Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Methods
2.2. Fuel Selection and Experimental Set-Up
3. Results and Discussion
3.1. Sand Treatments, Water Droplet Penetration Time (WDPT), and Water Repellency
3.2. Water Repellency and Hydraulic Properties of Sand and Ash
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haffey, C.; Sisk, T.D.; Allen, C.D.; Thode, A.E.; Margolis, E.Q. Limits to ponderosa pine regeneration following large high-severity forest fires in the United States Southwest. Fire Ecol. 2018, 14, 143–163. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehner, M.; Arnold, J.; Knutson, T.; Kunkel, K.; LeGrande, A. Droughts, Floods, and Wildfires. Climate Science Special Report; Fourth National Climate Assessment: Washington, DC, USA, 2017. [Google Scholar]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, D.L. Forest Structure and Fire Hazard in Dry Forests of the Western United States; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2005; Volume 628.
- Block, W.M.; Finch, D.M. Songbird Ecology in Southwestern Ponderosa Pine Forests: A Literature Review; US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1997; Volume 292.
- Cassell, B.A.; Scheller, R.M.; Lucash, M.S.; Hurteau, M.D.; Loudermilk, E.L. Widespread severe wildfires under climate change lead to increased forest homogeneity in dry mixed-conifer forests. Ecosphere 2019, 10, e02934. [Google Scholar] [CrossRef] [Green Version]
- Keane, R.E.; Agee, J.K.; Fulé, P.; Keeley, J.E.; Key, C.; Kitchen, S.G.; Miller, R.; Schulte, L.A. Ecological effects of large fires on US landscapes: Benefit or catastrophe? A. Int. J. Wildland Fire 2009, 17, 696–712. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Gworek, J.R.; Vander Wall, S.B.; Brussard, P.F. Changes in biotic interactions and climate determine recruitment of Jeffrey pine along an elevation gradient. Forest Ecol. Manag. 2007, 239, 57–68. [Google Scholar] [CrossRef]
- Crowley, T.J. Causes of climate change over the past 1000 years. Science 2000, 289, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusnierczyk, E.; Ettl, G.J. Growth response of ponderosa pine (Pinus ponderosa) to climate in the eastern Cascade Mountains, Washington, USA: Implications for climatic change1. Ecoscience 2002, 9, 544–551. [Google Scholar] [CrossRef]
- Report, N.I.F.C. Report: National Large Incident Year-to-Date Report (PDF). Geographic Area Coordination Center, National Interagency Fire Center (Report). 9 October 2020. Available online: https://gacc.nifc.gov/sacc/predictive/intelligence/NationalLargeIncidentYTDReport.pdf (accessed on 2 March 2021).
- Burley, J.D.; Bytnerowicz, A.; Buhler, M.; Zielinska, B.; Schweizer, D.; Cisneros, R.; Schilling, S.; Varela, J.C.; McDaniel, M.; Horn, M. Air quality at Devils Postpile National Monument, Sierra Nevada Mountains, California, USA. Aerosol Air Qual. Res. 2016, 16, 2315–2332. [Google Scholar] [CrossRef] [Green Version]
- Kunzli, N.; Avol, E.; Wu, J.; Gauderman, W.J.; Rappaport, E.; Millstein, J.; Bennion, J.; McConnell, R.; Gilliland, F.D.; Berhane, K. Health effects of the 2003 Southern California wildfires on children. Am. J. Respir. Crit. Med. 2006, 174, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Phuleria, H.C.; Fine, P.M.; Zhu, Y.; Sioutas, C. Air quality impacts of the October 2003 Southern California wildfires. J. Geophys. Res. Atmos. 2005, 110, D07S20. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Parr, C.L. Towards an understanding of the evolutionary role of fire in animals. Evol. Ecol. 2018, 32, 113–125. [Google Scholar] [CrossRef]
- Shakesby, R. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.R.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- DeBano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Ravi, S.; D’Odorico, P.; Zobeck, T.M.; Over, T.M. The effect of fire-induced soil hydrophobicity on wind erosion in a semiarid grassland: Experimental observations and theoretical framework. Geomorphology 2009, 105, 80–86. [Google Scholar] [CrossRef]
