Pine Species That Support Crown Fire Regimes Have Lower Leaf-Level Terpene Contents Than Those Native to Surface Fire Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Pine Species
2.2. Terpene Analysis
2.3. Leaf-Level Flammability Measurements
2.4. Branch and Needle Fuel Bed Larger-Scale Flammability Measurements
2.5. Statistical Analyses
3. Results
3.1. Terpene Content of Pine Species from Different Fire Regimes
3.2. Leaf-Level Flammability Measurements
3.3. Correlations between Leaf-Level Flammability and Terpene Content
3.4. Shoot and Litter Level Flammability Measurements
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Schwilk, D.W. Flammability is a niche construction trait: Canopy architecture affects fire intensity. Am. Nat. 2003, 162, 725–733. [Google Scholar] [CrossRef]
- Rundel, P.W. Structural and Chemical Components of Flammability. In Fire Regimes and Ecosystem Properties: Proceedings of the Conference; Mooney, H.A., Bonnicksen, T.M., Christensen, N.I., Lotan, J.F., Reiners, W.A., Eds.; USDA Forest Service: Washington, DC, USA, 1981; pp. 183–207. [Google Scholar]
- Papió, C.; Trabaud, L. Comparative study of the aerial structure of five shrubs of Mediterranean shrublands. For. Sci. 1991, 37, 146–159. [Google Scholar]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Segarra-Moragues, J.G. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 2016, 180, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Romero, B.; Fernandez, C.; Lecareux, C.; Ormeño, E.; Ganteaume, A. How terpene content affects fuel flammability of wildland-urban interface vegetation. Int. J. Wildland Fire 2019, 28, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Ormeño, E.; Céspedes, B.; Sánchez, I.A.; Velasco-García, A.; Moreno, J.M.; Fernandez, C.; Baldy, V. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 2009, 257, 471–482. [Google Scholar] [CrossRef]
- De Lillis, M.; Bianco, P.M.; Loreto, F. The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species. Int. J. Wildland Fire 2009, 18, 203–212. [Google Scholar] [CrossRef]
- Della Rocca, G.; Madrigal, J.; Marchi, E.; Michelozzi, M.; Moya, B.; Danti, R. Relevance of terpenoids on flammability of Mediterranean species: An experimental approach at a low radiant heat flux. iForest Biogeosci. For. 2017, 10, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E. Ecology and evolution of pine life histories. Ann. For. Sci. 2012, 69, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Burger, N.; Bond, W.J. Flammability traits of Cape shrubland species with different post-fire recruitment strategies. S. Afr. J. Bot. 2015, 101, 40–48. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an ecological and evolutionary driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- Pausas, J.G. Evolutionary fire ecology: Lessons learned from pines. Trends Plant Sci. 2015, 20, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E. The flammability of forest and woodland litter: A synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Santoni, P.A.; Bartoli, P.; Simeoni, A.; Torero, J.L. Bulk and particle properties of pine needle fuel beds—Influence on combustion. Int. J. Wildland Fire 2014, 23, 1076–1086. [Google Scholar] [CrossRef]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Fischer, N.H.; Williamson, G.B.; Weidenhamer, J.D.; Richardson, D.R. In search of allelopathy in the Florida scrub: The role of terpenoids. J. Chem. Ecol. 1994, 20, 1355–1380. [Google Scholar] [CrossRef]
- White, C.S. Monoterpenes: Their effects on ecosystem nutrient cycling. J. Chem. Ecol. 1994, 20, 1381–1406. [Google Scholar] [CrossRef]
- Pausas, J.G.; Moreira, B. Flammability as a biological concept. New Phytol. 2012, 194, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Moreira, B.; Castellanos, M.C.; Pausas, J.G. Genetic component of flammability variation in a Mediterranean shrub. Mol. Ecol. 2014, 23, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Corcobado, G. Fires enhance flammability in Ulex parviflorus. New Phytol. 2012, 193, 18–23. [Google Scholar] [CrossRef] [Green Version]
- López-Goldar, X.; Villari, C.; Bonello, P.; Borg-Karlson, A.K.; Grivet, D.; Sampedro, L.; Zas, R. Genetic variation in the constitutive defensive metabolome and its inducibility are geographically structured and largely determined by demographic processes in maritime pine. J. Ecol. 2019, 107, 2464–2477. [Google Scholar] [CrossRef] [Green Version]
- Valor, T.; Ormeño, E.; Casals, P. Temporal effects of prescribed burning on terpene production in Mediterranean pines. Tree Physiol. 2017, 37, 1622–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, T.; Pausas, J.G.; Belcher, C.M.; Schwilk, D.W.; Lamont, B.B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 2012, 194, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Cornwell, W.K.; Elvira, A.; van Kempen, L.; van Logtestijn, R.S.P.; Aptroot, A.; Cornelissen, J.H.C. Flammability across the gymnosperm phylogeny: The importance of litter particle size. New Phytol. 2015, 206, 672–681. [Google Scholar] [CrossRef]
- Hummel, J.; Selbig, J.; Walther, D.; Kopka, J. The Golm Metabolome Database: A database for GC-MS based metabolite profiling. In Metabolomics; Nielsen, J., Jewett, M.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 18, pp. 75–95. [Google Scholar]
- Lyon, R.E.; Walters, R. A Microscale Combustion Calorimeter; Federal Aviation Administration William, J. Hughes Technical Centre, US Department of Transport: Washington, DC, USA, 2002.
