Emergence and Evolution of Anthropogenic Landscapes in the Western Mediterranean and Adjacent Atlantic Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Setting
2.2. Rationale
2.3. Reconstruction of Regional Trends in Fire and Vegetation during the Holocene (ca. 10,000 cal yr BP–Present)
2.4. Reconstruction of Sub-Regional Trends in Ecosystem Dynamics during the Holocene
3. Results and Discussion
3.1. Regional Trends in Ecosystem Dynamics during the Holocene
3.1.1. Stage I (>ca. 6500 cal yr BP): Hunting-Gathering in Densely Forested Landscapes
3.1.2. Stage II (ca. 6500–4200 cal yr BP): Extensive Land-Use of Semi-Open Forests
3.1.3. Stage III (ca. 4200–2400 cal yr BP): Expansion of Anthroposystems in More Open Landscapes
3.1.4. Stage IV (ca. 2400 cal yr BP–Present): Intensive Land-Use and Urban Extractive Industries
3.2. The Role of Climate and Humans in Driving Regional Ecosystem Dynamics
3.3. Sub-Regional Trends in Ecosystem Dynamics during the Holocene
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; Vavrus, S.; Goldewijk, K.K.; Verburg, H.P. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruddiman, W.F.; Ellis, E.C. Effect of per-capita land use changes on Holocene forest clearance and CO2 emissions. Quat. Sci. Rev. 2009, 28, 3011–3015. [Google Scholar] [CrossRef]
- Bocquet-Appel, J.P.; Naji, S.; Vander Linden, M.; Kozlowski, J.K. Detection of diffusion and contact zones of early farming in Europe from the space-time distribution of 14C dates. J. Archaeol. Sci. 2009, 36, 807–820. [Google Scholar] [CrossRef]
- Roberts, N.; Fyfe, R.M.; Woodbridge, J.; Gaillard, M.-J.; Davis, B.A.S.; Kaplan, J.; Marquer, L.; Mazier, F.; Nielsen, A.B.; Sugita, S.; et al. Europe’s lost forests: A pollen-based synthesis for the last 11,000 years. Sci. Rep. 2018, 8, 716. [Google Scholar] [CrossRef] [PubMed]
- Vannière, B.; Blarquez, O.; Rius, D.; Doyen, É.; Brücher, T.; Colombarioli, D.; Connor, S.; Feurdean, A.; Kickler, T.; Kaltenrieder, P.; et al. 7000-year human legacy of elevation-dependent European fire regimes. Quat. Sci. Rev. 2016, 132, 206–212. [Google Scholar] [CrossRef]
- Bocquet-Appel, J.; Naji, S.; Linden, M.V.; Kozlowski, J. Understanding the rates of expansion of the farming system in Europe. J. Archaeol. Sci. 2012, 39, 531–546. [Google Scholar] [CrossRef]
- Leppard, T.P. Mobility and migration in the Early Neolithic of the Mediterranean: Questions of motivation and mechanism. World Archaeol. 2014, 46, 484–501. [Google Scholar] [CrossRef]
- Dünkeloh, A.; Jacobeit, J. Circulation dynamics of Mediterranean precipitation variability. Int. J. Climatol. 2003, 23, 1843–1866. [Google Scholar] [CrossRef]
- Lionello, P.; Sanna, A. Mediterranean wave climate variability and its links with NAO and Indian Monsoon. Clim. Dyn. 2005, 25, 611–623. [Google Scholar] [CrossRef]
- Quézel, P.; Médail, F. Écologie et Biogéographie des Forêts du Bassin Méditerranéen; Elsevier Masson: Paris, France, 2003. [Google Scholar]
- Ulbrich, U.; Lionello, P.; Belušić, D.; Jacobeit, J.; Knippertz, P.; Kuglitsch, G.; Leckebusch, G.C.; Luterbacher, J.; Maugeri, M.; Maheras, P.; et al. Climate of the Mediterranean: Synoptic Patterns, Temperature, Precipitation, Winds, and Their Extremes. In Climate of the Mediterranean Region-from the Past to the Future; Elsevier: London, UK, 2012; pp. 301–334. [Google Scholar]
- Broodbank, C. The Making of the Middle Sea: A History of the Mediterranean from the Beginning to the Emergence of the Classical World; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Sharma, A.S.; Baker, D.N.; Bhattacharyya, A.; Bunde, A.; Dimri, V.P.; Gupta, H.K.; Gupta, V.K.; Lovejoy, S.; Main, I.G.; Schertzer, D.; et al. Complexity and Extreme Events in Geosciences: An Overview. Complex. Extreme Events Geosic. 2012. [Google Scholar] [CrossRef]
