Prescribed Burning Reduces Large, High-Intensity Wildfires and Emissions in the Brazilian Savanna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Fire, Climate, and Emissions Datasets
2.3. Pre-Processing and Statistical Analysis
3. Results
3.1. Overview of PB, Fire and Climate Trends
3.2. Observed Changes
4. Discussion
4.1. Evaluating PBs
4.2. Limitations of Current Datasets
5. Final Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; Van Der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Lipsett-Moore, G.J.; Wolff, N.H.; Game, E.T. Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. 2018, 9, 2247. [Google Scholar] [CrossRef] [Green Version]
- Gillson, L.; Whitlock, C.; Humphrey, G. Resilience and fire management in the Anthropocene. Ecol. Soc. 2019, 24, 14. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11. [Google Scholar] [CrossRef]
- Schmidt, I.B.; Moura, L.C.; Ferreira, M.C.; Eloy, L.; Sampaio, A.B.; Dias, P.A.; Berlinck, C.N. Fire management in the Brazilian savanna: First steps and the way forward. J. Appl. Ecol. 2018, 55, 2094–2101. [Google Scholar] [CrossRef] [Green Version]
- Penman, T.D.; Christie, F.J.; Andersen, A.N.; Bradstock, R.A.; Cary, G.J.; Henderson, M.K.; Price, O.; Tran, C.; Wardle, G.M.; Williams, R.J.; et al. Prescribed burning: How can it work to conserve the things we value? Int. J. Wildland Fire 2011, 20, 721–733. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Cook, G.D.; Cooke, P.M.; Edwards, A.C.; Lendrum, M.; Meyer, C.; Whitehead, P.J. Managing fire regimes in north Australian savannas: Applying Aboriginal approaches to contemporary global problems. Front. Ecol. Environ. 2013, 11, e55–e63. [Google Scholar] [CrossRef] [Green Version]
- Eskander, S.M.S.U.; Fankhauser, S. Reduction in greenhouse gas emissions from national climate legislation. Nat. Clim. Chang. 2020, 10, 750–756. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Monagle, C.; Jacobsohn, M.; Beatty, R.L.; Bilbao, B.; Millán, A.; Vessuri, H.; Sánchez-Rose, I. Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fire-prone settings? Clim. Chang. 2017, 140, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Mueller, E.; Skowronski, N.; Clark, K.; Kremens, R.; Gallagher, M.; Thomas, J.; Houssamia, M.E.; Filkov, A.; Butler, B.; Hom, J.; et al. An experimental approach to the evaluation of prescribed fire behavior. In Advances in Forest Fire Research; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2014; pp. 41–53. [Google Scholar]
- Hunter, M.E.; Robles, M.D. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. For. Ecol. Manag. 2020, 475, 118435. [Google Scholar] [CrossRef]
- Podschwit, H.; Miller, C.; Alvarado, E. Spatiotemporal Prescribed Fire Patterns in Washington State, USA. Fire 2021, 4, 19. [Google Scholar] [CrossRef]
- Davim, D.A.; Rossa, C.G.; Fernandes, P.M. Survival of prescribed burning treatments to wildfire in Portugal. For. Ecol. Manag. 2021, 493, 119250. [Google Scholar] [CrossRef]
- Costa, Y.T.; Thomaz, E.L. Management, sustainability and research perspective of prescribed fires in tropical parks. Curr. Opin. Environ. Sci. Health 2021, 22, 100257. [Google Scholar] [CrossRef]
- Durigan, G. Zero-fire: Not possible nor desirable in the Cerrado of Brazil. Flora 2020, 268, 151612. [Google Scholar] [CrossRef]
- Durigan, G.; Ratter, J.A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 2016, 53, 11–15. [Google Scholar] [CrossRef]
- Murphy, B.P.; Cochrane, M.A.; Russell-Smith, J. Prescribed burning protects endangered tropical heathlands of the Arnhem Plateau, northern Australia. J. Appl. Ecol. 2015, 52, 980–991. [Google Scholar] [CrossRef] [Green Version]
