Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments
Abstract
:1. Introduction
2. Methods
2.1. Site Selection
2.2. Research Design
2.3. Canopy Gap Fraction
2.4. Smouldering Potential
2.5. Statistical Analyses
3. Results
3.1. Vegetation
3.2. Volumetric Water Content
3.3. Peat Properties
3.4. Smouldering Potential
4. Discussion
Wildfire Management Applications
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- National Working Wetlands Group. The Canadian Wetland Classification System, 2nd ed.; Environment Canada: Ottawa, ON, Canada, 1997; p. 68.
- Vitt, D.H.; Halsey, L.A.; Bauer, I.E.; Campbell, C. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Can. J. Earth Sci. 2000, 37, 683–693. [Google Scholar] [CrossRef]
- Benscoter, B.; Wieder, R.K. Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. Can. J. For. Res. 2003, 33, 2509–2513. [Google Scholar] [CrossRef]
- Ingram, R.; Moore, P.; Wilkinson, S.L.; Petrone, R.; Waddington, J.M. Postfire Soil Carbon Accumulation Does Not Recover Boreal Peatland Combustion Loss in Some Hydrogeological Settings. J. Geophys. Res. Biogeosci. 2019, 124, 775–788. [Google Scholar] [CrossRef]
- Wieder, R.K.; Scott, K.D.; Kamminga, K.; Vile, M.A.; Vitt, D.H.; Bone, T.; Xu, B.; Benscoter, B.; Bhatti, J.S. Postfire carbon balance in boreal bogs of Alberta, Canada. Glob. Chang. Biol. 2009, 15, 63–81. [Google Scholar] [CrossRef]
- Thompson, D.K.; Parisien, M.-A.; Morin, J.; Millard, K.; Larsen, C.; Simpson, B. Fuel accumulation in a high-frequency boreal wildfire regime: From wetland to upland. Can. J. For. Res. 2017, 47, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.K.; Simpson, B.N.; Whitman, E.; Barber, Q.E.; Parisien, M.-A. Peatland Hydrological Dynamics as A Driver of Landscape Connectivity and Fire Activity in the Boreal Plain of Canada. Forests 2019, 10, 534. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.L.; Moore, P.A.; Flannigan, M.D.; Wotton, B.M.; Waddington, J.M. Did enhanced afforestation cause high severity peat burn in the Fort McMurray Horse River wildfire? Env. Res. Lett. 2018, 13, 014018. [Google Scholar] [CrossRef]
- Benscoter, B.; Thompson, D.K.; Waddington, J.M.; Flannigan, M.; Wotton, B.M.; De Groot, W.J.; Turetsky, M.R. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils. Int. J. Wildland Fire 2011, 20, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Lukenbach, M.C.; Hokanson, K.; Moore, P.A.; DeVito, K.; Kettridge, N.; Thompson, D.K.; Wotton, B.M.; Petrone, R.; Waddington, J.M. Hydrological controls on deep burning in a northern forested peatland. Hydrol. Process. 2015, 29, 4114–4124. [Google Scholar] [CrossRef]
- Shaposhnikov, D.; Revich, B.; Bellander, T.; Bedada, G.B.; Bottai, M.; Kharkova, T.; Kvasha, E.; Lezina, E.; Lind, T.; Semutnikova, E.; et al. Mortality Related to Air Pollution with the Moscow Heat Wave and Wildfire of 2010. Epidemiology 2014, 25, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, H.; Noguchi, I.; Putra, E.I.; Yulianti, N.; Vadrevu, K. Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ. Pollut. 2014, 195, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Turetsky, M.R.; Harden, J.; Friedli, H.R.; Flannigan, M.; Payne, N.; Crock, J.; Radke, L.; Flannigan, M. Wildfires threaten mercury stocks in northern soils. Geophys. Res. Lett. 2006, 33, 16. [Google Scholar] [CrossRef] [Green Version]
- Tarnocai, C.; Kettles, I.M.; Lacelle, B. Peatlands of Canada. Available online: https://doi.org/10.4095/288786 (accessed on 20 March 2020).