- Debano, L.F.; Krammes, J. Water repellent soils and their relation to wildfire temperatures. Hydrol. Sci. J. 1966, 11, 14–19. [Google Scholar] [CrossRef]
- Letey, J. Causes and consequences of fire-induced soil water repellency. Hydrol. Process. 2001, 15, 2867–2875. [Google Scholar] [CrossRef]
- Doerr, S.; Shakesby, R.; Blake, W.; Chafer, C.; Humphreys, G.; Wallbrink, P. Effects of differing wildfire severities on soil wettability and implications for hydrological response. J. Hydrol. 2006, 319, 295–311. [Google Scholar] [CrossRef]
- Jordán, A.; Zavala, L.M.; Mataix-Solera, J.; Doerr, S.H. Soil water repellency: Origin, assessment and geomorphological consequences. Catena 2013, 108, 1–5. [Google Scholar] [CrossRef]
- Debano, L.; Letey, J. Infiltrometer studies of water repellent soils on the east slopeof the Sierra Nevada. In Proceedings of the Symposium on Water Repellent Soils, Riverside, CA, USA, 6–10 May 1969; University of California: Riverside, CA, USA, 1969. [Google Scholar]
- DeBano, L.; Mann, L.; Hamilton, D. Translocation of hydrophobic substances into soil by burning organic litter. Soil Sci. Soc. Am. J. 1970, 34, 130–133. [Google Scholar] [CrossRef]
- Savage, S.; Osborn, J.; Letey, J.; Heaton, C. Substances contributing to fire-induced water repellency in soils. Soil Sci. Soc. Am. J. 1972, 36, 674–678. [Google Scholar] [CrossRef]
- Savage, S. Mechanism of fire-induced water repellency in soil. Soil Sci. Soc. Am. J. 1974, 38, 652–657. [Google Scholar] [CrossRef]
- DeBano, L.; Savage, S.; Hamilton, D. The transfer of heat and hydrophobic substances during burning. Soil Sci. Soc. Am. J. 1976, 40, 779–782. [Google Scholar] [CrossRef]
- Krammes, J.; DeBano, L. Soil wettability: A neglected factor in watershed management. Water Resour. Res. 1965, 1, 283–286. [Google Scholar] [CrossRef]
- Scholl, D.G. Soil wettability and fire in Arizona chaparral. Soil Sci. Soc. Am. J. 1975, 39, 356–361. [Google Scholar] [CrossRef]
- DeBano, L.F. Water Repellent Soils: A State-of-the-Art; US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Portland, OR, USA, 1981; Volume 46.
- Morley, C.; Mainwaring, K.; Doerr, S.; Douglas, P.; Llewellyn, C.; Dekker, L. Organic compounds at different depths in a sandy soil and their role in water repellency. Soil Res. 2005, 43, 239–249. [Google Scholar] [CrossRef]
- Roy, J.; McGill, W. Flexible conformation in organic matter coatings: An hypothesis about soil water repellency. Can. J. Soil Sci. 2000, 80, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Mainwaring, K.; Hallin, I.; Douglas, P.; Doerr, S.; Morley, C.P. The role of naturally occurring organic compounds in causing soil water repellency. Eur. J. Soil Sci. 2013, 64, 667–680. [Google Scholar] [CrossRef]
- Simkovic, I.; Dlapa, P.; Doerr, S.H.; Mataix-Solera, J.; Sasinkova, V. Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy. Catena 2008, 74, 205–211. [Google Scholar] [CrossRef]
- Atanassova, I.; Doerr, S. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency. Eur. J. Soil Sci. 2010, 61, 298–313. [Google Scholar] [CrossRef]
- Atanassova, I.; Doerr, S. Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. Eur. J. Soil Sci. 2011, 62, 516–532. [Google Scholar] [CrossRef]
- Uddin, S.M.; Daniel, N.R.; Harper, R.J.; Henry, D.J. Why do biogenic volatile organic compounds (BVOCs) derived from vegetation fire not induce soil water repellency? Biogeochemistry 2017, 134, 147–161. [Google Scholar] [CrossRef]
- Uddin, S.M.; Harper, R.J.; Henry, D.J. Contribution of binary organic layers to soil water repellency: A molecular level perspective. J. Phys. Chem. 2019, 123, 7518–7527. [Google Scholar] [CrossRef] [PubMed]
- Urban, R.; Alves, C.; Allen, A.; Cardoso, A.; Campos, M. Organic aerosols in a Brazilian agro-industrial area: Speciation and impact of biomass burning. Atmos. Res. 2016, 169, 271–279. [Google Scholar] [CrossRef]