- Archibald, S. Managing the human component of fire regimes: Lessons from Africa. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150346. [Google Scholar] [CrossRef]
- Silveira, L.; Henrique, F.; Rodrigues, F.H.G.; Jácomo, A.T.D.A.; Filho, J.A.F.D. Impact of wildfires on the megafauna of Emas National Park, central Brazil. Oryx 1999, 33, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.; Kobziar, L.; Rose, E.W.; Cropper, W. A critique of the historical-fire-regime concept in conservation. Conserv. Biol. 2017, 31, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Sletto, B. The Knowledge that Counts: Institutional Identities, Policy Science, and the Conflict Over Fire Management in the Gran Sabana, Venezuela. World Dev. 2008, 36, 1938–1955. [Google Scholar] [CrossRef]
- Matos, R.M.P.; Aguiar, L.L.L.; Martins, P.T.D.A. Ocorrência de fogo no Parque Nacional da Chapada dos Veadeiros, Goiás, Brasil: Histórico recente no contexto da sua ampliação. GeoTextos 2020, 16. [Google Scholar] [CrossRef]
- Abreu, R.C.R.; Hoffmann, W.A.; Vasconcelos, H.L.; Pilon, N.A.; Rossatto, D.R.; Durigan, G. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 2017, 3, e1701284. [Google Scholar] [CrossRef] [Green Version]
- Eloy, L.; Bilbao, B.A.; Mistry, J.; Schmidt, I.B. From fire suppression to fire management: Advances and resistances to changes in fire policy in the savannas of Brazil and Venezuela. Geogr. J. 2018, 185, 10–22. [Google Scholar] [CrossRef]
- Schmidt, I.B.; Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 2020, 268, 151613. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote. Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Balch, J.; Denis, L.S.; Mahood, A.; Mietkiewicz, N.; Williams, T.; McGlinchy, J.; Cook, M. FIRED (Fire Events Delineation): An Open, Flexible Algorithm and Database of US Fire Events Derived from the MODIS Burned Area Product (2001–2019). Remote. Sens. 2020, 12, 3498. [Google Scholar] [CrossRef]
- Oom, D.; Silva, P.C.; Bistinas, I.; Pereira, J.M.C. Highlighting Biome-Specific Sensitivity of Fire Size Distributions to Time-Gap Parameter Using a New Algorithm for Fire Event Individuation. Remote. Sens. 2016, 8, 663. [Google Scholar] [CrossRef] [Green Version]
- Archibald, S.; Roy, D.P. Identifying individual fires from satellite-derived burned area data. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 3, pp. III-160–III-163. [Google Scholar]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- Laurent, P.; Mouillot, F.; Yue, C.; Ciais, P.; Moreno, M.V.; Nogueira, J.M.P. FRY, a global database of fire patch functional traits derived from space-borne burned area products. Sci. Data 2018, 5, 180132. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, J.M.P.; Ruffault, J.; Chuvieco, E.; Mouillot, F. Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics? Remote. Sens. 2016, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2014, 24, 77–86. [Google Scholar] [CrossRef]
- Artés, T.; Oom, D.; De Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Campagnolo, M.L.; Oom, D.; Padilla, M.; Pereira, J.M.C. A patch-based algorithm for global and daily burned area mapping. Remote. Sens. Environ. 2019, 232, 111288. [Google Scholar] [CrossRef]
- Fernandes, P.M. Empirical Support for the Use of Prescribed Burning as a Fuel Treatment. Curr. For. Rep. 2015, 1, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Vernooij, R.; Giongo, M.; Borges, M.A.; Costa, M.M.; Barradas, A.C.S.; van der Werf, G.R. Intraseasonal variability of greenhouse gas emission factors from biomass burning in the Brazilian Cerrado. Biogeosciences 2021, 18, 1375–1393. [Google Scholar] [CrossRef]