- Mooney, C. Fuelbreak Effectiveness in Canada’s Boreal Forests: A Synthesis of Current Knowledge; FPInnovations: Kitchner, ON, Canada, 2010; p. 16. [Google Scholar]
- Hvenegaard, S.; Schroeder, D.; Thompson, D. Fire Behaviour in Black Spruce Forest Fuels Following Mulch Fuel Treatments: A Case Study at Red Earth Creek, Alberta; FPInnovations: Edmonton, AB, Canada, 2016. [Google Scholar]
- Wilkinson, S.; Moore, P.; Thompson, D.K.; Wotton, B.M.; Hvenegaard, S.; Schroeder, D.; Waddington, J.M. The effects of black spruce fuel management on surface fuel condition and peat burn severity in an experimental fire. Can. J. For. Res. 2018, 48, 1433–1440. [Google Scholar] [CrossRef]
- Dabros, A.; Pyper, M.; Castilla, G. Seismic lines in the boreal and arctic ecosystems of North America: Environmental impacts, challenges, and opportunities. Environ. Rev. 2018, 26, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Riva, F.; Pinzon, J.; Acorn, J.H.; Nielsen, S.E. Composite Effects of Cutlines and Wildfire Result in Fire Refuges for Plants and Butterflies in Boreal Treed Peatlands. Ecosystems 2019, 23, 485–497. [Google Scholar] [CrossRef]
- Partners in Protection. FireSmart: Protecting Your Community from Wildfire, 2nd ed.; Maryhelen Vicars: Edmonton, AB, Canada, 2003; p. 183. [Google Scholar]
- Rein, G.; Cleaver, N.; Ashton, C.; Pironi, P.; Torero, J. The severity of smouldering peat fires and damage to the forest soil. Catena 2008, 74, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Frandsen, W.H. The influence of moisture and mineral soil on the combustion limits of smoldering forest duff. Can. J. For. Res. 1987, 17, 1540–1544. [Google Scholar] [CrossRef]
- Miyanishi, K.; Johnson, E.A. Process and patterns of duff consumption in the mixedwood boreal forest. Can. J. For. Res. 2002, 32, 1285–1295. [Google Scholar] [CrossRef]
- McCarter, C.; Price, J.S. Ecohydrology of Sphagnum moss hummocks: Mechanisms of capitula water supply and simulated effects of evaporation. Ecohydrology 2012, 7, 33–44. [Google Scholar] [CrossRef]
- Shetler, G.; Turetsky, M.R.; Kane, E.; Kasischke, E. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can. J. For. Res. 2008, 38, 2328–2336. [Google Scholar] [CrossRef] [Green Version]
- Busby, J.R.; Bliss, L.C.; Hamilton, C.D. Microclimate Control of Growth Rates and Habitats of the Boreal Forest Mosses, Tomenthypnum nitens and Hylocomium splendens. Ecol. Monogr. 1978, 48, 95–110. [Google Scholar] [CrossRef]
- Thompson, D.K.; Wotton, B.M.; Waddington, J.M. Estimating the heat transfer to an organic soil surface during crown fire. Int. J. Wildland Fire 2015, 24, 120–129. [Google Scholar] [CrossRef]
- Boelter, D.H. Physical Properties of Peats as Related to Degree of Decomposition. Soil Sci. Soc. Am. J. 1969, 33, 606–609. [Google Scholar] [CrossRef]
- Thompson, D.K.; Waddington, J.M. Peat properties and water retention in boreal forested peatlands subject to wildfire. Water Resour. Res. 2013, 49, 3651–3658. [Google Scholar] [CrossRef]
- Moore, P.; Morris, P.J.; Waddington, J.M. Multi-decadal water table manipulation alters peatland hydraulic structure and moisture retention. Hydrol. Process. 2015, 29, 2970–2982. [Google Scholar] [CrossRef]
- Timoney, K.; Lee, P. Environmental management in resource-rich Alberta, Canada: First world jurisdiction, third world analogue? J. Environ. Manag. 2001, 63, 387–405. [Google Scholar] [CrossRef]