- Borzenkova, I.; Zorita, E.; Borisova, O.; Kalnié, L.; Kisieliene, D.; Koff, T.; Kiznetsov, D.; Lemdahl, G.; Sapelko, T.; Stančikaitė, M.; et al. Climate Change during the Holocene (Past 12,000 Years). In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC II Author Team, Ed.; Springer: Cham, Switzerland, 2015; pp. 25–49. [Google Scholar]
- Gavin, D.G.; Hu, F.S. Bioclimatic Modelling Using Gaussian Mixture Distributions and Multiscale Segmentation. Glob. Ecol. Biogeogr. 2005, 14, 491–501. [Google Scholar] [CrossRef]
- Iglesias, V.; Whitlock, C.; Bianchi, M.M.; Villarosa, G.; Outes, V. Climate and local controls of long-term vegetation dynamics in northern Patagonia (Lat 41 °S). Quat. Res. 2012, 78, 502–512. [Google Scholar] [CrossRef]
- Collins, P.M.; Davis, B.A.S.; Kaplan, J.O. The mid-Holocene vegetation of the Mediterranean region and southern Europe, and comparison with the present day. J. Biogeogr. 2012, 39, 1848–1861. [Google Scholar] [CrossRef]
- Gaillard, M.; Whitehouse, N.; Madella, M.; Morrison, K.; von Gunten, L. Past Land Use and Land Cover. Past Glob. Chang. Mag. 2018, 26, 8–9. [Google Scholar]
- García-Alix, A.; Jiménez-Espejo, F.J.; Toney, J.L.; Jiménez-Moreno, G.; Ramos-Román, M.J.; Scott Anderson, R.; Ruano, P.; Queralt, I.; Delgado Huertas, A.; Kuroda, J. Alpine bogs of southern Spain show human-induced environmental change superimposed on long-term natural variations. Sci. Rep. 2017, 7, 7439. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, T.; Davis, B.; Brewer, S.; Finsinger, W.; Wolters, S.; Blaauw, M.; de Beaulieu, J.L.; Binney, H.; Fyfe, R.M.; Gaillard, M.-J.; et al. Towards mapping the late Quaternary vegetation change of Europe. Veg. Hist. Archaeobot. 2014, 23, 75–86. [Google Scholar] [CrossRef]
- Marlon, J.R.; Kelly, R.; Daniau, A.L.; Vannière, B.; Power, M.J.; Bartlein, P.; Higuera, P.; Blarquez, O.; Brewer, S.; Brücher, T.; et al. Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons. Biogeosciences 2016, 13, 3225–3244. [Google Scholar] [CrossRef]
- Kaplan, J.O.; Krumhardt, K.M.; Ellis, E.C.; Ruddiman, W.F.; Lemmen, C.; Goldewijk, K.K. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 2011, 21, 775–791. [Google Scholar] [CrossRef]
- Brücher, T.; Brovkin, V.; Kloster, S.; Marlon, J.R.; Power, M.J. Comparing modelled fire dynamics with charcoal records for the Holocene. Clim. Past 2014, 10, 811–824. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.O.; Krumhardt, K.M. The KK10 Anthropogenic Land Cover Change scenario for the preindustrial Holocene, link to data in NetCDF format. Pangea 2011, 21, 775–791. [Google Scholar]
- Kaplan, J.O.; Krumhardt, K.M.; Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 2009, 28, 3016–3034. [Google Scholar] [CrossRef]
- Parisien, M.A.; Moritz, M.A. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecol. Monogr. 2009, 79, 127–154. [Google Scholar] [CrossRef]
- Vanniére, B.; Power, M.J.; Roberts, N.; Tinner, W.; Carrión, J.; Magny, M.; Bartlein, D.; Colombarioli, D.; Daniau, A.L.; Finsinger, W.; et al. Circum-mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500–2500 cal. BP). Holocene 2011, 21, 53–73. [Google Scholar] [CrossRef]
- Fyfe, R.M.; de Beaulieu, J.-L.; Binney, H.; Bradshaw, R.H.W.; Brewer, S.; Le Flao, A.; Finsinger, W.; Gaillard, M.-J.; Giesecke, T.; Gil-Romera, G.; et al. The European pollen database: Past efforts and current activities. Veg. Hist. Archaeobot. 2009, 18, 417–424. [Google Scholar] [CrossRef]
- Whitlock, C.; Larsen, C. Charcoal as a fire proxy. In Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators; Smol, J., Birks, H., Last, W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 75–99. [Google Scholar]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Marlon, J.R.; Bartlein, P.J.; Carcaillet, C.; Gavin, D.G.; Harrison, S.P.; Higuera, P.E.; Joos, F.; Power, M.J.; Prentice, I.C. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 2008, 1, 697. [Google Scholar] [CrossRef]
- Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 2008, 30, 887–907. [Google Scholar] [CrossRef]