- Berlinck, C.N.; Batista, E.K.L. Good fire, bad fire: It depends on who burns. Flora 2020, 268, 151610. [Google Scholar] [CrossRef]
- Oliveira, A.; Soares-Filho, B.; Oliveira, U.; Van der Hoff, R.; Carvalho-Ribeiro, S.; Scheepers, L.; Vargas, B.; Rajão, R. Costs and effectiveness of public and private fire management programs in the Brazilian Amazon and Cerrado. For. Policy Econ. 2021, 127, 102447. [Google Scholar] [CrossRef]
- Batista, E.K.L.; Russell-Smith, J.; França, H.; Côrtes-Figueira, J.E. An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: Outcomes of fire suppression policies. J. Environ. Manag. 2018, 205, 40–49. [Google Scholar] [CrossRef]
- Pivello, V.R.; Vieira, I.; Christianini, A.V.; Ribeiro, D.B.; da Silva Menezes, L.; Berlinck, C.N.; Melo, F.P.; Marengo, J.A.; Tornquist, C.G.; Tomas, W.M.; et al. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspect. Ecol. Conserv. 2021, 19, 233–255. [Google Scholar] [CrossRef]
- Eloy, L.; Schmidt, I.B.; Borges, S.L.; Ferreira, M.C.; Dos Santos, T.A. Seasonal fire management by traditional cattle ranchers prevents the spread of wildfire in the Brazilian Cerrado. Ambio 2018, 48, 890–899. [Google Scholar] [CrossRef]
- Schmidt, I.B.; Fonseca, C.B.; Ferreira, M.C.; Sato, M.N. Implementação do programa piloto de manejo integrado do fogo em três unidades de conservação do Cerrado. Biodivers. Bras. BioBrasil 2016, 2, 55–70. [Google Scholar] [CrossRef]
- Melo, P.; Sparacino, J.; Argibay, D.; Júnior, V.S.; Barros, R.; Espindola, G. Assessing Wildfire Regimes in Indigenous Lands of the Brazilian Savannah-Like Cerrado. Fire 2021, 4, 34. [Google Scholar] [CrossRef]
- De Moraes Falleiro, R.; Steil, L.; de Oliveira, M.S.; Lando, I.; de Machado, L.O.R.; Cunha, A.M.C.; Zacharias, G.C. Histórico, Avaliação, Oportunidades e Desafios do Manejo Integrado do Fogo nas Terras Indígenas Brasileiras. Biodivers. Bras. BioBrasil 2021, 2, 75–98. [Google Scholar] [CrossRef]
- Ribeiro, J.F.; Walter, B.M.T. Fitofisionomias do Bioma Cerrado. In Cerrado: Ambiente e Flora; Sano, S.M., Almeida, S.P.d., Eds.; EMBRAPA-CPAC: Planaltina, Brazil, 1998; pp. 89–166. [Google Scholar]
- Ratter, J.A.; Ribeiro, J.F.; Bridgewater, S. The Brazilian Cerrado Vegetation and Threats to its Biodiversity. Ann. Bot. 1997, 80, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.S.; Bastos, A.; Libonati, R.; Rodrigues, J.A.; DaCamara, C.C. Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado. For. Ecol. Manag. 2019, 446, 193–203. [Google Scholar] [CrossRef]
- Silva, P.S.; Nogueira, J.; Rodrigues, J.A.; Santos, F.L.M.; Pereira, J.M.C.; Da Camara, C.C.; Daldegan, G.A.; Pereira, A.A.; Peres, L.F.; Schmidt, I.B.; et al. Putting fire on the map of Brazilian savanna ecoregions. J. Environ. Manag. 2021, 296, 113098. [Google Scholar] [CrossRef]
- Fundação Nacional do Índio Terras Indígenas. Available online: http://www.funai.gov.br/index.php/indios-no-brasil/terras-indigenas (accessed on 11 June 2021).
- Roldão, A.D.F.; Ferreira, V.D.O. Climatologia do Estado do Tocantins—Brasil. Caderno Geografia 2019, 29, 1161–1181. [Google Scholar] [CrossRef]
- Instituto Socioambiental Terra Indígena Xerente|Terras Indígenas no Brasil. Available online: https://terrasindigenas.org.br/pt-br/terras-indigenas/3907 (accessed on 11 June 2021).
- Instituto Socioambiental Parque Indígena Araguaia|Terras Indígenas no Brasil. Available online: https://terrasindigenas.org.br/pt-br/terras-indigenas/3592 (accessed on 11 June 2021).
- Pivello, V.R. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Instituto Socioambiental Xerente—Povos Indígenas No Brasil. Available online: https://pib.socioambiental.org/pt/Povo:Xerente (accessed on 11 June 2021).
