Wind in a Natural and Artificial Wildland Fire Fuel Bed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. 3D-Printed Fuel Bed Models
2.3. Pine Needle Fuel Bed Models
3. Theoretical Overview
4. Experimental Results
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E. The flammability of forest and woodland litter: A synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Finnigan, J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 2000, 32, 519–571. [Google Scholar] [CrossRef]
- Chung, D.; Hutchins, N.; Schultz, M.P.; Flack, K.A. Predicting the Drag of Rough Surfaces. Annu. Rev. Fluid Mech. 2021, 53, 439–471. [Google Scholar] [CrossRef]
- Massman, W.J.; Forthofer, J.; Finney, M.A. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior. Can. J. For. Res. 2017, 47, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Mueller, E.; Mell, W.; Simeoni, A. Large eddy simulation of forest canopy flow for wildland fire modeling. Can. J. For. Res. 2014, 44, 1534–1544. [Google Scholar] [CrossRef]
- Pimont, F.; Dupuy, J.L.; Linn, R.R.; Dupont, S. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC. Ann. For. Sci. 2011, 68, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Simeoni, A.; Santoni, P.A.; Larini, M.; Balbi, J.H. Proposal for theoretical improvement of semi-physical forest fire spread models thanks to a multiphase approach: Application to a fire spread model across a fuel bed. Combust. Sci. Technol. 2001, 162, 59–83. [Google Scholar] [CrossRef] [Green Version]
- Morandini, F.; Simeoni, A.; Santoni, P.A.; Balbi, J.H. A model for the spread of fire across a fuel bed incorporating the effects of wind and slope. Combust. Sci. Technol. 2005, 177, 1381–1418. [Google Scholar] [CrossRef]
- Koo, E.; Pagni, P.; Stephens, S.; Huff, J.; Woycheese, J.; Weise, D. A simple physical model for forest fire spread rate. Fire Saf. Sci. 2005, 8, 851–862. [Google Scholar] [CrossRef]
- Mandel, J.; Bennethum, L.S.; Beezley, J.D.; Coen, J.L.; Douglas, C.C.; Kim, M.; Vodacek, A. A wildland fire model with data assimilation. Math. Comput. Simul. 2008, 79, 584–606. [Google Scholar] [CrossRef] [Green Version]
- Babak, P.; Bourlioux, A.; Hillen, T. The effect of wind on the propagation of an idealized forest fire. SIAM J. Appl. Math. 2009, 70, 1364–1388. [Google Scholar] [CrossRef] [Green Version]
- Simeoni, A.; Salinesi, P.; Morandini, F. Physical modelling of forest fire spreading through heterogeneous fuel beds. Int. J. Wildland Fire 2011, 20, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Meroney, R.N. Characteristics of wind and turbulence in and above model forests. J. Appl. Meteorol. 1968, 7, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, W.; Cermak, J.; Kawatani, T. Flow over high roughness elements. Bound.-Layer Meteorol. 1971, 1, 321–344. [Google Scholar] [CrossRef]
- Baines, G. Turbulence in a wheat crop. Agric. Meteorol. 1972, 10, 93–105. [Google Scholar] [CrossRef]
- Inoue, E. On the Turbulent Structure of Airflow within crop canopies. J. Meteorol. Soc. Jpn. Ser. II 1963, 41, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Finnigan, J. Turbulence in waving wheat. Bound.-Layer Meteorol. 1979, 16, 181–211. [Google Scholar]
- Finnigan, J. Turbulence in waving wheat. II. Structure of momentum transfer. Bound.-Layer Meteorol. 1979, 16, 213–236. [Google Scholar]
- Wallace, J.M. Quadrant analysis in turbulence research: History and evolution. Annu. Rev. Fluid Mech. 2016, 48, 131–158. [Google Scholar] [CrossRef]
- Shaw, R.H.; Tavangar, J.; Ward, D.P. Structure of the Reynolds stress in a canopy layer. J. Appl. Meteorol. Climatol. 1983, 22, 1922–1931. [Google Scholar] [CrossRef] [Green Version]
- Raupach, M.; Coppin, P.; Legg, B. Experiments on scalar dispersion within a model plant canopy part I: The turbulence structure. Bound.-Layer Meteorol. 1986, 35, 21–52. [Google Scholar] [CrossRef]
- Brunet, Y. Turbulent flow in plant canopies: Historical perspective and overview. Bound.-Layer Meteorol. 2020, 177, 315–364. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Bai, K.; Meneveau, C.; Katz, J. Experimental study of spectral energy fluxes in turbulence generated by a fractal, tree-like object. Phys. Fluids 2013, 25, 110810. [Google Scholar] [CrossRef]
- Liu, F.; Mao, Z.; Zhang, P.; Zhang, D.Z.; Jiang, J.; Ma, Z. Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties. Mater. Des. 2018, 160, 849–860. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Abu Al-Rub, R.K. MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 2020, e205. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE, Fire Area Simulator—Model Development and Evaluation; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998; Volume 3.