- Mercuri, A.M.; Florenzano, A.; Burjachs, F.; Giardini, M.; Kouli, K.; Masi, A.; Picornell-Gelabert, L.; Revelles, J.; Sadori, L.; Servera-Vives, G.; et al. From influence to impact: The multifunctional land use in Mediterranean prehistory emerging from palynology of archaeological sites (8.0–2.8 ka BP). Holocene 2019, 29, 830–846. [Google Scholar] [CrossRef]
- Pantaléon-Cano, J.; Yll, E.I.; Pérez-Obiol, R.; Roure, J.M. Palynological evidence for vegetational history in semi-arid areas of the western Mediterranean (Almería, Spain). Holocene 2003, 13, 109–119. [Google Scholar] [CrossRef]
- Mercuri, A.M.; Bandini Mazzanti, M.; Florenzano, A.; Montecchi, M.C.; Rattighieri, E. Olea, Juglans and Castanea: The OJC group as pollen evidence of the development of human-induced environments in the Italian peninsula. Quat. Int. 2013, 303, 24–42. [Google Scholar] [CrossRef]
- Iglesias, V.; Whitlock, C. Fire responses to postglacial climate change and human impact in northern Patagonia (41–43 °S). Proc. Natl. Acad. Sci. USA 2014, 111, E5545–E5554. [Google Scholar] [CrossRef] [PubMed]
- Wood, S. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Akaike, H. Information theory as an extension of the maximum likelihood principle. In Second International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Sugita, S.; Gaillard, M.J.; Broström, A. Landscape openness and pollen records: A simulation approach. Holocene 1999, 9, 409–421. [Google Scholar] [CrossRef]
- Higuera, P.E.; Sprugel, D.G.; Brubaker, L.B. Reconstructing fire regimes with charcoal from small-hollow sediments: A calibration with tree-ring records of fire. Holocene 2005, 15, 238–251. [Google Scholar] [CrossRef]
- Iglesias, V.; Quintana, F.; Nanavati, W.; Whitlock, C. Interpreting modern and fossil pollen data along a steep environmental gradient in northern Patagonia. Holocene 2017, 27, 1008–1018. [Google Scholar] [CrossRef]
- Grimm, E.C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Bennett, K.D. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 1996, 132, 155–170. [Google Scholar] [CrossRef]
- Priyadarshana, W.J.R.M.; Sofronov, G. Multiple Break-Points Detection in Array CGH Data via the Cross-Entropy Method. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 12, 487–498. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and Regression Trees; Belmont: Wadsworth, OH, USA, 1984. [Google Scholar]
- Ripley, B. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Marlon, J.; Bartlein, P.J.; Whitlock, C. Fire-fuel-climate linkages in the northwestern USA during the Holocene. Holocene 2006, 16, 1059–1071. [Google Scholar] [CrossRef]
- Ali, A.A.; Blarquez, O.; Girardin, M.P.; Hély, C.; Tinquaunt, F.; El Guellab, A.; Valsecchi, V.; Terrier, A.; Bremond, L.; Genries, A.; et al. Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proc. Natl. Acad. Sci. USA 2012, 109, 20966–20970. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Dag, O.; Asar, O.; Ozlem, I. AID: An R Package to Estimate Box-Cox Power Transformation Parameter, R package version 2.4; 2014. Available online: https://CRAN.R-project.org/package=AID (accessed on 10 August 2019).
- Maechler, M. Akima: Interpolation of Irregularly Spaced Data, R package version 0.6-2; 2013. Available online: https://CRAN.R-project.org/package=akima (accessed on 10 August 2019).
- Weisberg, S. Applied Linear Regression; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Wickham, H.; Francois, R. Dplyr: A Grammar of Data Manipulation, R package version 0.8.3; 2015. Available online: http://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr (accessed on 10 August 2019).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Juggins, S. rioja: Analysis of Quaternary Science Data, R package version 0.9-21; 2017; Available online: http://cran.r-project.org/package=rioja (accessed on 10 August 2019).
- Ripley, B. Tree: Classification and Regression Trees, R package version 1.0-40; 2014. Available online: https://CRAN.R-project.org/package=tree (accessed on 10 August 2019).
