A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protective Device
2.2. Laboratory Tests
2.3. Field Test
3. Results
3.1. Laboratory Tests
3.2. Field Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.; Delogu, G.; Fernandes, P.; Ferreira, C.; McCaffrey, S.; McGee, T.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.M.; Rodrigues, A.; Lucas, D.; Viegas, D.X. The impact on structures of the pedrógão grande fire complex in June 2017 (Portugal). Fire 2020, 3, 57. [Google Scholar] [CrossRef]
- Viegas, D.X.; Rodrigues, A.; Abouali, A.; Almeida, M.; Raposo, J. Fire downwind a flat surface entering a canyon by lateral spread. Fire Saf. J. 2021, 122, 103349. [Google Scholar] [CrossRef]
- Oliveira, R.; Oliveira, S.; Zêzere, J.L.; Viegas, D.X. Uncovering the perception regarding wildfires of residents with different characteristics. Int. J. Disaster Risk Reduct. 2020, 43, 101370. [Google Scholar] [CrossRef]
- Pastor, E.; Muñoz, J.A.; Caballero, D.; Àgueda, A.; Dalmau, F.; Planas, E. Wildland–Urban Interface Fires in Spain: Summary of the Policy Framework and Recommendations for Improvement. Fire Technol. 2020, 56, 1831–1851. [Google Scholar] [CrossRef]
- Scarponi, G.E.; Pastor, E.; Planas, E.; Cozzani, V. Analysis of the impact of wildland-urban-interface fires on LPG domestic tanks. Saf. Sci. 2020, 124, 104588. [Google Scholar] [CrossRef]
- Heymes, F.; Aprin, L.; Forestier, S.; Slangen, P.; Baptiste Jarry, J.; François, H.; Dusserre, G. Impact of a distant wildland fire on an LPG tank. Fire Saf. J. 2013, 61, 100–107. [Google Scholar] [CrossRef] [Green Version]
- O Instituto Português do Mar e da Atmosfera, Análise Preliminar do Período 5 a 10 Agosto 2016 na Madeira. 2016. Available online: https://www.ipma.pt/pt/media/noticias/news.detail.jsp?f=/pt/media/noticias/arquivo/2016/madeira-5-10-ago-2016.html (accessed on 2 March 2022).
- Viegas, D.X.; Figueiredo Almeida, M.; Ribeiro, L.M.; Raposo, J.; Viegas, M.T.; Oliveira, R.; Pinto, C.; Jorge, H.; Rodrigues, A.; Lucas, D. O Complexo de Incêndios de Pedrógão Grande e Concelhos Limítrofes, Iniciado a 17 de Junho de 2017; Centro de Estudos Sobre Incêndios Florestais (CEIF/ADAI/LAETA): Coimbra, Portugal, 2017. [Google Scholar]
- Viegas, D.X.; Almeida, M.A.; Ribeiro, L.M.; Raposo, J.; Viegas, M.T.; Oliveira, R.; Alves, D.; Pinto, C.; Rodrigues, A.; Ribeiro, C.; et al. Análise dos Incêndios Florestais Ocorridos a 15 de Outubro de 2017; Centro de Estudos Sobre Incêndios Florestais (CEIF/ADAI/LAETA): Coimbra, Portugal, 2017. [Google Scholar]
- Pinto, P.; Silva, Á.; Viegas, D.; Almeida, M.; Raposo, J.; Ribeiro, L. Influence of Convectively Driven Flows in the Course of a Large Fire in Portugal: The case of Prdrógão Grande. Atmosphere 2022, 13, 414. [Google Scholar] [CrossRef]
- Hemmatian, B.; Planas, E.; Casal, J. Comparative analysis of BLEVE mechanical energy and overpressure modeling. Process Saf. Environ. Prot. 2017, 106, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Planas-Cuchi, E.; Salla, J.M.; Casal, J. Calculating overpressure from BLEVE explosions. J. Loss Prev. Process Ind. 2004, 17, 431–436. [Google Scholar] [CrossRef]
- Casal, J.; Salla, J.M. Using liquid superheating energy for a quick estimation of overpressure in BLEVEs and similar explosions. J. Hazard. Mater. 2006, 137, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Tschirschwitz, R.; Krentel, D.; Kluge, M.; Askar, E.; Habib, K.; Kohlhoff, H.; Krüger, S.; Neumann, P.P.; Storm, S.U.; Rudolph, M.; et al. Experimental investigation of consequences of LPG vehicle tank failure under fire conditions. J. Loss Prev. Process Ind. 2018, 56, 278–288. [Google Scholar] [CrossRef]