- Belcher, C.M. The influence of leaf morphology on litter flammability and its utility for interpreting palaeofire. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150163. [Google Scholar] [CrossRef] [Green Version]
- Belcher, C.M.; Hudspith, V.A. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms. New Phytol. 2017, 213, 1521–1532. [Google Scholar] [CrossRef] [Green Version]
- Tewarson, A. Generation of Heat and Chemical Compounds in Fires. In SFPE Handbook of Fire Protection Engineering; National Fire Protection Association, Inc.: One Batterymarch Park, Quincy, MA, USA, 2002. [Google Scholar]
- Alessio, G.A.; Peñuelas, J.; De Lillis, M.; Llusià, J. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biol. 2008, 10, 123–128. [Google Scholar] [CrossRef]
- Cui, X.; Paterson, A.M.; Wyse, S.V.; Alam, M.A.; Maurin, K.J.L.; Pieper, R.; Padullés Cubino, J.; O’Connell, D.M.; Donkers, D.; Bréda, J.; et al. Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nat. Plants 2020, 6, 355–359. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, J.J. Kill thy neighbour: An individualistic argument for the evolution of flammability. Oikos 1995, 73, 79–85. [Google Scholar] [CrossRef]
- Gagnon, P.R.; Passmore, H.A.; Platt, W.J.; Myers, J.A.; Paine, C.E.T.; Harms, K.E. Does pyrogenicity protect burning plants? Ecology 2010, 91, 3481–3486. [Google Scholar] [CrossRef]
- Schwilk, D.W.; Ackerly, D.D. Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 2001, 94, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Van Mantgem, P.; Schwartz, M. Bark heat resistance of small trees in Californian mixed conifer forests: Testing some model assumptions. For. Ecol. Manag. 2003, 178, 341–352. [Google Scholar] [CrossRef]
- Fonda, R.W.; Belanger, L.A.; Burley, L.L. Burning characteristics of western conifer needles. Northwest Sci. 1998, 72, 1–9. [Google Scholar]
- de Magalhães, R.M.Q.; Schwilk, D.W. Leaf traits and litter flammability: Evidence for non-additive mixture effects in a temperate forest. J. Ecol. 2012, 100, 1153–1163. [Google Scholar] [CrossRef]
- Schwilk, D.W.; Kerr, B. Genetic niche-hiking: An alternative explanation for the evolution of flammability. Oikos 2002, 99, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Varner, M.J.; Gordon, D.R.; Putz, F.E.; Hiers, J.K. Restoring fire to long-unburned Pinus palustris ecosystems: Novel fire effects and consequences for long-unburned ecosystems. Restor. Ecol. 2005, 13, 536–544. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Johnson, E.A. How forest fires kill trees: A review of the fundamental biophysical processes. Scand. J. For. Res. 2007, 22, 500–515. [Google Scholar] [CrossRef]
- Hille, M.; den Ouden, J. Improved recruitment and early growth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification. Eur. J. For. Res. 2004, 123, 213–218. [Google Scholar] [CrossRef]
- Alessio, G.A.; Peñuelas, J.; Llusià, J.; Ogaya, R.; Estiarte, M.; De Lillis, M. Influence of water and terpenes on flammability in some dominant Mediterranean species. Int. J. Wildland Fire 2008, 17, 274–286. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Cruz, M.G. Plant flammability experiments offer limited insight into vegetation-fire dynamics interactions. New Phytol. 2012, 194, 606–609. [Google Scholar] [CrossRef]