- Berger, A.; Loutre, M. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317. [Google Scholar] [CrossRef]
- Manzano, S.; Carrión, J.S.; López-Merino, L.; Jiménez-Moreno, G.; Toney, J.L.; Amstrong, H.; Anderson, R.S.; García-Aliz, A.; Guerrero Pérez, J.L.; Sánchez-Mata, D. A palaeoecological approach to understanding the past and present of Sierra Nevada, a Southwestern European biodiversity hotspot. Glob. Planet. Chang. 2019, 175, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Cacho, I.; Grimalt, J.O.; Canals, M.; Sbaffi, L.; Shackleton, N.J.; Schönfeld, J.; Zahn, R. Variability of the Western Mediterranean sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 2001, 16, 40–52. [Google Scholar] [CrossRef]
- Renssen, H.; Seppä, H.; Heiri, O.; Roche, D.M.; Goosse, H.; Fichefet, T. The spatial and temporal complexity of the holocene thermal maximum. Nat. Geosci. 2009, 2, 411. [Google Scholar] [CrossRef]
- Samartin, S.; Heiri, O.; Joos, F.; Franke, J.; Brönnimann, S.; Tinner, W. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nat. Geosci. 2017, 10, 207. [Google Scholar] [CrossRef]
- Brayshaw, D.J.; Rambeau, C.M.C.; Smith, S.J. Changes in Mediterranean climate during the Holocene: Insights from global and regional climate modelling. Holocene 2011, 21, 15–31. [Google Scholar] [CrossRef]
- Magny, M.; Vannière, B.; Calo, C.; Millet, L.; Peyron, O.; Zanchetta, G.; La Mantia, T.; Tinner, W. Holocene hydrological changes in south-western Mediterranean as recorded by lake-level fluctuations at Lago Preola, a coastal lake in southern Sicily, Italy. Quat. Sci. Rev. 2011, 30, 2459–2475. [Google Scholar] [CrossRef]
- Jones, S.E.; Burjachs, F.; Ferrer-García, C.; Giralt, S.; Schulte, L.; de Pablo, J.F.-L. A multi-proxy approach to understanding complex responses of salt-lake catchments to climate variability and human pressure: A Late Quaternary case study from south-eastern, Spain. Quat. Sci. Rev. 2018, 184, 201–223. [Google Scholar] [CrossRef]
- Finné, M.; Woodbridge, J.; Labuhn, I.; Roberts, C.N. Holocene hydro-climatic variability in the Mediterranean: A synthetic multi-proxy reconstruction. Holocene 2019, 29, 847–863. [Google Scholar] [CrossRef]
- Benito, G.; Macklin, M.G.; Zielhofer, C.; Jones, A.F.; Machado, M.J. Holocene flooding and climate change in the Mediterranean. Catena 2015, 130, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Vannière, B.; Magny, M.; Joannin, S.; Simonneau, A.; Wirth, S.B.; Hamann, Y.; Chapron, E.; Gilli, A.; Desmet, M.; Anselmetti, F.S. Orbital changes, variation in solar activity and increased anthropogenic activities: Controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy. Clim. Past 2013, 9, 1193–1209. [Google Scholar] [CrossRef]
- Tinner, W.; van Leeuwen, J.F.N.; Colombarioli, D.; Vescovi, E.; van der Knaap, W.O.; Henne, P.D.; Pasta, S.; D’Angelo, S.; La Mantia, T. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat. Sci. Rev. 2009, 28, 1498–1510. [Google Scholar] [CrossRef]
- Coughlan, M.R.; Magi, B.I.; Derr, K.M. A Global Analysis of Hunter-Gatherers, Broadcast Fire Use, and Lightning-Fire-Prone Landscapes. Fire 2018, 1, 41. [Google Scholar] [CrossRef]
- Bird, R.; Bird, D.; Codding, B.; Parker, C.; Jones, J. The ‘Fire Stick Farming’ Hypothesis: Australian Aboriginal Foraging Strategies, Biodiversity, and Anthropogenic Fire Mosaics. Proc. Natl. Acad. Sci. USA 2008, 105, 14796–14801. [Google Scholar] [CrossRef] [PubMed]
- Innes, J.B.; Blackford, J.J.; Rowley-Conwy, P.A. Late Mesolithic and early Neolithic forest disturbance: A high resolution palaeoecological test of human impact hypotheses. Quat. Sci. Rev. 2013, 77, 80–100. [Google Scholar] [CrossRef]