- Strack, M.; Hayne, S.; Lovitt, J.; McDermid, G.J.; Rahman, M.M.; Saraswati, S.; Xu, B. Petroleum exploration increases methane emissions from northern peatlands. Nat. Commun. 2019, 10, 2804. [Google Scholar] [CrossRef] [Green Version]
- McLoughlin, P.D.; Dzus, E.; Wynes, B.; Boutin, S. Declines in Populations of Woodland Caribou. J. Wildl. Manag. 2003, 67, 755. [Google Scholar] [CrossRef]
- Lee, P.; Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manag. 2006, 78, 240–250. [Google Scholar] [CrossRef]
- Lovitt, J.; Rahman, M.M.; Saraswati, S.; McDermid, G.J.; Strack, M.; Xu, B. UAV Remote Sensing Can Reveal the Effects of Low-Impact Seismic Lines on Surface Morphology, Hydrology, and Methane (CH4) Release in a Boreal Treed Bog. J. Geophys. Res. Biogeosci. 2018, 123, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Golubev, V.; Whittington, P. Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss. J. Hydrol. 2018, 559, 884–894. [Google Scholar] [CrossRef]
- Startsev, A.D.; McNabb, D. Effects of compaction on aeration and morphology of boreal forest soils in Alberta, Canada. Can. J. Soil Sci. 2009, 89, 45–56. [Google Scholar] [CrossRef]
- Johnston, D.; Turetsky, M.R.; Benscoter, B.; Wotton, B. Fuel load, structure, and potential fire behaviour in black spruce bogs. Can. J. For. Res. 2015, 45, 888–899. [Google Scholar] [CrossRef]
- Bayne, E.; Landau, H.; Tigner, J. Ecologically-Based Criteria to Assess the Impact and Recovery of Seismic Lines: The Importance of Width, Regeneration and Seismic Line Density; Environmental Studies Research Funds: Edmonton, AB, Canada, 2011. [Google Scholar]
- Revel, R.D.; Dougherty, T.D.; Downing, D.J. Forest Growth and Revegetation along Seismic Lines; U.S. Dept. of Energy: Oak Ridge, TN, USA, 1984.
- Bisbee, K.E.; Gower, S.T.; Norman, J.M.; Nordheim, E.V. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 2001, 129, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Nimmo, V.; Wu, J.; Thomas, R. Sphagnum outcompetes feathermosses in their photosynthetic adaptation to postharvest black spruce forests. Botany 2019, 97, 585–597. [Google Scholar] [CrossRef]
- Mayner, K.M.; Moore, P.; Wilkinson, S.L.; Petrone, R.; Waddington, J.M. Delineating boreal plains bog margin ecotones across hydrogeological settings for wildfire risk management. Wetl. Ecol. Manag. 2018, 26, 1037–1046. [Google Scholar] [CrossRef]
- Benscoter, B.; Vitt, D.H. Spatial Patterns and Temporal Trajectories of the Bog Ground Layer Along a Post-Fire Chronosequence. Ecosystems 2008, 11, 1054–1064. [Google Scholar] [CrossRef]
- Alberta Environment and Parks. Air Photo Distribution Centre. Minister of Environment and Parks, Government of Alberta, Canada. 2016. Available online: http://aep.alberta.ca/forms-maps-services/air-photos/default.aspx (accessed on 10 April 2016).
- Hylander, K. Aspect modifies the magnitude of edge effects on bryophyte growth in boreal forests. J. Appl. Ecol. 2005, 42, 518–525. [Google Scholar] [CrossRef]
- Forintek Canada Corporation. Black Spruce, Alberta Facts on Wood Series; Forintek Canada Corp.: Vancouver, BC, Canada, 2006. [Google Scholar]
- Granath, G.; Moore, P.A.; Lukenbach, M.C.; Waddington, J.M. Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci. Rep. 2016, 6, 28498. [Google Scholar] [CrossRef] [Green Version]
- Frandsen, W.H. Burning rate of smoldering peat. Northwest Sci. 1991, 65, 166–172. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; Version 1.1. 463; RStudio Inc.: Boston, MA, USA, 2019; Available online: http://www.rstudio.com (accessed on 1 April 2020).