- Ganteaume, A. Does plant flammability differ between leaf and litter bed scale? Role of fuel characteristics and consequences for flammability assessment. Int. J. Wildland Fire 2018, 27, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Wyse, S.V.; Buckley, H.L.; Perry, G.L.W.; Sullivan, J.J.; Mason, N.W.H.; Buxton, R.; Richardson, S.J.; Curran, T.J. Shoot flammability is decoupled from leaf flammability, but controlled by leaf functional traits. J. Ecol. 2020, 108, 641–653. [Google Scholar] [CrossRef]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C. Scaling up flammability from individual leaves to fuel beds. Oikos 2017, 126, 1428–1438. [Google Scholar] [CrossRef]
Species | Fire Regime | Subgenera | Serotiny | Branch Retention | Resprouting Ability | Native Fire Season |
---|---|---|---|---|---|---|
P. banksiana | Crown | Pinus | Yes | Yes | No | Summer |
P. densiflora | None | Pinus | No | Yes | No | N/A |
P. engelmannii | Surface | Pinus | No | No | No | Spring |
P. flexilis | None | Strobus | No | No | No | N/A |
P. greggii | Crown | Pinus | Yes | Yes | No | Spring |
P. monticola | None | Strobus | No | No | No | N/A |
P. muricata | Crown | Pinus | Yes | Yes | No | Autumn |
P. nigra | Surface | Pinus | No | Yes | No | Summer |
P. patula | Crown | Pinus | Yes | Yes | Yes | Spring |
P. radiata | Crown | Pinus | Yes | Yes | No | Autumn |
P. strobus | Surface | Strobus | No | No | No | Summer |
P. sylvestris | Surface | Pinus | No | No | No | Spring/summer |
P. wallichiana | Surface | Strobus | No | Yes | No | Spring |
Monoterpenes | Sesquiterpenes | Diterpenes | Total Terpenes | HRC | pHRR | THR | Temp Max | |
---|---|---|---|---|---|---|---|---|
Monoterpenes | 1 | |||||||
Sesquiterpenes | 0.613 ** | 1 | ||||||
Diterpenes | 0.518 ** | 0.574 ** | 1 | |||||
Total terpenes | 0.840 ** | 0.897 ** | 0.788 ** | 1 | ||||
HRC | 0.089 | 0.187 * | 0.141 | 0.168 | 1 | |||
pHRR | 0.143 | 0.233 * | 0.202 * | 0.230 * | 0.982 ** | 1 | ||
THR | 0.129 | 0.163 | 0.178 | 0.184 * | 0.927 ** | 0.915 ** | 1 | |
Temp max | 0.165 | 0.146 | 0.134 | 0.175 | −0.056 | −0.037 | −0.033 | 1 |
Monoterpenes | Sesquiterpenes | Diterpenes | Total Terpenes | HRC | pHRR | THR | Temp Max | |
---|---|---|---|---|---|---|---|---|
Monoterpenes | 1 | |||||||
Sesquiterpenes | 0.655 ** | 1 | ||||||
Diterpenes | 0.652 ** | 0.692 ** | 1 | |||||
Total terpenes | 0.886 ** | 0.913 ** | 0.831 ** | 1 | ||||
HRC | 0.295 ** | 0.391 ** | 0.084 | 0.333 ** | 1 | |||
pHRR | 0.320 ** | 0.459 ** | 0.208 * | 0.403 ** | 0.750 ** | 1 | ||
THR | 0.241 ** | 0.449 ** | 0.207 * | 0.364 ** | 0.576 ** | 0.803 ** | 1 | |
Temp max | 0.048 | 0.098 | 0.073 | 0.084 | 0.097 | 0.447 ** | 0.376 ** | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewhirst, R.A.; Smirnoff, N.; Belcher, C.M. Pine Species That Support Crown Fire Regimes Have Lower Leaf-Level Terpene Contents Than Those Native to Surface Fire Regimes. Fire 2020, 3, 17. https://doi.org/10.3390/fire3020017
Dewhirst RA, Smirnoff N, Belcher CM. Pine Species That Support Crown Fire Regimes Have Lower Leaf-Level Terpene Contents Than Those Native to Surface Fire Regimes. Fire. 2020; 3(2):17. https://doi.org/10.3390/fire3020017
Chicago/Turabian StyleDewhirst, Rebecca A, Nicholas Smirnoff, and Claire M Belcher. 2020. "Pine Species That Support Crown Fire Regimes Have Lower Leaf-Level Terpene Contents Than Those Native to Surface Fire Regimes" Fire 3, no. 2: 17. https://doi.org/10.3390/fire3020017
APA StyleDewhirst, R. A., Smirnoff, N., & Belcher, C. M. (2020). Pine Species That Support Crown Fire Regimes Have Lower Leaf-Level Terpene Contents Than Those Native to Surface Fire Regimes. Fire, 3(2), 17. https://doi.org/10.3390/fire3020017