- Eloy, L.; Hecht, S.; Steward, A.; Mistry, J. Firing up: Policy, politics and polemics under new and old burning regimes. Geogr. J. 2019, 185, 2–9. [Google Scholar] [CrossRef]
- Mistry, J.; Schmidt, I.B.; Eloy, L.; Bilbao, B. New perspectives in fire management in South American savannas: The importance of intercultural governance. Ambio 2019, 48, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Pappenberger, F.; Wetterhall, F.; Krzeminski, B.; Camia, A.; Libertá, G.; Miguel, J.S. The Potential Predictability of Fire Danger Provided by Numerical Weather Prediction. J. Appl. Meteorol. Clim. 2016, 55, 2469–2491. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmospheric Chem. Phys. Discuss. 2019, 19, 3515–3556. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote. Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Schroeder, W.; Csiszar, I.; Giglio, L.; Schmidt, C.C. On the use of fire radiative power, area, and temperature estimates to characterize biomass burning via moderate to coarse spatial resolution remote sensing data in the Brazilian Amazon. J. Geophys. Res. Space Phys. 2010, 115, D21121. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L. Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote. Sens. Environ. 2007, 108, 407–421. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Rémy, S.; Pappenberger, F.; Wetterhall, F. Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations. Atmos. Chem. Phys. Discuss. 2018, 18, 5359–5370. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, J.M.P.; Rambal, S.; Barbosa, J.P.R.A.D.; Mouillot, F. Spatial Pattern of the Seasonal Drought/Burned Area Relationship across Brazilian Biomes: Sensitivity to Drought Metrics and Global Remote-Sensing Fire Products. Climate 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.M.; Dacamara, C.C.; Trigo, I.F.; Trigo, R.M.; Turkman, K.F. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat. Nat. Hazards Earth Syst. Sci. 2018, 18, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.W.; Alexander, M.E. Science, technology, and human factors in fire danger rating: The Canadian experience. Int. J. Wildland Fire 2006, 15, 121–135. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.; Lowenthal, D.H.; Chen, L.-W.A.; Motallebi, N. PM2.5 source profiles for black and organic carbon emission inventories. Atmos. Environ. 2011, 45, 5407–5414. [Google Scholar] [CrossRef]
- Niels Andela Fire Atlas—Global Fire Emissions Database. Available online: https://www.globalfiredata.org/fireatlas.html (accessed on 15 June 2021).
- Fire Information For Resource Management System MODIS/Aqua+Terra Thermal Anomalies/Fire Locations 1 km (MCD14ML) V006 and V0061 Standard (Vector data) distributed by LANCE FIRMS. Available online: https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms/mcd14ml (accessed on 11 June 2021).
- ECMWF Fire Danger Indices Historical Data from the Copernicus Emergency Management Service. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 29 January 2020).
- ECMWF CAMS Global Reanalysis (EAC4) Monthly Averaged Fields. Available online: https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4-monthly?tab=overview (accessed on 15 July 2021).
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Hamed, K.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Chandler, R.E.; Richard, E.; Scott, E.M. Statistical Methods for Trend Detection and Analysis in the Environmental Sciences; Chandler, R.E., Scott, E.M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; ISBN 9781119991571. [Google Scholar]
- Hussain, M.M.; Mahmud, I. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Santos, F.L.M.; Libonati, R.; Peres, L.F.; Pereira, A.A.; Narcizo, L.C.; Rodrigues, J.A.; Oom, D.; Pereira, J.M.C.; Schroeder, W.; Setzer, A.W. Assessing VIIRS capabilities to improve burned area mapping over the Brazilian Cerrado. Int. J. Remote. Sens. 2020, 41, 8300–8327. [Google Scholar] [CrossRef]