- Samburova, V.; Connolly, J.; Gyawali, M.; Yatavelli, R.L.N.; Watts, A.C.; Chakrabarty, R.K.; Zielinska, B.; Moosmüller, H.; Khlystov, A. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci. Total Environ. 2016, 568, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Simoneit, B.R.T. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R. Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environ. Eng. Sci. 2004, 21, 387–409. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, N.; Slater, G.; Waddington, J.M.; de Lannoy, C.-F. Hydrophobicity of peat soils: Characterization of organic compound changes associated with heat-induced water repellency. Sci. Total Environ. 2020, 714, 136444. [Google Scholar] [CrossRef]
- Rodríguez-Alleres, M.; Varela, M.; Benito, E. Natural severity of water repellency in pine forest soils from NW Spain and influence of wildfire severity on its persistence. Geoderma 2012, 191, 125–131. [Google Scholar] [CrossRef]
- Badía-Villas, D.; González-Pérez, J.A.; Aznar, J.M.; Arjona-Gracia, B.; Martí-Dalmau, C. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma 2014, 213, 400–407. [Google Scholar] [CrossRef]
- Zavala, L.M.; González, F.A.; Jordán, A. Fire-induced soil water repellency under different vegetation types along the Atlantic dune coast-line in SW Spain. Catena 2009, 79, 153–162. [Google Scholar] [CrossRef]
- Zavala, L.M.; Granged, A.J.; Jordán, A.; Bárcenas-Moreno, G. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma 2010, 158, 366–374. [Google Scholar] [CrossRef]
- Varela, M.; Benito, E.; Keizer, J. Effects of wildfire and laboratory heating on soil aggregate stability of pine forests in Galicia: The role of lithology, soil organic matter content and water repellency. Catena 2010, 83, 127–134. [Google Scholar] [CrossRef]
- Shillito, R.M.; Berli, M.; Ghezzehei, T.A. Quantifying the Effect of Subcritical Water Repellency on Sorptivity: A Physically Based Model. Water Resour. Res. 2020, 56, e2020WR027942. [Google Scholar] [CrossRef]
- Mehadi, A.; Moosmüller, H.; Campbell, D.E.; Ham, W.; Schweizer, D.; Tarnay, L.; Hunter, J. Laboratory and field evaluation of real-time and near real-time PM2.5 smoke monitors. J. Air Waste Manag. Assoc. 2020, 70, 158–179. [Google Scholar] [CrossRef]
- Stephens, S.L. Fire history differences in adjacent Jeffrey pine and upper montane forests in the eastern Sierra Nevada. Int. J. Wildland Fire 2001, 10, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, J.L. Jeffrey pine, Pineaceae, pine family. In Silvics of North American Conifers; United States Department of Agriculture: Washington, DC, USA, 1990; Volume 654, pp. 359–369. [Google Scholar]
- Kwok, D.Y.; Neumann, A.W. Surface Characterization Methods: Principles, Techniques, and Applications; CRC Press: Boca Raton, FL, USA, 1999; Volume 87, pp. 37–86. [Google Scholar]
- Chau, T. A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Miner. Eng. 2009, 22, 213–219. [Google Scholar] [CrossRef]
- Watts, A.C.; Samburova, V.; Moosmüller, H. Criteria-Based Identification of Important Fuels for Wildland Fire Emission Research. Atmosphere 2020, 11, 640. [Google Scholar] [CrossRef]
- Brown, P.M.; Wu, R. Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 2005, 86, 3030–3038. [Google Scholar] [CrossRef]
- Moore, M.M.; Huffman, D.W.; Fulé, P.Z.; Covington, W.W.; Crouse, J.E. Comparison of historical and contemporary forest structure and composition on permanent plots in southwestern ponderosa pine forests. For. Sci. 2004, 50, 162–176. [Google Scholar]
- Nabhan, G.P. Ecological Restoration of Southwestern Ponderosa Pine Forests; Island Press: Washington, DC, USA, 2003; Volume 2. [Google Scholar]
- O’Dell, K.; Hornbrook, R.S.; Permar, W.; Levin, E.J.; Garofalo, L.A.; Apel, E.C.; Blake, N.J.; Jarnot, A.; Pothier, M.A.; Farmer, D.K. Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. Environ. Sci. Technol. 2020, 54, 11838–11847. [Google Scholar] [CrossRef]
- Kelly, H.; Schmidt, S. As Wildfire Smoke Becomes a Part of Life on the West Coast, So Do Its Health Risks. Available online: https://www.washingtonpost.com/nation/2020/09/16/smoke-air-west/ (accessed on 28 December 2020).
