A Surrogate Model for Rapidly Assessing the Size of a Wildfire over Time
Abstract
:1. Introduction
- 1.
- An investigative time-based OAT sensitivity analysis for quantifying the influence of meteorological input on fire dynamics.
- 2.
- Surrogate modeling of fire simulations based on initial conditions (temperature, relative humidity, and wind speed).
2. Methodology
2.1. Study Area
2.2. Fire Simulations—Spark
- Temperature 10–40 C
- Relative Humidity 10–90%
- Wind Speed 10–60 km/h
2.3. Sensitivity Analysis
2.4. Surrogate Modeling
2.4.1. Mathematical Foundation
2.4.2. Simulation Data Fitting
2.5. Surrogate Model Validation
3. Results and Discussions
3.1. Sensitivity Analysis
3.2. Surrogate Modeling
4. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. McArthur Grassland Fire Danger Meters
Appendix A.2. Dry Eucalypt Model (Cheney et al.)
Appendix A.3. CSIRO Grassland Model
Appendix A.4. Marsden–Smedley and Catchpole Buttongrass Model
Appendix A.5. Anderson et al. Heathland Model
References
- National Inter-Agency Fire Center. Available online: https://www.nifc.gov/fireInfo/fireInfo_statistics.html (accessed on 12 May 2019).
- Munich RE. Available online: https://www.munichre.com/australia/australia-natural-hazards/bushfires/economic-impacts/index.html (accessed on 12 May 2019).
- North, M.; Stephens, S.; Collins, B.; Agee, J.; Aplet, G.; Franklin, J.; Fule, P.Z. Reform forest fire management. Science 2015, 349, 1280–1281. [Google Scholar] [CrossRef] [PubMed]
- Whelan, R.J. The Ecology of Fire; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Ujjwal, K.; Garg, S.; Hilton, J.; Aryal, J. A cloud-based framework for sensitivity analysis of natural hazard models. Environ. Model. Softw. 2020, 134, 104800. [Google Scholar]
- Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models. Int. J. Wildland Fire 2009, 18, 387–403. [Google Scholar] [CrossRef] [Green Version]
- Grishin, A. Mathematical Modeling of Forest Fires and New Methods of Fighting Them, edited by FA Albini Publishing House of the Tomsk University. Tomsk. Russ. 1997, 29, 917–919. [Google Scholar]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Morvan, D. Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling. Fire Technol. 2011, 47, 437–460. [Google Scholar] [CrossRef]
- Morvan, D.; Dupuy, J. Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combust. Flame 2004, 138, 199–210. [Google Scholar] [CrossRef]
- Gould, J.S.; McCaw, W.; Cheney, N.; Ellis, P.; Knight, I.; Sullivan, A. Project Vesta: Fire in Dry Eucalypt Forest: Fuel Structure, Fuel Dynamics and Fire Behaviour; Csiro Publishing: Collingwood, Australia, 2008. [Google Scholar]
- Tanskanen, H.; Granström, A.; Larjavaara, M.; Puttonen, P. Experimental fire behaviour in managed Pinus sylvestris and Picea abies stands of Finland. Int. J. Wildland Fire 2007, 16, 414–425. [Google Scholar] [CrossRef]
- Baeza, M.; De Luıs, M.; Raventós, J.; Escarré, A. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J. Environ. Manag. 2002, 65, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; Hilton, J.; Sullivan, A.; Prakash, M. SPARK—A bushfire spread prediction tool. In Proceedings of the International Symposium on Environmental Software Systems, Melbourne, VIC, Australia, 25–27 March 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 262–271. [Google Scholar]
- Finney, M.A. FARSITE: Fire Area Simulator-model development and evaluation. In Res. Pap. RMRS-RP-4, Revised 2004. Ogden, UT; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998; Volume 4, 47p. [Google Scholar]
- Rothermel, R.C. A mathematical model for predicting fire spread in wildland fuels. In Res. Pap. INT-115; US Department of Agriculture, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972; Volume 115, 40p. [Google Scholar]