- Joannin, S.; Vannière, B.; Galop, D.; Peyron, O.; Haas, J.N.; Gilli, A.; Chapron, E.; Wirth, S.B.; Anselmetti, F.; Desmet, M.; et al. Climate and vegetation changes during the lateglacial and early-middle holocene at lake ledro (southern alps, Italy). Clim. Past 2013, 9, 913–933. [Google Scholar] [CrossRef]
- Carrión, J.S. Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat. Sci. Rev. 2002, 21, 2047–2066. [Google Scholar] [CrossRef]
- Gil-Romera, G.; Carrión, J.S.; Pausas, J.; Sevilla-Callejo, M.; Lamb, H.F.; Fernández, S.; Burjachs, F. Holocene fire activity and vegetation response in South-Eastern Iberia. Quat. Sci. Rev. 2010, 29, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Carrión, J.S.; Fernández, S.; González-Sampériz, P.; Gil-Romera, G.; Badal, E.; Carrión-Marco, Y.; López-Merino, L.; López-Sáez, J.A.; Fierro, E.; Burjachs, F. Expected trends and surprises in the Lateglacial and Holocene vegetation history of the Iberian Peninsula and Balearic Islands. Rev. Palaeobot. Palynol. 2010, 162, 458–475. [Google Scholar] [CrossRef] [Green Version]
- Williams, M. A New Look at Global Forest Histories of Land Clearing. Annu. Rev. Environ. Resour. 2008, 33, 345–367. [Google Scholar] [CrossRef]
- Iversen, J. Forest Clearance in the Stone Age. Sci. Am. 1956, 194, 36–41. [Google Scholar] [CrossRef]
- Whitlock, C.; Millspaugh, S. Testingtheassumptionsof fire-history studies: An examination of modern charcoal accumulation in Yellowstone National Park, USA. Holocene 1996, 6, 7–15. [Google Scholar] [CrossRef]
- Carrion, J.S.; Dupre, M. Late Quaternary vegetational history at Navarrés, Eastern Spain. A two core approach. New Phytol. 1996, 134, 177–191. [Google Scholar] [CrossRef]
- Connor, S.E.; Vannière, B.; Colombarioli, D.; Anderson, R.S.; Carrión, J.S.; Ejarque, A.; Gil-Romera, G.; Gonzáliz-Sampériz, P.; Hoefer, D.; Morales-Morino, C.; et al. Humans take control of fire-driven diversity changes in Mediterranean Iberia’s vegetation during the mid–late Holocene. Holocene 2019, 29, 886–901. [Google Scholar] [CrossRef]
- Gignoux, C.R.; Henn, B.M.; Mountain, J.L. Rapid, global demographic expansions after the origins of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 6044–6049. [Google Scholar] [CrossRef] [Green Version]
- Shennan, S.; Downey, S.S.; Timpson, A.; Edinborough, K.; Colledge, S.; Kerig, T.; Manning, K.; Thomas, M.G. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 2013, 4, 2486. [Google Scholar] [CrossRef] [Green Version]
- Colombaroli, D.; Vannière, B.; Emmanuel, C.; Magny, M.; Tinner, W. Fire-vegetation interactions during the Mesolithic-Neolithic transition at Lago dell’Accesa, Tuscany, Italy. Holocene 2008, 18, 679–692. [Google Scholar] [CrossRef]
- Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M. Climate versus human-driven fire regimes in Mediterranean landscapes: The Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat. Sci. Rev. 2008, 27, 1181–1196. [Google Scholar] [CrossRef]
- Zeder, M.A. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proc. Natl. Acad. Sci. USA 2008, 105, 11597–11604. [Google Scholar] [CrossRef] [Green Version]
- Jouffroy-Bapicot, I.; Vannière, B.; Gauthier, É.; Richard, H.; Monna, F.; Petit, C. 7000 years of vegetation history and land-use changes in the Morvan Mountains (France): A regional synthesis. Holocene 2013, 23, 1888–1902. [Google Scholar] [CrossRef] [Green Version]
- Cyprien, A.L.; Carcaud, N.; Visset, L. Etude paléoenvironnementale du Marais de Distré (Saumurois): Géoarchéologie d’une zone humide depuis le Préboréal/Paleoenvironmental study of the marshland m Distré (Saumurois, France); geoarcheohgy of a humid zone since the preboreal period. Quaternaire 2001, 12, 89–101. [Google Scholar] [CrossRef]