- Tschirschwitz, R.; Krentel, D.; Kluge, M.; Askar, E.; Habib, K.; Kohlhoff, H.; Neumann, P.P.; Storm, S.U.; Rudolph, M.; Schoppa, A.; et al. Mobile gas cylinders in fire: Consequences in case of failure. Fire Saf. J. 2017, 91, 989–996. [Google Scholar] [CrossRef]
- Stawczyk, J. Experimental evaluation of LPG tank explosion hazards. J. Hazard. Mater. 2003, 96, 189–200. [Google Scholar] [CrossRef]
- Ricci, F.; Scarponi, G.E.; Pastor, E.; Planas, E.; Cozzani, V. Safety distances for storage tanks to prevent fire damage in Wildland-Industrial Interface. Process Saf. Environ. Prot. 2021, 147, 693–702. [Google Scholar] [CrossRef]
- Viegas, C.; Batista, R.; Albino, A.; Coelho, M.; Andrade, J.; Alves, D.; Viegas, D.X. Active Barrier Combining Fire-Resistant Fiberglass Fabric and Water Sprinkler System for Protection against Forest Fires. Fire Technol. 2021, 57, 189–206. [Google Scholar] [CrossRef]
- Takahashi, F. Whole-House Fire Blanket Protection from Wildland-Urban Interface Fires. Front. Mech. Eng. 2019, 5, 60. [Google Scholar] [CrossRef]
- EN 1442; LPG Equipment and Accessories-Transportable Refillable Welded Steel Cylinders for LPG-Design and Construction. European Committee for Standardization: Brussels, Belgium, 2017.
- EN 12245:2009 + A1: 2011; Transportable Gas Cylinders-Fully Wrapped Composite Cylinders. European Committee for Standardization: Brussels, Belgium, 2011.
- Redmond, M.; Mastropietro, A.J. Thermophysical and Optical Properties of Materials Considered for use on the LDSD Test Vehicle. In Proceedings of the 45th International Conference on Environmental Systems, Bellevue, WA, USA, 12–16 July 2015. [Google Scholar]
- Batista, R.M. Mechanisms for Active Protection of People and Infrastructures against Forest Fires. Ph.D. Dissertation, Universidade de Coimbra, Coimbra, Portugal, 2019. Available online: http://hdl.handle.net/10316/86026 (accessed on 10 January 2022).
- Pereira, D.J.S.; Viegas, C.; Panão, M.R.O. Heat transfer model of fire protection fiberglass thermal barrier coated with thin aluminium layer. Int. J. Heat Mass Transf. 2022, 184, 122301. [Google Scholar] [CrossRef]
- Pinto, C.; Viegas, D.; Almeida, M.; Raposo, J. Fire whirls in forest fires: An experimental analysis. Fire Saf. J. 2017, 87, 37–48. [Google Scholar] [CrossRef]
- Viegas, D.X.; Palheiro, P.M.; Pita, L.P.; Ribeiro, L.M.; Cruz, M.G.; Ollero, A.; Arrue, B.; Ramiro, M.D. Analysis of fire behaviour in Mediterranean shrubs: The Gestosa fire experiments (Portugal). For. Ecol. Manag. 2006, 234, S101. [Google Scholar] [CrossRef]
- Rodrigues, A.; Ribeiro, C.; Raposo, J.; Viegas, D.X.; André, J. Effect of Canyons on a Fire Propagating Laterally over Slopes. Front. Mech. Eng. 2019, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Raposo, J.R.N. Extreme Fire Behaviour Associated with the Merging of Two Linear Fire Fronts. Ph.D. Dissertation, Coimbra University, Coimbra, Portugal, 2016. [Google Scholar]
- Cohen, J.D.; Butler, B.W. Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management. In Proceedings of the 13th Fire and Forest Meteorology Conference, International Association of Wildland Fire, Victoria, Australia, 27–31 October 1996; pp. 81–87. Available online: https://www.fs.fed.us/rm/pubs_other/rmrs_1998_cohen_j001.pdf (accessed on 20 March 2022).
- Cohen, J.D. The Structure Ignition Assessment Model (SIAM). In The Biswell Symposium: Fire Issues and Solutions in Urban Interface and Wildland Ecosystems; 1995; pp. 85–92. Available online: https://www.fs.usda.gov/treesearch/pubs/27418 (accessed on 20 March 2022).