- Vakalis, D.; Sarimveis, H.; Kiranoudis, C.; Alexandridis, A.; Bafas, G. A GIS based operational system for wildland fire crisis management I. Mathematical modelling and simulation. Appl. Math. Model. 2004, 28, 389–410. [Google Scholar] [CrossRef]
- Nahmias, J.; Téphany, H.; Duarte, J.; Letaconnoux, S. Fire spreading experiments on heterogeneous fuel beds. Applications of percolation theory. Can. J. For. Res. 2000, 30, 1318–1328. [Google Scholar] [CrossRef]
- Méndez, V.; Llebot, J.E. Hyperbolic reaction-diffusion equations for a forest fire model. Phys. Rev. E 1997, 56, 6557. [Google Scholar] [CrossRef] [Green Version]
- Noble, I.; Gill, A.; Bary, G. McArthur’s fire-danger meters expressed as equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Trucchia, A.; Egorova, V.; Pagnini, G.; Rochoux, M.C. On the merits of sparse surrogates for global sensitivity analysis of multi-scale nonlinear problems: Application to turbulence and fire-spotting model in wildland fire simulators. Commun. Nonlinear Sci. Numer. Simul. 2019, 73, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Hilton, J.E.; Stephenson, A.G.; Huston, C.; Swedosh, W. Polynomial Chaos for sensitivity analysis in wildfire modelling. In Proceedings of the International Congress on Modelling and Simulation, Hobart, Australia, 3–8 December 2017. [Google Scholar]
- Tolhurst, K.; Shields, B.; Chong, D. Phoenix: development and application of a bushfire risk management tool. Aust. J. Emerg. Manag. 2008, 23, 47. [Google Scholar]
- Ujjwal, K.; Garg, S.; Hilton, J. An efficient framework for ensemble of natural disaster simulations as a service. Geosci. Front. 2020, 11, 1859–1873. [Google Scholar]
- Riley, K.; Thompson, M.; Riley, K.; Webley, P.; Thompson, M. An uncertainty analysis of wildfire modeling. Nat. Hazard Uncertain. Assess. Model. Decis. Support. Monogr. 2017, 223, 193–213. [Google Scholar]
- Kaschek, D.; Mader, W.; Fehling-Kaschek, M.; Rosenblatt, M.; Timmer, J. Dynamic modeling, parameter estimation and uncertainty analysis in R. bioRxiv 2016, 085001. [Google Scholar] [CrossRef] [Green Version]
- Nossent, J.; Elsen, P.; Bauwens, W. Sobol’sensitivity analysis of a complex environmental model. Environ. Model. Softw. 2011, 26, 1515–1525. [Google Scholar] [CrossRef]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Cai, L.; He, H.S.; Liang, Y.; Wu, Z.; Huang, C. Analysis of the uncertainty of fuel model parameters in wildland fire modelling of a boreal forest in north-east China. Int. J. Wildland Fire 2019, 28, 205–215. [Google Scholar] [CrossRef]
- Brohus, H.; Nielsen, P.V.; Petersen, A.J.; Sommerlund-Larsen, K. Sensitivity analysis of fire dynamics simulation. In Proceedings of the Roomvent 2007, Helsinki, Finland, 13–15 June 2007. [Google Scholar]
- Salvador, R.; Pinol, J.; Tarantola, S.; Pla, E. Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands. Ecol. Model. 2001, 136, 175–189. [Google Scholar] [CrossRef]
- Li, X.; Hadjisophocleous, G.; Sun, X.Q. Sensitivity and Uncertainty Analysis of a Fire Spread Model with Correlated Inputs. Procedia Eng. 2018, 211, 403–414. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, N.; Xie, X.; Viegas, D.X. Physical model of wildland fire spread: Parametric uncertainty analysis. Combust. Flame 2020, 217, 285–293. [Google Scholar] [CrossRef]
- Marcot, B.G.; Thompson, M.P.; Runge, M.C.; Thompson, F.R.; McNulty, S.; Cleaves, D.; Tomosy, M.; Fisher, L.A.; Bliss, A. Recent advances in applying decision science to managing national forests. For. Ecol. Manag. 2012, 285, 123–132. [Google Scholar] [CrossRef]
- Ujjwal, K.; Garg, S.; Hilton, J.; Aryal, J.; Forbes-Smith, N. Cloud Computing in natural hazard modeling systems: Current research trends and future directions. Int. J. Disaster Risk Reduct. 2019, 38, 101188. [Google Scholar]
- Bass, B.; Bedient, P. Surrogate modeling of joint flood risk across coastal watersheds. J. Hydrol. 2018, 558, 159–173. [Google Scholar] [CrossRef]