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Van Rensen, C.K.; Nielsen, S.E.; White, B.; Vinge, T.; Lieffers, V. Natural regeneration of forest vegetation on legacy seismic lines in boreal habitats in Alberta’s oil sands region. Biol. Conserv. 2015, 184, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Grossnickle, S.C. Ecophysiology of Northern Spruce Species; the Performance of Planted Seedlings; NRC Research Press: Ottawa, ON, Canada, 2000; Available online: http://www.nrcresearchpress.com/doi/book/10.1139/9780660179599#.U16Tm7lOXIU (accessed on 5 March 2020).
- Leonard, R.; Kettridge, N.; Krause, S.; DeVito, K.; Granath, G.; Petrone, R.; Mendoza, C.; Waddington, J.M. Peatland bryophyte responses to increased light from black spruce removal. Ecohydrology 2017, 10, e1804. [Google Scholar] [CrossRef] [Green Version]
- McCarter, C.; Price, J.S. The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecol. Eng. 2013, 55, 73–81. [Google Scholar] [CrossRef]
- Waddington, J.M.; Morris, P.J.; Kettridge, N.; Granath, G.; Thompson, D.K.; Moore, P.A. Hydrological feedbacks in northern peatlands. Ecohydrology 2014, 8, 113–127. [Google Scholar] [CrossRef]
- Hokanson, K.; Moore, P.; Lukenbach, M.; DeVito, K.; Kettridge, N.; Petrone, R.; Mendoza, C.A.; Waddington, J.M. A hydrogeological landscape framework to identify peatland wildfire smouldering hot spots. Ecohydrology 2018, 11, e1942. [Google Scholar] [CrossRef]
- Price, D.T.; Alfaro, R.; Brown, K.; Flannigan, M.; Fleming, R.; Hogg, E.; Girardin, M.; Lakusta, T.; Johnston, M.; McKenney, D.; et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 2013, 21, 322–365. [Google Scholar] [CrossRef]
- Wang, X.; Thompson, D.K.; Marshall, G.A.; Tymstra, C.; Carr, R.; Flannigan, M. Increasing frequency of extreme fire weather in Canada with climate change. Clim. Chang. 2015, 130, 573–586. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Barber, Q.E.; Hirsch, K.G.; Stockdale, C.A.; Erni, S.; Wang, X.; Arseneault, D.; Parks, S.A. Fire deficit increases wildfire risk for many communities in the Canadian boreal forest. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
Site | Established | Orientation | Width (m) | Latitude | Longitude |
---|---|---|---|---|---|
SL1 | 1963–1970 | N-S | 16 a | 55.71062 | −113.5766 |
SL2 | 1995–2000 | W-E | 4 b | 55.91799 | −113.6797 |
SL3 | 1977–1980 | W-E | 6 | 56.03263 | −114.0359 |
SL4 | 1977–1980 | NW-SE | 5 c | 55.99314 | −114.0117 |
SL5 | 1950–1963 | W-E | 8 | 55.79353 | −113.3875 |
SL6 | 1992–1994 | N-S | 7 | 55.79252 | −113.4030 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deane, P.J.; Wilkinson, S.L.; Moore, P.A.; Waddington, J.M. Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments. Fire 2020, 3, 21. https://doi.org/10.3390/fire3020021
Deane PJ, Wilkinson SL, Moore PA, Waddington JM. Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments. Fire. 2020; 3(2):21. https://doi.org/10.3390/fire3020021
Chicago/Turabian StyleDeane, Patrick Jeffrey, Sophie Louise Wilkinson, Paul Adrian Moore, and James Michael Waddington. 2020. "Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments" Fire 3, no. 2: 21. https://doi.org/10.3390/fire3020021
APA StyleDeane, P. J., Wilkinson, S. L., Moore, P. A., & Waddington, J. M. (2020). Seismic Lines in Treed Boreal Peatlands as Analogs for Wildfire Fuel Modification Treatments. Fire, 3(2), 21. https://doi.org/10.3390/fire3020021