- Scarponi, G.E.; Landucci, G.; Birk, A.M.; Cozzani, V. LPG vessels exposed to fire: Scale effects on pressure build-up. J. Loss Prev. Process Ind. 2018, 56, 342–358. [Google Scholar] [CrossRef]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. The Properties of Gases and Liquids; McGraw-Hill: New York, NY, USA, 2001; p. 7.5. ISBN 0071499997. [Google Scholar]
- National Institute of Standards and Technology, Saturation Properties for Propane—Temperature Increments, (n.d.). Available online: https://webbook.nist.gov/cgi/fluid.cgi?Action=Load&ID=C74986&Type=SatP&Digits=5&THigh=60&TLow=0&TInc=1&RefState=DEF&TUnit=C&PUnit=bar&DUnit=kg%2Fm3&HUnit=kJ%2Fkg&WUnit=m%2Fs&VisUnit=uPa*s&STUnit=N%2Fm (accessed on 7 April 2022).
- Lemmon, E.W.; McLinden, M.O.; Wagner, W. Thermodynamic properties of propane. III. A reference equation of state for temperatures from the melting line to 650 K and pressures up to 1000 MPa. J. Chem. Eng. Data 2009, 54, 3141–3180. [Google Scholar] [CrossRef]
Ref. | Test | Distance (m) | Fuel Load (kg) | Time of Exposure (min) | Place |
---|---|---|---|---|---|
[1] | PS025 | 0.25 | 10 | 6 | Lab |
[2] | PS050 | 0.50 | 10 | 6 | Lab |
[3] | PS075 | 0.75 | 10 | 6 | Lab |
[4] | PS100 | 1.00 | 10 | 6 | Lab |
[5] | REF025 | 0.25 | 10 | 6 | Lab |
[6] | REF050 | 0.50 | 10 | 6 | Lab |
[7] | REF075 | 0.75 | 10 | 6 | Lab |
[8] | REF100 | 1.00 | 10 | 6 | Lab |
[9] | PSS | Surrounded | - | 14 | Field |
Test | Distance (m) | Protective Device (kJ·m−2) | Cylinder (kJ·m−2) | Difference (kJ·m−2) | Ratio |
---|---|---|---|---|---|
PS025 | 0.25 | 37.12 | 14.81 | 22.31 | 0.399 |
PS050 | 0.50 | 31.92 | 12.95 | 18.97 | 0.406 |
PS075 | 0.75 | 21.76 | 12.62 | 9.14 | 0.580 |
PS100 | 1 | 20.4 | 13.18 | 7.22 | 0.646 |
PSS | Field | 29.352 | 12.9 | 16.45 | 0.439 |
Test | % Average of Flux Blockage | Average of Flux Blockage (kW·m−2) |
---|---|---|
PS025 | 61 | 2.48 |
PS050 | 58 | 3.1 |
PS075 | 42 | 1.5 |
PS100 | 33 | 1.1 |
PSS | 46 | 1.0 |
Test | Environmental Temperature (°C) | Max Surf. Protection Temperature (°C) | Max Surf. Cylinder Temperature (°C) | Difference of Surf. Temperatures (°C) | Estimative of Maximum Pressure (bar) |
---|---|---|---|---|---|
PS025 | 21 | 110 | 30 | 80 | 10.8 |
PS050 | 10 | 73 | 18 | 55 | 7.93 |
PS075 | 20 | 63 | 22 | 41 | 8.81 |
PS100 | 19 | 56 | 23 | 33 | 9.04 |
PSS | 21 | 174 | 51 | 123 | 17.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, T.F.; Reis, L.; Raposo, J.; Viegas, D.X. A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire. Fire 2022, 5, 63. https://doi.org/10.3390/fire5030063
Barbosa TF, Reis L, Raposo J, Viegas DX. A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire. Fire. 2022; 5(3):63. https://doi.org/10.3390/fire5030063
Chicago/Turabian StyleBarbosa, Thiago Fernandes, Luís Reis, Jorge Raposo, and Domingos Xavier Viegas. 2022. "A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire" Fire 5, no. 3: 63. https://doi.org/10.3390/fire5030063
APA StyleBarbosa, T. F., Reis, L., Raposo, J., & Viegas, D. X. (2022). A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire. Fire, 5(3), 63. https://doi.org/10.3390/fire5030063