- Bermúdez, M.; Ntegeka, V.; Wolfs, V.; Willems, P. Development and comparison of two fast surrogate models for urban pluvial flood simulations. Water Resour. Manag. 2018, 32, 2801–2815. [Google Scholar] [CrossRef]
- Kim, S.W.; Melby, J.A.; Nadal-Caraballo, N.C.; Ratcliff, J. A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling. Nat. Hazards 2015, 76, 565–585. [Google Scholar] [CrossRef]
- Jia, G.; Taflanidis, A.A. Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment. Comput. Methods Appl. Mech. Eng. 2013, 261, 24–38. [Google Scholar] [CrossRef]
- Easum, J.A.; Nagar, J.; Werner, P.L.; Werner, D.H. Efficient multiobjective antenna optimization with tolerance analysis through the use of surrogate models. IEEE Trans. Antennas Propag. 2018, 66, 6706–6715. [Google Scholar] [CrossRef]
- Sanchez, F.; Budinger, M.; Hazyuk, I. Dimensional analysis and surrogate models for the thermal modeling of Multiphysics systems. Appl. Therm. Eng. 2017, 110, 758–771. [Google Scholar] [CrossRef] [Green Version]
- Meng, D.; Yang, S.; Zhang, Y.; Zhu, S.P. Structural reliability analysis and uncertainties-based collaborative design and optimization of turbine blades using surrogate model. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1219–1227. [Google Scholar] [CrossRef]
- Ökten, G.; Liu, Y. Randomized quasi-Monte Carlo methods in global sensitivity analysis. Reliab. Eng. Syst. Saf. 2021, 210, 107520. [Google Scholar] [CrossRef]
- Sharples, J.J.; Bahri, M.F.; Huntley, S. A universal rate of spread index for Australian fuel types. In Proceedings of the International Conference on Forest Fire Research, Coimbra, Portugal, 10–16 November 2018; Available online: https://www.environment.gov.au/system/files/pages/5b3d2d31-2355-4b60-820c-e370572b2520/files/bioregions-new.pdf (accessed on 12 March 2020).
- IBRA7. Available online: http://www.environment.gov.au/system/files/pages/5b3d2d31-2355-4b60-820c-e370572b2520/files/bioregions-new.pdf (accessed on 12 March 2020).
- Tasmania’s Bioregions. Available online: https://dpipwe.tas.gov.au/conservation/flora-of-tasmania/tasmanias-wetlands (accessed on 12 April 2021).
- Tasmanian Department of Primary Industries, Parks, W.; Monitoring, E.T.V.; Program, M. TasVeg 3.0. 2013. Available online: https://www.threatenedspecieslink.tas.gov.au/Pages/tasveg-3.aspx (accessed on 12 December 2020).
- McArthur, A.G. Fire Behaviour in Eucalypt Forests Forestry and Timber Bureau. Canberra, 1967. Available online: https://catalogue.nla.gov.au/Record/2275488 (accessed on 12 March 2021).
- Cheney, N.P.; Gould, J.S.; McCaw, W.L.; Anderson, W.R. Predicting fire behaviour in dry eucalypt forest in southern Australia. For. Ecol. Manag. 2012, 280, 120–131. [Google Scholar] [CrossRef]
- Marsden-Smedley, J.; Catchpole, W.R. Fire behaviour modelling in Tasmanian buttongrass moorlands. II. Fire behaviour. Int. J. Wildland Fire 1995, 5, 215–228. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wildland Fire 2015, 24, 443–460. [Google Scholar] [CrossRef] [Green Version]
- Cheney, N.; Gould, J.; Catchpole, W.R. Prediction of fire spread in grasslands. Int. J. Wildland Fire 1998, 8, 1–13. [Google Scholar] [CrossRef]
- List Data. Available online: https://listdata.thelist.tas.gov.au/opendata/ (accessed on 12 March 2021).
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Birk, E.M.; Simpson, R. Steady state and the continuous input model of litter accumulation and decompostion in Australian eucalypt forests. Ecology 1980, 61, 481–485. [Google Scholar] [CrossRef]
- Fire Prediction Services. PHOENIXRapidFire: Technical Reference Guide; A Technical Guide to the PHOENIX RapidFire Bushfire Characterisation ModelVersion 4; Australasian Fire and Emergency Service Authorities Council: Melbourne, VIC, Australia, 2019; Volume 1.