- Tian, J.; Chow, J.C.; Cao, J.; Han, Y.; Ni, H.; Chen, L.W.A.; Wang, X.; Huang, R.; Moosmüller, H.; Watson, J.G. A biomass combustion chamber: Design, evaluation, and a case study of wheat straw combustion emission tests. Aerosol Air Qual. Res. 2015, 15, 2104–2114. [Google Scholar] [CrossRef]
- Bhattarai, C.; Samburova, V.; Sengupta, D.; Iaukea-Lum, M.; Watts, A.C.; Moosmüller, H.; Khlystov, A.Y. Physical and chemical characterization of aerosol in fresh and aged emissions from open combustion of biomass fuels. Aerosol Sci. Technol. 2018, 52, 1266–1282. [Google Scholar] [CrossRef]
- Doerr, S.H.; Shakesby, R.A. Soil Water Repellency. In Handbook of Soil Sciences; Huang, P.M., Li, Y., Sumner, M., Eds.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Alberts, J.J.; Takács, M. Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: Comparison of aquatic and terrestrial source terms. Org. Geochem. 2004, 35, 243–256. [Google Scholar] [CrossRef]
- International Humic Substances Society. Available online: http://humic-substances.org/the-third-batch-of-suwannee-river-humic-and-fulvic-acids (accessed on 30 December 2020).
- Larsen, I.J.; MacDonald, L.H.; Brown, E.; Rough, D.; Welsh, M.J.; Pietraszek, J.H.; Libohova, Z.; de Dios Benavides-Solorio, J.; Schaffrath, K. Causes of post-fire runoff and erosion: Water repellency, cover, or soil sealing? Soil Sci. Soc. Am. J. 2009, 73, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Graber, E.R.; Rudich, Y. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006, 6, 729–753. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar]
- Sutton, R.; Sposito, G. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 2005, 39, 9009–9015. [Google Scholar] [CrossRef]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
Sample Name | Description |
---|---|
Sample I | Blank sand (acid-washed and oven-dried, then exposed to laboratory air*) at room air temperature |
Sample II | Blank sand + heat (200 °C for 2 h) |
Sample III | Ash |
Sample IV | Sand under mesh (~5 cm between the fire and sand sample) placed under a fire pit |
Sample V | Sand right near the fire |
Sample VI | Sample V with 5 mm removed from the top layer (~5 mm) |
Sample VII | Sand right under the fire pit using no mesh |
Sample VIII | Replicate burn 1 as for Sample VII |
Sample IX | Replicate burn 2 as for Sample VII |
Sample X | Smoke was collected on a cartridge loaded with blank sand using a chamber sampling line and medium volume sampler (at room temperature) |
Sample XI | Sample X with a removed top layer (~5 mm) |
Sample XII | Blank sand + fulvic acid (dried at room temperature (20 ± 2 °C)) |
Sample XIII | Blank sand + fulvic acid + heat (200 °C for 2 h) |
Sample Name | WDPT [s] | α(WDPT) 1 [°] | S/S0 = 48° = f(WDPT) 2 |
---|---|---|---|
Sample I | <0.5 | 48 | 1.00 |
Sample II | <0.5 | 48 | 1.00 |
Sample III | <0.5 | -- | -- |
Sample IV | <0.5 | 48 | 1.00 |
Sample V | 1027 | 84 | 0.37 |
Sample VI | 576 | 83 | 0.39 |
Sample VII | >3000 | 87 | 0.31 |
Sample VIII | 2844 | 87 | 0.31 |
Sample IX | >3000 | 87 | 0.31 |
Sample X | >3000 | 87 | 0.31 |
Sample XI | 2535 | 87 | 0.32 |
Sample XII | 81 | 78 | 0.49 |
Sample XIII | 2305 | 87 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samburova, V.; Shillito, R.M.; Berli, M.; Khlystov, A.Y.; Moosmüller, H. Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study. Fire 2021, 4, 24. https://doi.org/10.3390/fire4020024
Samburova V, Shillito RM, Berli M, Khlystov AY, Moosmüller H. Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study. Fire. 2021; 4(2):24. https://doi.org/10.3390/fire4020024
Chicago/Turabian StyleSamburova, Vera, Rose M. Shillito, Markus Berli, Andrey Y. Khlystov, and Hans Moosmüller. 2021. "Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study" Fire 4, no. 2: 24. https://doi.org/10.3390/fire4020024
APA StyleSamburova, V., Shillito, R. M., Berli, M., Khlystov, A. Y., & Moosmüller, H. (2021). Effect of Biomass-Burning Emissions on Soil Water Repellency: A Pilot Laboratory Study. Fire, 4(2), 24. https://doi.org/10.3390/fire4020024