Embracing Complexity to Advance the Science of Wildland Fire Behavior
Abstract
:1. Introduction
2. Parameters and Definitions
3. Scales of Influence
3.1. Particle Scale
3.2. Prescribed Fire Scale
3.3. Fire Complex Scale
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Research Paper INT-115; USDA Forest Service Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972.
- Byram, G.M. Combustion of Forest Fuels. In Forest Fires: Control and Use; McGraw-Hill Book Company: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Albini, F.A. A model for fire spread in wildland fuels by radiation. Combust. Sci. Technol. 1985, 42, 229–258. [Google Scholar] [CrossRef]
- Van Wagner, C.E. A simple fire-growth model. For. Chron. 1969, 45, 103–104. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire 2009, 18, 349–368. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: Fire Area Simulator-Model Development and Evaluation; Res Pap RMRS-RP-4 Revis. 2004; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998. [CrossRef]
- Heinsch, F.A.; Andrews, P.L. BehavePlus Fire Modeling System, Version 5.0: Design and Features; Gen Tech Rep RMRS-GTR-249; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010. [CrossRef]
- Coen, J.L.; Cameron, M.; Michalakes, J.; Patton, E.G.; Riggan, P.J.; Yedinak, K.M. WRF-Fire: Coupled weather-wildland fire modeling with the weather research and forecasting model. J. Appl. Meteorol. Climatol. 2013, 52, 16–38. [Google Scholar] [CrossRef]
- Coen, J.L. Simulation of the Big Elk Fire using coupled atmosphere-fire modeling. Int. J. Wildland Fire 2005, 14, 49–59. [Google Scholar] [CrossRef]
- Taylor, S.W.; Wotton, B.M.; Alexander, M.E.; Dalrymple, G.N. Variation in wind and crown fire behaviour in a northern jack pine-black spruce forest. Can. J. For. Res. 2004, 34, 1561–1576. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E. Uncertainty associated with model predictions of surface and crown fire rates of spread. Environ. Model. Softw. 2013, 47, 16–28. [Google Scholar] [CrossRef]
- Ottmar, R.D.; Hiers, J.K.; Butler, B.W.; Clements, C.B.; Dickinson, M.B.; Hudak, A.T.; O’Brien, J.J.; Potter, B.E.; Rowell, E.M.; Strand, T.M.; et al. Measurements, datasets and preliminary results from the RxCADRE project—2008, 2011 and 2012. Int. J. Wildland Fire 2016, 25, 1–9. [Google Scholar] [CrossRef]
- Jolly, W.M.; Johnson, D.M. Pyro-ecophysiology: Shifting the paradigm of live wildland fuel research. Fire 2018, 1, 8. [Google Scholar] [CrossRef]
- Finney, M.A.; Cohen, J.D.; McAllister, S.S.; Jolly, W.M. On the need for a theory of wildland fire spread. Int. J. Wildland Fire 2013, 22, 25–36. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Sullivan, A.L. Mantras of wildland fire behaviour modelling: Facts or fallacies? Int. J. Wildland Fire 2017, 26, 973–981. [Google Scholar] [CrossRef]
- Tieszen, S.R. On the fluid mechanics of fires. Annu. Rev. Fluid Mech. 2001, 33, 67–92. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Forest Canopy Effect. In Atmospheric Science; International Geophysics; Academic Press, Elsevier: Burlington, MA, USA, 2006; Volume 92, pp. 410–411. [Google Scholar]
- Campbell, G.S.; Norman, J.M. Finding the zero plane displacement and roughness length. In An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998; pp. 68–74. [Google Scholar]
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E. The flammability of forest and woodland litter: A synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Potter, B.E. Atmospheric interactions with wildland fire behaviour—I. Basic surface interactions, vertical profiles and synoptic structures. Int. J. Wildland Fire 2012, 21, 779–801. [Google Scholar] [CrossRef]
- Potter, B.E. Atmospheric interactions with wildland fire behaviour—II. Plume and vortex dynamics. Int. J. Wildland Fire 2012, 21, 802–817. [Google Scholar] [CrossRef]
- Zhou, X.; Weise, D.R.; Mahalingam, S. Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds. Proc. Combust. Inst. 2005, 30, 2287–2294. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Sparks, A.M.; Kolden, C.A.; Abatzoglou, J.T.; Talhelm, A.F.; Johnson, D.M.; Boschetti, L.; Lutz, J.A.; Apostol, K.G.; Yedinak, K.M.; et al. Towards a new paradigm in fire severity research using dose–response experiments. Int. J. Wildland Fire 2016, 25, 158–166. [Google Scholar] [CrossRef]
- Anderson, H.E. Moisture diffusivity and response time in fine forest fuels. Can. J. For. Res. 1990, 20, 315–325. [Google Scholar] [CrossRef]
- Finney, M.A.; Cohen, J.D.; Forthofer, J.M.; McAllister, S.S.; Gollner, M.J.; Gorham, D.J.; Saito, K.; Akafuah, N.K.; Adam, B.A.; English, J.D. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. USA 2015, 112, 9833–9838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, P.; Linn, R.R. Numerical simulations of grass fires using a coupled atmosphere-fire model: Dynamics of fire spread. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Yashwanth, B.L.; Shotorban, B.; Mahalingam, S.; Weise, D.R. An investigation of the influence of heating modes on ignition and pyrolysis of woody wildland fuel. Combust. Sci. Technol. 2015, 187, 780–796. [Google Scholar] [CrossRef]
- Sullivan, A.L. Inside the inferno: Fundamental processes of wildland fire behaviour—II. Heat transfer and interactions. Curr. For. Rep. 2017, 3, 150–171. [Google Scholar] [CrossRef]
- Sullivan, A.L. Inside the inferno: Fundamental processes of wildland fire behaviour—I. combustion chemistry and heat release. Curr. For. Rep. 2017, 3, 132–149. [Google Scholar] [CrossRef]
- Kreye, J.K.; Hiers, J.K.; Varner, J.M.; Hornsby, B.S.; Drukker, S.; O’Brien, J.J. Effects of solar exposure and litter position on forest floor moisture dynamics: Overstory structure and species matter. Can. J. For. Res. 2018. in review. [Google Scholar]
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an ecological and evolutionary driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- Schwilk, D.W. Dimensions of plant flammability. New Phytol. 2015, 206, 486–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Hiers, J.K.; O’Brien, J.J.; Mitchell, R.J.; Grego, J.M.; Loudermilk, E.L. The wildland fuel cell concept: An approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests. Int. J. Wildland Fire 2009, 18, 315–325. [Google Scholar] [CrossRef]
- Clements, C.B.; Zhong, S.; Goodrick, S.; Li, J.; Potter, B.E.; Bian, X.; Heilman, W.E.; Charney, J.J.; Perna, R.; Jang, M.; et al. Observing the dynamics of wildland grass fires: FireFlux—A field validation experiment. Bull. Am. Meteorol. Soc. 2007, 88, 1369–1382. [Google Scholar] [CrossRef]
- Achtemeier, G. Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling. Int. J. Wildland Fire 2012, 22, 148–156. [Google Scholar] [CrossRef]
- Smoke management guide for prescribed and wildland fire 2001.