- Abatzoglou, J.T.; Hatchett, B.J.; Fox-Hughes, P.; Gershunov, A.; Nauslar, N.J. Global climatology of synoptically-forced downslope winds. Int. J. Climatol. 2021, 41, 31–50. [Google Scholar] [CrossRef]
- Fox-Hughes, P. A fire danger climatology for Tasmania. Aust. Meteorol. Mag. 2008, 57, 109–120. [Google Scholar]
- KC, U.; Garg, S.; Hilton, J.; Aryal, J. Fire Simulation Data Set for Tasmania; CSIRO: Hobart, Australia; University of Tasmania: Hobart, Australia, 2021. [Google Scholar] [CrossRef]
- Hamby, D. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 1994, 32, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.V. A simple fire-growth model. For. Chron. 1969, 45, 103–104. [Google Scholar] [CrossRef] [Green Version]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. InIjcai 1995, 14, 1137–1145. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Penman, T.D.; Ababei, D.A.; Cawson, J.G.; Cirulis, B.A.; Duff, T.J.; Swedosh, W.; Hilton, J.E. Effect of weather forecast errors on fire growth model projections. Int. J. Wildland Fire 2020, 29, 983–994. [Google Scholar] [CrossRef]
- Gould, J.S.; McCaw, W.L.; Cheney, N.P. Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. For. Ecol. Manag. 2011, 262, 531–546. [Google Scholar] [CrossRef]
- Gould, J.S.; McCaw, W.; Cheney, N.; Ellis, P.; Matthews, S. Field Guide: Fire in Dry Eucalypt Forest: Fuel Assessment and Fire Behaviour Prediction in Dry Eucalypt Forest; CSIRO Publishing: Collingwood, Australia, 2008. [Google Scholar]
- Matthews, S.; Gould, J.; McCaw, L. Simple models for predicting dead fuel moisture in eucalyptus forests. Int. J. Wildland Fire 2010, 19, 459–467. [Google Scholar] [CrossRef]
- Catchpole, W.; Bradstock, R.; Choate, J.; Fogarty, L.; Gellie, N.; McCarthy, G.; McCaw, W.; Marsden-Smedley, J.; Pearce, G. Cooperative development of equations for heathland fire behaviour. In Proceedings of the 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Coimbra, Portugal, 16–20 November 1998; Volume 2, pp. 16–20. [Google Scholar]
Bio-Regions | Variation in Area burnt by fire () in | ||
---|---|---|---|
Temperature | Rel. Humidity | Wind | |
Southern Ranges | 2655.18 | 28,679.9 | 11,531.23 |
South East | 2360.97 | 25,645.92 | 11,114.86 |
West | 1143.36 | 3308.58 | 2554.11 |
Central Highlands | 2290.32 | 8328.78 | 4524.47 |
Northern Slopes | 4092.21 | 5543.11 | 3910.05 |
Northern Midlands | 2177.55 | 7995.96 | 5239.71 |
Ben Lomond | 3573.72 | 19,713.78 | 10,601.4 |
Furneaux | 3491.91 | 12,972.73 | 8702.5 |
King | 1497.33 | 6908.67 | 3943.89 |
Tasmania | 4115.34 | 28,680.08 | 11,539.96 |
Bio-Regions | n | |||
---|---|---|---|---|
Southern Ranges | 17.26 | −41.98 | 2.09 | 1.91 |
South East | 35.56 | −137.33 | 2.38 | 1.81 |
West | 2.49 | −5.56 | 1.46 | 1.49 |
Central Highlands | 14.95 | −16.54 | 1.87 | 1.76 |
Northern Slopes | 12.11 | −39.69 | 2.21 | 1.68 |
Northern Midlands | 30.38 | −19.13 | 1.95 | 1.72 |
Ben Lomond | 23.09 | −35.29 | 2.34 | 1.81 |
Furneaux | 26.09 | −53.85 | 2.43 | 1.73 |
King | 11.21 | −9.80 | 1.78 | 1.60 |
Tasmania | 16.72 | −26.80 | 2.03 | 1.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
KC, U.; Aryal, J.; Hilton, J.; Garg, S. A Surrogate Model for Rapidly Assessing the Size of a Wildfire over Time. Fire 2021, 4, 20. https://doi.org/10.3390/fire4020020
KC U, Aryal J, Hilton J, Garg S. A Surrogate Model for Rapidly Assessing the Size of a Wildfire over Time. Fire. 2021; 4(2):20. https://doi.org/10.3390/fire4020020
Chicago/Turabian StyleKC, Ujjwal, Jagannath Aryal, James Hilton, and Saurabh Garg. 2021. "A Surrogate Model for Rapidly Assessing the Size of a Wildfire over Time" Fire 4, no. 2: 20. https://doi.org/10.3390/fire4020020
APA StyleKC, U., Aryal, J., Hilton, J., & Garg, S. (2021). A Surrogate Model for Rapidly Assessing the Size of a Wildfire over Time. Fire, 4(2), 20. https://doi.org/10.3390/fire4020020