- Pereira, A.A.; Pereira, J.M.C.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; De Carvalho, L.M.T. Burned Area Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote. Sens. 2017, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.A.; Libonati, R.; Pereira, A.A.; Nogueira, J.M.P.; Santos, F.L.M.; Peres, L.F.; Rosa, A.S.; Schroeder, W.; Pereira, J.M.; Giglio, L.; et al. How well do global burned area products represent fire patterns in the Brazilian Savannas biome? An accuracy assessment of the MCD64 collections. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 318–331. [Google Scholar] [CrossRef]
- Gomes, L.; Miranda, H.S.; Bustamante, M.M.D.C. How can we advance the knowledge on the behavior and effects of fire in the Cerrado biome? For. Ecol. Manag. 2018, 417, 281–290. [Google Scholar] [CrossRef]
- Barradas, A.C.S.; Borges, M.A.; Costa, M.M.; Ribeiro, K.T. Paradigmas da Gestão do Fogo em Áreas Protegidas no Mundo e o Caso da Estação Ecológica Serra Geral do Tocantins. Biodiversidade Bras. BioBrasil 2020, 71–86. [Google Scholar] [CrossRef]
- Fidelis, A. Is fire always the “bad guy”? Flora 2020, 268, 151611. [Google Scholar] [CrossRef]
- Tibshirani, R.J.; Efron, B. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1993; Volume 57, pp. 1–436. [Google Scholar]
- Van Wilgen, B.W.; Govender, N.; Biggs, H.C. The contribution of fire research to fire management: A critical review of a long-term experiment in the Kruger National Park, South Africa. Int. J. Wildland Fire 2007, 16, 519. [Google Scholar] [CrossRef]
- Van Wilgen, B.W.; Everson, C.S.; Trollope, W.S.W. Fire Management in Southern Africa: Some Examples of Current Objectives, Practices, and Problems. In Fire in the Tropical Biota; Springer: Berlin/Heidelberg, Germany, 1990; pp. 179–215. [Google Scholar]
- Van Wilgen, B.W.; Govender, N.; Biggs, H.C.; Ntsala, D.; Funda, X.N. Response of Savanna Fire Regimes to Changing Fire-Management Policies in a Large African National Park. Conserv. Biol. 2004, 18, 1533–1540. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Hurteau, M. Prescribed Fire As a Means of Reducing Forest Carbon Emissions in the Western United States. Environ. Sci. Technol. 2010, 44, 1926–1932. [Google Scholar] [CrossRef]
- Campagnolo, M.; Libonati, R.; Rodrigues, J.; Pereira, J. A comprehensive characterization of MODIS daily burned area mapping accuracy across fire sizes in tropical savannas. Remote. Sens. Environ. 2020, 252. [Google Scholar] [CrossRef]
- Price, O.F.; Russell-Smith, J.; Watt, F. The influence of prescribed fire on the extent of wildfire in savanna landscapes of western Arnhem Land, Australia. Int. J. Wildland Fire 2012, 21, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Bird, R.B.; Codding, B.; Kauhanen, P.G.; Bird, D.W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl. Acad. Sci. USA 2012, 109, 10287–10292. [Google Scholar] [CrossRef] [Green Version]
- Mistry, J.; Berardi, A.; Andrade, V.; Krahô, T.; Krahô, P.; Leonardos, O. Indigenous Fire Management in the cerrado of Brazil: The Case of the Krahô of Tocantíns. Hum. Ecol. 2005, 33, 365–386. [Google Scholar] [CrossRef]
- Alvarado, S.T.; Silva, T.S.F.; Archibald, S. Management impacts on fire occurrence: A comparison of fire regimes of African and South American tropical savannas in different protected areas. J. Environ. Manag. 2018, 218, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.M.; Botelho, H.S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 2003, 12, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, W.A.; Solbrig, O.T. The role of topkill in the differential response of savanna woody species to fire. For. Ecol. Manag. 2003, 180, 273–286. [Google Scholar] [CrossRef]
- Arkle, R.S.; Pilliod, D.S.; Welty, J.L. Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests. For. Ecol. Manag. 2012, 276, 174–184. [Google Scholar] [CrossRef]
- Nowell, H.K.; Holmes, C.D.; Robertson, K.; Teske, C.; Hiers, J.K. A New Picture of Fire Extent, Variability, and Drought Interaction in Prescribed Fire Landscapes: Insights from Florida Government Records. Geophys. Res. Lett. 2018, 45, 7874–7884. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, A.J.; Schmit, T.J.; Menzel, W.P. Observations and trends of clouds based on GOES sounder data. J. Geophys. Res. Space Phys. 2001, 106, 20349–20363. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; van der Werf, G.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kobayashi, H.; Kanaya, Y.; Saito, M. Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Hall, J.V.; Loboda, T.V.; Giglio, L.; McCarty, G.W. A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote. Sens. Environ. 2016, 184, 506–521. [Google Scholar] [CrossRef] [Green Version]