- Frankman, D.; Webb, B.W.; Butler, B.W. Time-resolved radiation and convection heat transfer in combusting discontinuous fuel beds. Combust. Sci. Technol. 2010, 182, 1391–1412. [Google Scholar] [CrossRef]
- Werth, P.A.; Potter, B.E.; Clements, C.B.; Finney, M.A.; Goodrick, S.L.; Alexander, M.E.; Cruz, M.G.; Forthofer, J.A.; McAllister, S.S. Synthesis of Knowledge of Extreme Fire Behavior: Volume I for Fire Managers; Gen. Tech. Rep. PNW-GTR-854; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2011. [CrossRef]
- Ottmar, R.; Brown, T.J.; French, N.H.F.; Larkin, N.K. Fire and Smoke Model Evaluation Experiment (FASMEE) Study Plan 2017. Joint Fire Sciences Program Project 15-S-01-01. 2017. Available online: https://www.fasmee.net/wp-content/uploads/2017/07/FASMEE_StudyPlan_Final_07-11-17.pdf (accessed on 22 June 2018).
- Pimont, F.; Parsons, R.; Rigolot, E.; de Coligny, F.; Dupuy, J.-L.; Dreyfus, P.; Linn, R.R. Modeling fuels and fire effects in 3D: Model description and applications. Environ. Model. Softw. 2016, 80, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Achtemeier, G.L.; Goodrick, S.L.; Jackson, W.A. Important parameters for smoke plume rise simulation with Daysmoke. Atmospheric Pollut. Res. 2010, 1, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.E.; Hardy, C.C. Smoke emissions from wildland fires. Environ. Int. 1991, 17, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Achtemeier, G.L. On the formation and persistence of superfog in woodland smoke. Meteorol. Appl. 2009, 16, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.C.; Mueller, E.V.; Santamaria, S.; Gallagher, M.; El Houssami, M.; Filkov, A.; Clark, K.; Skowronski, N.; Hadden, R.M.; Mell, W.; et al. Investigation of firebrand generation from an experimental fire: Development of a reliable data collection methodology. Fire Saf. J. 2017, 91, 864–871. [Google Scholar] [CrossRef]
- Yedinak, K.M.; Anderson, M.J.; Apostol, K.G.; Smith, A.M.S. Vegetation effects on impulsive events in the acoustic signature of fires. J. Acoust. Soc. Am. 2017, 141, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Grumstrup, T.P.; McAllister, S.S.; Finney, M.A. Qualitative flow visualization of flame attachment on slopes. Presented at U. S. National Combustion Meeting Organized by the Eastern States Section of the Combustion Institute, College Park, MD, USA, 23–26 April 2017; p. 6. [Google Scholar]
- Dickinson, M.B.; Hudak, A.T.; Zajkowski, T.; Loudermilk, E.L.; Schroeder, W.; Ellison, L.; Kremens, R.L.; Holley, W.; Martinez, O.; Paxton, A.; et al. Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors—RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 48–61. [Google Scholar] [CrossRef]
- O’Brien, J.J.; Loudermilk, E.L.; Hornsby, B.; Hudak, A.T.; Bright, B.C.; Dickinson, M.B.; Hiers, J.K.; Teske, C.; Ottmar, R.D. High-resolution infrared thermography for capturing wildland fire behaviour: RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 62–75. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yedinak, K.M.; Strand, E.K.; Hiers, J.K.; Varner, J.M. Embracing Complexity to Advance the Science of Wildland Fire Behavior. Fire 2018, 1, 20. https://doi.org/10.3390/fire1020020
Yedinak KM, Strand EK, Hiers JK, Varner JM. Embracing Complexity to Advance the Science of Wildland Fire Behavior. Fire. 2018; 1(2):20. https://doi.org/10.3390/fire1020020
Chicago/Turabian StyleYedinak, Kara M., Eva K. Strand, J. Kevin Hiers, and J. Morgan Varner. 2018. "Embracing Complexity to Advance the Science of Wildland Fire Behavior" Fire 1, no. 2: 20. https://doi.org/10.3390/fire1020020
APA StyleYedinak, K. M., Strand, E. K., Hiers, J. K., & Varner, J. M. (2018). Embracing Complexity to Advance the Science of Wildland Fire Behavior. Fire, 1(2), 20. https://doi.org/10.3390/fire1020020