- Roos-Barraclough, F.; van der Knaap, W.O.; van Leeuwen, J.F.N.; Shotyk, W. A Late-glacial and Holocene record of climatic change from a Swiss peat humification profile. Holocene 2004, 14, 7–19. [Google Scholar] [CrossRef]
- Magny, M.; Comborieu-Nebout, N.; de Beaulieu, J.L.; Bout-Roumazeilles, V.; Colombarioli, D.; Desprat, S.; Francke, A.; Joannin, S.; Ortu, E.; Peyron, O.; et al. North-south palaeohydrological contrasts in the central mediterranean during the holocene: Tentative synthesis and working hypotheses. Clim. Past 2013, 9, 2043–2071. [Google Scholar] [CrossRef]
- Palmisano, A.; Bevan, A.; Shennan, S. Regional Demographic Trends and Settlement Patterns in Central Italy: Archaeological Sites and Radiocarbon Dates. J. Open Archaeol. Data 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Mighall, T.; Timberlake, S.; Martínez-Cortizas, A.; Silva-Sánchez, N.; Foster, I. Did prehistoric and Roman mining and metallurgy have a significant impact on vegetation? J. Archaeol. Sci. 2017, 11, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Brown, T. Tony Brown Clearances and Clearings: Deforestation in Mesolithic/Neolithic Britain. Oxf. J. Archaeol. 1997, 16, 133–146. [Google Scholar] [CrossRef]
- Andrič, M. Holocene vegetation development in Bela krajina (Slovenia) and the impact of first farmers on the landscape. Holocene 2007, 17, 763–776. [Google Scholar] [CrossRef]
- Valsecchi, V.; Finsinger, W.; Tinner, W.; Ammann, B. Testing the influence of climate, human impact and fire on the Holocene population expansion of Fagus sylvatica in the southern Prealps (Italy). Holocene 2008, 18, 603–614. [Google Scholar] [CrossRef]
- Butzer, K.W. Environmental history in the Mediterranean world: Cross-disciplinary investigation of cause-and-effect for degradation and soil erosion. J. Archaeol. Sci. 2005, 32, 1773–1880. [Google Scholar] [CrossRef]
- Chavarría, A.; Lewit, T.; Izdebski, A. Settlement, Land Use and Society in the Late Antique Mediterranean, 4th–7th c. An Overview. Late Antique Archaeol. 2018, 12, 132–147. [Google Scholar] [CrossRef]
- Malthus, T. An Essay on the Principle of Population; Oxford World’s Classics: Oxford, UK, 1798. [Google Scholar]
- Boserup, E. The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure; Allen & Unwin: London, UK, 1965. [Google Scholar]
- Carrión, J.S.; van Geel, B. Fine-resolution Upper Weichselian and Holocene palynological record from Navarres (Valencia, Spain) and a discussion about factors of Mediterranean forest succession. Rev. Palaeobot. Palynol. 1999, 106, 209–236. [Google Scholar] [CrossRef]
- Goñi, M.F.S.; Eynaud, F.; Turon, J.L.; Shackleton, N.J. High resolution palynological record off the Iberian margin: Direct land-sea correlation for the Last Interglacial complex. Earth Planet. Sci. Lett. 1999, 171, 123–137. [Google Scholar] [CrossRef]
- Stevenson, A.C. The Holocene forest history of the Montes Universales, Teruel, Spain. Holocene 2000, 10, 603–610. [Google Scholar] [CrossRef]
- Davis, B.A.S.; Stevenson, A.C. The 8.2 ka event and Early-Mid Holocene forests, fires and flooding in the Central Ebro Desert, NE Spain. Quat. Sci. Rev. 2007, 26, 1695–1712. [Google Scholar] [CrossRef]
- Finsinger, W.; Tinner, W. Pollen and plant macrofossils at Lac de Fully (2135 m a.s.l.): Holocene forest dynamics on a highland plateau in the Valais, Switzerland. Holocene 2007, 17, 1119–1127. [Google Scholar] [CrossRef]
- Joannin, S.; Brugiapaglia, E.; de Beaulieu, J.-L.; Magni, M.; Peyron, O.; Vannière, B. Pollen-based reconstruction of Holocene vegetation and climate in southern Italy: The case of Lago Trifoglietti. Clim. Past 2012, 8, 1973–1996. [Google Scholar] [CrossRef]