- Burgan, R.E.; Rothermel, R.C. BEHAVE: Fire Behavior Prediction and Fuel Modeling System, Fuel Subsystem; US Department of Agriculture, Forest Service, Intermountain Forest and Range Forest and Range Experiment Station: Ogden, UT, USA, 1984; Volume 167.
- Linn, R.R. A Transport Model for Prediction of Wildfire Behavior; Technical Report; Los Alamos National Lab.: Los Alamos, NM, USA, 1997. [Google Scholar]
- Albini, F.A. Estimating Wildfire Behavior and Effects; Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1976; Volume 30.
- Prichard, S.J.; Sandberg, D.V.; Ottmar, R.D.; Eberhardt, E.; Andreu, A.; Eagle, P.; Swedin, K. Fuel Characteristic Classification System Version 3.0: Technical Documentation; General Technical Report PNW-GTR-887; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2013; 79p. [Google Scholar]
- Wood, B.D.; He, X.; Apte, S.V. Modeling turbulent flows in porous media. Annu. Rev. Fluid Mech. 2020, 52, 171–203. [Google Scholar] [CrossRef] [Green Version]
- Venditti, J.G.; Best, J.L.; Church, M.; Hardy, R.J. Coherent Flow Structures at Earth’s Surface; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Poggi, D.; Porporato, A.; Ridolfi, L.; Albertson, J.; Katul, G. The effect of vegetation density on canopy sub-layer turbulence. Bound. Layer Meteorol. 2004, 111, 565–587. [Google Scholar] [CrossRef]
- Nezu, I.; Sanjou, M. Turburence structure and coherent motion in vegetated canopy open-channel flows. J. Hydro-Environ. Res. 2008, 2, 62–90. [Google Scholar] [CrossRef]
- Bailey, B.N.; Stoll, R. The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J. Fluid Mech. 2016, 789, 425–460. [Google Scholar] [CrossRef] [Green Version]
- Raupach, M.; Finnigan, J.; Brunet, Y. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. In Boundary-Layer Meteorology 25th Anniversary Volume, 1970–1995; Springer: Berlin/Heidelberg, Germany, 1996; pp. 351–382. [Google Scholar]
- Monti, A.; Omidyeganeh, M.; Pinelli, A. Large-eddy simulation of an open-channel flow bounded by a semi-dense rigid filamentous canopy: Scaling and flow structure. Phys. Fluids 2019, 31, 065108. [Google Scholar] [CrossRef]
- Noonan-Wright, E.K.; Opperman, T.S.; Finney, M.A.; Zimmerman, G.T.; Seli, R.C.; Elenz, L.M.; Calkin, D.E.; Fiedler, J.R. Developing the US wildland fire decision support system. J. Combust. 2011, 2011, 168473. [Google Scholar] [CrossRef]
- Coen, J. Some requirements for simulating wildland fire behavior using insight from coupled weather—Wildland fire models. Fire 2018, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Linn, R.R.; Cunningham, P. Numerical simulations of grass fires using a coupled atmosphere–fire model: Basic fire behavior and dependence on wind speed. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Bebieva, Y.; Oliveto, J.; Quaife, B.; Skowronski, N.S.; Heilman, W.E.; Speer, K. Role of horizontal eddy diffusivity within the canopy on fire spread. Atmosphere 2020, 11, 672. [Google Scholar] [CrossRef]
