Google Scholar] [CrossRef]
- Qadir, A.; Ali, S.; Dusza, J.; Rafaja, D. Predicting hardness of graphene-added Si3N4 using machine learning: A data-driven approach. Open Ceram. 2024, 19, 100634. [Google Scholar] [CrossRef]
- Oey, T.; Jones, S.; Bullard, J.W.; Sant, G. Machine learning can predict setting behavior and strength evolution of hydrating cement systems. J. Am. Ceram. Soc. 2020, 103, 480–490. [Google Scholar] [CrossRef]
- Lehnert, T.; Heidenreich, B.; Koch, D. Investigation of process influences on the amount of single-fiber siliconization in C/C–SiC samples by machine-learning methods. Open Ceram. 2023, 15, 100383. [Google Scholar] [CrossRef]
- Qu, N.; Liu, Y.; Liao, M.; Lai, Z.; Zhou, F.; Cui, P.; Han, T.; Yang, D.; Zhu, J. Ultra-high temperature ceramics melting temperature prediction via machine learning. Ceram. Int. 2019, 45, 18551–18555. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, H.; Paul, M.J.; He, P.; Peng, Z.; Gludovatz, B.; Kruzic, J.J.; Wang, C.H.; Li, X. Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms. Acta Mater. 2020, 201, 316–328. [Google Scholar] [CrossRef]
SPS Samples | Density (g/cm3) | Elastic Modulus (GPa) | Shear Modulus (GPa) | Hardness (GPa) |
---|---|---|---|---|
4039 | 3.23 | 326.21 | 130.18 | 20.1 ± 0.9 |
4040 | 3.17 | 285.73 | 115.10 | 16.6 ± 0.4 |
3942 | 3.24 | 316.80 | 124.46 | 18.3 ± 0.5 |
4041 | 3.19 | 306.16 | 123.91 | 19.1 ± 0.6 |
Sintering Method | MLG (wt.%) | Apparent Density (g/cm3) | Steady-State Friction Coefficient, μss | |||
---|---|---|---|---|---|---|
SiC Ball | Si3N4 Ball | SiC Ball | Si3N4 Ball | |||
v = 20 mm/s | v = 200 mm/s | |||||
HIP | 0 | 3.23 | 0.385 | 0.679 | 0.498 | 0.597 |
1 | 3.27 | 0.396 | 0.680 | 0.501 | 0.639 | |
3 | 2.80 | 0.445 | 0.704 | 0.550 | 0.803 | |
SPS | 0 | 3.23 | 0.348 | 0.769 | 0.712 | 0.671 |
1 | 3.29 | 0.363 | 0.683 | 0.448 | 0.716 | |
3 | 3.11 | 0.375 | 0.735 | 0.473 | 0.684 |
Materials | Particle Size (μm) | Specific Surface Area (m2/g) | Oxygen Content (wt.%) | Wastage of SiC Balls (wt.%) | SiC Calculated a Content (wt.%) | SiC Content (wt.%) | Theoretical Density (g/cm3) |
---|---|---|---|---|---|---|---|
B0 | 6 | 1.95 | 1.06 | 0 | 0 | 0 | 4.52 |
B6 | 2.86 | 3.60 | 2.15 | 1 | 3.81 | 4.76 | 4.43 |
B12 | 1.96 | 4.98 | 2.81 | 1.65 | 7.05 | 7.62 | 4.38 |
B18 | 1.62 | 5.68 | 3.45 | 2.25 | 9.34 | 10.11 | 4.34 |
B24 | 1.34 | 6.15 | 4.02 | 2.75 | 10.86 | 12.09 | 4.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balázsi, K.; Almansoori, A.; Balázsi, C. Superior Ceramics: Graphene and Carbon Nanotube (CNT) Reinforcements. Ceramics 2024, 7, 1758-1778. https://doi.org/10.3390/ceramics7040112
Balázsi K, Almansoori A, Balázsi C. Superior Ceramics: Graphene and Carbon Nanotube (CNT) Reinforcements. Ceramics. 2024; 7(4):1758-1778. https://doi.org/10.3390/ceramics7040112
Chicago/Turabian StyleBalázsi, Katalin, Alaa Almansoori, and Csaba Balázsi. 2024. "Superior Ceramics: Graphene and Carbon Nanotube (CNT) Reinforcements" Ceramics 7, no. 4: 1758-1778. https://doi.org/10.3390/ceramics7040112
APA StyleBalázsi, K., Almansoori, A., & Balázsi, C. (2024). Superior Ceramics: Graphene and Carbon Nanotube (CNT) Reinforcements. Ceramics, 7(4), 1758-1778. https://doi.org/10.3390/ceramics7040112