- Nicol-Pichard, S.; Dubar, M. Reconstruction of Late-glacial and Holocene environments in south-east France based on the study of a 66-m long core from Biot, Alpes Maritimes. Veg. Hist. Archaeobot. 1998, 7, 11–15. [Google Scholar] [CrossRef]
- Lotter, A.F.; Heiri, O.; Hofmann, W.; van der Knaap, W.O.; van Leeuwen, J.F.N.; Walker, I.R.; Wick, L. Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veg. Hist. Archaeobot. 2006, 15, 295–307. [Google Scholar] [CrossRef]
- Tinner, W.; Kaltenrieder, P. Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J. Ecol. 2005, 93, 936–947. [Google Scholar] [CrossRef]
- Stähli, M.; Finsinger, W.; Tinner, W.; Allgöwer, B. Wildfire history and fire ecology of the Swiss National Park (Central Alps): New evidence from charcoal, pollen and plant macrofossils. Holocene 2006, 16, 805–817. [Google Scholar] [CrossRef]
- Colombaroli, D.; Marchetto, A.; Tinner, W. Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J. Ecol. 2007, 95, 755–770. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Jiménez-Espejo, F.J.; Simón Vallejo, M.D.; Gibaja Bao, J.F.; Carvalho, A.F.; Martínez-Ruiz, F.; Rodrigo Gamiz, M.; Flores, J.-A.; Paytan, A.; López Sáez, J.A.; et al. The Mesolithic-Neolithic transition in southern Iberia. Quat. Res. 2012, 77, 221–234. [Google Scholar] [CrossRef]
- Martrat, B.; Grimalt, J.; Shackleton, N.; de Abreu, L.; Hutterli, M.; Stocker, T. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 2007, 317, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Díaz, S.; López-Sáez, J.A.; Pontevedra-Pombal, X.; Souto-Souto, M.; Galop, D. 8000 years of vegetation history in the northern Iberian Peninsula inferred from the palaeoenvironmental study of the Zalama ombrotrophic bog (Basque-Cantabrian Mountains, Spain). Boreas 2016, 45, 658–672. [Google Scholar] [CrossRef] [Green Version]
- Ibáñez, B.; Gómez-Aparicio, L.; Stoll, P.; Ávila, J.M.; Pérez-Ramos, I.M.; Marañón, T. A Neighborhood Analysis of the Consequences of Quercus suber Decline for Regeneration Dynamics in Mediterranean Forests. PLoS ONE 2015, 10, e0117827. [Google Scholar] [CrossRef]
- Noël, H.; Garbolino, E.; Brauer, A.; Lallier-Vergès, E.; de Beaulieu, J.L.; Disnar, J.R. Human impact and soil erosion during the last 5000 yrs as recorded in lacustrine sedimentary organic matter at Lac d’Annecy, the French Alps. J. Paleolimnol. 2001, 25, 229–244. [Google Scholar] [CrossRef]
- Carrión, J.S.; Sánchez-Gómez, P.; Mota, J.F.; Yll, R.; Chaín, C. Holocene vegetation dynamics, fire and grazing in the Sierra de Gádor, southern Spain. Holocene 2003, 13, 839–849. [Google Scholar] [CrossRef]
- Noti, R.; van Leeuwen, J.F.N.; Colombarioli, D.; Vescovi, E.; Pasta, S.; La Mantia, T.; Tinner, W. Mid- and late-holocene vegetation and fire history at Biviere di Gela, a coastal lake in southern Sicily, Italy. Veg. Hist. Archaeobot. 2009, 18, 371–387. [Google Scholar] [CrossRef]
- Sadori, L.; Jahns, S.; Peyron, O. Mid-Holocene vegetation history of the central Mediterranean. Holocene 2011, 21, 117–129. [Google Scholar] [CrossRef]
- Calò, C.; Henne, P.D.; Curry, B.; Magny, M.; Vescovi, E.; La Mantia, T.; Pasta, S.; Vanniére, B.; Tinner, W. Spatio-temporal patterns of Holocene environmental change in southern Sicily. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 323, 110–122. [Google Scholar] [CrossRef]
- Jiménez-Moreno, G.; García-Alix, A.; Hernández-Corbalán, M.D.; Anderson, R.S.; Delgado-Huertas, A. Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene. Quat. Res. 2013, 79, 110–122. [Google Scholar] [CrossRef]
- Ramos-Román, M.J.; Jiménez-Moreno, G.; Camuera, J.; García-Alix, A.; Anderson, R.S.; Jiménez-Espejo, F.J.; Carrión, J.S. Holocene climate aridification trend and human impact interrupted by millennial- and centennial-scale climate fluctuations from a new sedimentary record from Padul (Sierra Nevada, southern Iberian Peninsula). Clim. Past 2018, 14, 117–137. [Google Scholar] [CrossRef] [Green Version]