- Wygnanski, I.; Fiedler, H.E. The two-dimensional mixing region. J. Fluid Mech. 1970, 41, 327–361. [Google Scholar] [CrossRef]
- Raupach, M.; Finnigan, J.; Brunet, Y. Coherent eddies in vegetation canopies. In Proceedings of the 4th Australasian Conference on Heat and Mass Transfer, Christchurch, New Zealand, 9–12 May 1989. [Google Scholar]
- Taylor, G.I. Diffusion by continuous movements. Proc. Lond. Math. Soc. 1922, 2, 196–212. [Google Scholar] [CrossRef]
- Lee, X. Fundamentals of Boundary-Layer Meteorology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Fons, W.L. Influence of forest cover on wind velocity. J. For. 1940, 38, 481–486. [Google Scholar]
- Bergen, J.D. Vertical profiles of windspeed in a pine stand. For. Sci. 1971, 17, 314–321. [Google Scholar]
- Oliver, H. Wind profiles in and above a forest canopy. Q. J. R. Meteorol. Soc. 1971, 97, 548–553. [Google Scholar] [CrossRef]
- Miri, A.; Dragovich, D.; Dong, Z. Wind flow and sediment flux profiles for vegetated surfaces in a wind tunnel and field-scale windbreak. Catena 2021, 196, 104836. [Google Scholar] [CrossRef]
- Blois, G.; Best, J.L.; Christensen, K.T.; Hardy, R.J.; Smith, G.H.S. Coherent flow structures in the pore spaces of permeable beds underlying a unidirectional turbulent boundary layer: A review and some new experimental results. Coherent Flow Struct. Earth’s Surf. 2013, 43–62. [Google Scholar] [CrossRef]
Relative Porosity (%) | X | Y | Z | Mesh Density | Isovalue C |
---|---|---|---|---|---|
50 | 9.5 | 9.5 | 3.0 | 100 | −0.0007 |
80 | 9.5 | 9.5 | 3.0 | 100 | 0.8426 |
95 | 9.5 | 9.5 | 3.0 | 100 | 1.21855 |
Relative Porosity (%) | Surface-to-Volume Ratio (ft) | Surface-to-Volume Ratio (m) |
---|---|---|
50 | 106 | 347 |
80 | 206 | 677 |
95 | 501 | 1643 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bebieva, Y.; Speer, K.; White, L.; Smith, R.; Mayans, G.; Quaife, B. Wind in a Natural and Artificial Wildland Fire Fuel Bed. Fire 2021, 4, 30. https://doi.org/10.3390/fire4020030
Bebieva Y, Speer K, White L, Smith R, Mayans G, Quaife B. Wind in a Natural and Artificial Wildland Fire Fuel Bed. Fire. 2021; 4(2):30. https://doi.org/10.3390/fire4020030
Chicago/Turabian StyleBebieva, Yana, Kevin Speer, Liam White, Robert Smith, Gabrielle Mayans, and Bryan Quaife. 2021. "Wind in a Natural and Artificial Wildland Fire Fuel Bed" Fire 4, no. 2: 30. https://doi.org/10.3390/fire4020030
APA StyleBebieva, Y., Speer, K., White, L., Smith, R., Mayans, G., & Quaife, B. (2021). Wind in a Natural and Artificial Wildland Fire Fuel Bed. Fire, 4(2), 30. https://doi.org/10.3390/fire4020030