- Tsele, P.; Wessels, K.; Botai, J.; Archibald, S.; Swanepoel, D.; Steenkamp, K.; Frost, P. Validation of the Two Standard MODIS Satellite Burned-Area Products and an Empirically-Derived Merged Product in South Africa. Remote. Sens. 2014, 6, 1275–1293. [Google Scholar] [CrossRef] [Green Version]
- Tsela, P.L.; van Helden, P.; Frost, P.; Wessels, K.; Archibald, S. Validation of the MODIS burned-area products across different biomes in South Africa. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3652–3655. [Google Scholar]
- Fornacca, D.; Ren, G.; Xiao, W. Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote. Sens. 2017, 9, 1131. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, M.A.; Bowman, D.M.J.S. Manage fire regimes, not fires. Nat. Geosci. 2021, 14, 455–457. [Google Scholar] [CrossRef]
- Souza, C.; Shimbo, J.Z.; Rosa, M.; Parente, L.; Alencar, A.A.; Rudorff, B.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote. Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Agee, J.K.; Bahro, B.; Finney, M.A.; Omi, P.N.; Sapsis, D.B.; Skinner, C.N.; van Wagtendonk, J.W.; Weatherspoon, C.P. The use of shaded fuelbreaks in landscape fire management. For. Ecol. Manag. 2000, 127, 55–66. [Google Scholar] [CrossRef]
- Santopuoli, G.; Cachoeira, J.N.; Marchetti, M.; Viola, M.R.; Giongo, M. Explore inhabitants’ perceptions of wildfire and mitigation behaviours in the Cerrado biome, a fire-prone area of Brazil. Ann. Silvic. Res. 2017, 41, 29–40. [Google Scholar]
- Flannigan, M.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Nikolakis, W.D.; Roberts, E. Indigenous fire management: A conceptual model from literature. Ecol. Soc. 2020, 25, 11. [Google Scholar] [CrossRef]
- Fernandes, P.M. Scientific support to prescribed underburning in southern Europe: What do we know? Sci. Total Environ. 2018, 630, 340–348. [Google Scholar] [CrossRef]
Variable [Unit] | Dataset | Spatial Resolution | Serie and Temporal Resolution | Source | Reference |
---|---|---|---|---|---|
Prescribed burning counts | IBAMA/PREVFOGO | not applied | daily, 2015–2018 | IBAMA/ PREVFOGO | personal communication |
Scar size [ha] | Global Fire Atlas (GFA) database | 500 m | daily, 2003–2018 | [70] | [31] |
Fire intensity [MW] | MCD14ML active fire product | 1 km | daily, 2003–2018 | [71] | [59] |
Fire Weather Index (FWI) | Fire danger indices | 0.25° | daily, 1979–2020 | [72] | [65] |
Particulate matter d < 2.5 µm (PM2.5) [kg·m−3] | Copernicus Atmosphere Monitoring Service (CAMS) database | 0.75° | monthly, 2003–2018 | [73] | [61] |
Year | Xerente | Araguaia |
---|---|---|
2015 | 44 | 11 |
2016 | 40 | * |
2017 | 147 | 491 |
2018 | 367 | 772 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, F.L.M.; Nogueira, J.; Souza, R.A.F.d.; Falleiro, R.M.; Schmidt, I.B.; Libonati, R. Prescribed Burning Reduces Large, High-Intensity Wildfires and Emissions in the Brazilian Savanna. Fire 2021, 4, 56. https://doi.org/10.3390/fire4030056
Santos FLM, Nogueira J, Souza RAFd, Falleiro RM, Schmidt IB, Libonati R. Prescribed Burning Reduces Large, High-Intensity Wildfires and Emissions in the Brazilian Savanna. Fire. 2021; 4(3):56. https://doi.org/10.3390/fire4030056
Chicago/Turabian StyleSantos, Filippe L.M., Joana Nogueira, Rodrigo A. F. de Souza, Rodrigo M. Falleiro, Isabel B. Schmidt, and Renata Libonati. 2021. "Prescribed Burning Reduces Large, High-Intensity Wildfires and Emissions in the Brazilian Savanna" Fire 4, no. 3: 56. https://doi.org/10.3390/fire4030056
APA StyleSantos, F. L. M., Nogueira, J., Souza, R. A. F. d., Falleiro, R. M., Schmidt, I. B., & Libonati, R. (2021). Prescribed Burning Reduces Large, High-Intensity Wildfires and Emissions in the Brazilian Savanna. Fire, 4(3), 56. https://doi.org/10.3390/fire4030056