- Kaal, J.; Carrión Marco, Y.; Asouti, E.; Seijo, M.M.; Martínez Cortizas, A.; Costa Casáis, M.; Criado Boado, F. Long-term deforestation in NW Spain: Linking the Holocene fire history to vegetation change and human activities. Quat. Sci. Rev. 2011, 30, 161–175. [Google Scholar] [CrossRef]
- Simonneau, A.; Doyen, E.; Chapron, E.; Millet, L.; Vannière, B.; Di Giovani, C.; Bossard, N.; Tachikawa, K.; Bard, E.; Albéric, P.; et al. Holocene land-use evolution and associated soil erosion in the French Prealps inferred from Lake Paladru sediments and archaeological evidences. J. Archaeol. Sci. 2013, 40, 1636–1645. [Google Scholar] [CrossRef] [Green Version]
- Watts, W.A.; Allen, J.R.M.; Huntley, B.; Fritz, S.C. Vegetation history and climate of the last 15,000 years at Laghi di Monticchio, southern Italy. Quat. Sci. Rev. 1996, 15, 113–132. [Google Scholar] [CrossRef]
- Dapples, F.; Lotter, A.F.; van Leeuwen, J.F.N.; van der Knaap, W.O.; Dimitriadis, S.; Oswald, D. Paleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal bp in the western Swiss Alps. J. Paleolimnol. 2002, 27, 239–248. [Google Scholar] [CrossRef]
- Franco-Múgica, F.; García-Antón, M.; Maldonado-Ruiz, J.; Morla-Juaristi, C.; Sainz-Ollero, H. Ancient pine forest on inland dunes in the Spanish northern meseta. Quat. Res. 2005, 63, 1–14. [Google Scholar] [CrossRef]
Model | Family | Dev. Expl. * | δ AIC |
---|---|---|---|
Western Mediterranean and Adjacent Atlantic Regions | |||
Cht = α + f(Timei)+ Sitei+ εi | Gaussian | 66.4% | 101 |
Wt = α + f(Timei)+ Sitei+ log(Terrestrial pollen sum−1)i + εi | Neg. binom. | 39.8% | 7001 |
AIt = α + f(Timei)+ Sitei+ εi | Gaussian | 58.8% | 1779 |
Temperate Western Europe | |||
Cht = α + f(Timei)+ Sitei+ εi | Gaussian | 36.9% | 3 |
Wt = α + f(Timei)+ Sitei+ log(Terrestrial pollen sum−1)i + εi | Quasipoisson | 81.2% | NA |
AIt = α + f(Timei)+ Sitei+ εi | Gaussian | 59.8% | 1914 |
Alpine subregion | |||
Cht = α + f(Timei)+ Sitei+ εi | Gaussian | 42.5% | 36 |
Wt = α + f(Timei)+ Sitei+ log(Terrestrial pollen sum−1)i + εi | Poisson | 82.9% | 13,381 |
AIt = α + f(Timei)+ Sitei+ εi | Gaussian | 59.7% | 999 |
Northern Mediterranean | |||
Cht = α + f(Timei)+ Sitei+ εi | Gaussian | 47.1% | 55 |
Wt = α + f(Timei)+ Sitei+ log(Terrestrial pollen sum−1)i + εi | Quasipoisson | 78.3% | NA |
AIt = α + f(Timei)+ Sitei+ εi | Gaussian | 45.0% | 775 |
Southern Mediterranean | |||
Cht = α + f(Timei)+ Sitei+ εi | Gaussian | 53.1% | 60 |
Wt = α + f(Timei)+ Sitei+ log(Terrestrial pollen sum−1)i + εi | Poisson | 52.0% | 35,171 |
AIt = α + f(Timei)+ Sitei+ εi | Gaussian | 40.8% | 96 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias, V.; Vannière, B.; Jouffroy-Bapicot, I. Emergence and Evolution of Anthropogenic Landscapes in the Western Mediterranean and Adjacent Atlantic Regions. Fire 2019, 2, 53. https://doi.org/10.3390/fire2040053
Iglesias V, Vannière B, Jouffroy-Bapicot I. Emergence and Evolution of Anthropogenic Landscapes in the Western Mediterranean and Adjacent Atlantic Regions. Fire. 2019; 2(4):53. https://doi.org/10.3390/fire2040053
Chicago/Turabian StyleIglesias, Virginia, Boris Vannière, and Isabelle Jouffroy-Bapicot. 2019. "Emergence and Evolution of Anthropogenic Landscapes in the Western Mediterranean and Adjacent Atlantic Regions" Fire 2, no. 4: 53. https://doi.org/10.3390/fire2040053
APA StyleIglesias, V., Vannière, B., & Jouffroy-Bapicot, I. (2019). Emergence and Evolution of Anthropogenic Landscapes in the Western Mediterranean and Adjacent Atlantic Regions. Fire, 2(4), 53. https://doi.org/10.3390/fire2040053